Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T22:52:20.332Z Has data issue: false hasContentIssue false

8 - Temperature decay of fluctuations

Published online by Cambridge University Press:  05 June 2012

David K. Ferry
Affiliation:
Arizona State University
Stephen M. Goodnick
Affiliation:
Arizona State University
Jonathan Bird
Affiliation:
State University of New York, Buffalo
Get access

Summary

When the temperature is raised above absolute zero, the amplitudes of both the weak-localization, universal conductance fluctuations and the Aharonov–Bohm oscillations are reduced below the nominal value e2/h. In fact, the amplitude of nearly all quantum phase interference phenomena is likewise weakened. There is a variety of reasons for this. One reason, perhaps the simplest to understand, is that the coherence length is reduced, but this can arise as a consequence of either a reduction in the coherence time or a reduction in the diffusion coefficient. In fact, both of these effects occur. In Chapter 2, we discussed the temperature dependence of the mobility in high-mobility modulation-doped GaAs/AlGaAs heterostructures. The decay of the mobility couples to an equivalent decay in the diffusion constant, where d is the dimensionality of the system, through both a small temperature dependence of the Fermi velocity and a much larger temperature dependence of the elastic scattering rate. The temperature dependence of the phase coherence time is less well understood but generally is thought to be limited by electron–electron scattering, particularly at low temperatures. At higher temperatures, of course, phonon scattering can introduce phase breaking.

Another interaction, though, is treated by the introduction of another characteristic length, the thermal diffusion length. The source for this lies in the thermal spreading of the energy levels or, more precisely, in thermal excitation and motion on the part of the carriers.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tarucha, S., Saku, T., Hirayama, Y., et al., in Quantum Effect Physics, Electronics, and Applications, eds. Ishmail, K., Ikoma, T., and Smith, H. I., IOP Conf. Ser. 127, 127 (1992).
Webb, R. A.. Washburn, S., Haucke, H. J., et al., in Physics and Technology of Submicron Structures, eds. Heinrich, H., Bauer, G., and Kuchar, F. (Berlin, Springer-Verlag, 1988), p. 98.CrossRefGoogle Scholar
Skocpol, W. J., Mankiewich, P. M., Howard, R. E., et al., Phys. Rev. Lett. 56, 2865 (1986); 58, 2347 (1987).CrossRef
Graaf, C., Caro, J., and Radelaar, S., Phys. Rev. B 46, 12814 (1992).CrossRef
Abrahams, E., Anderson, P. W., Lee, P. A., and Ramakrishnan, T. V., Phys. Rev. B 24, 6783 (1991).CrossRef
Wheeler, R. G., Choi, K. K., Goel, A., Wisnieff, R., and Prober, D. E., Phys. Rev. Lett. 49, 1674 (1982).CrossRef
Taylor, R. P., Main, P. C., Eaves, L., et al., J. Phys.: Cond. Matter 1, 10413 (1989).
Lee, P. A., Stone, A. D., and Fukuyama, H., Phys. Rev. B 35, 1039 (1987).CrossRef
Beenakker, C. W. J. and Houten, H., Phys. Rev. B 37, 6544 (1988).CrossRef
Dynes, R. C., Physica B 109+110, 1857 (1982).
Choi, K. K., Tsui, D. C., and Alavi, K., Phys. Rev. B 36, 7751 (1987).CrossRef
Bird, J. P, Grassie, A. D. C., Lakrami, M., et al., J. Phys.: Cond. Matter 3, 2897 (1991).
Ikoma, T., Odagiri, T., and Hirakawa, K., in Quantum Effect Phyics, Electronics, and Applications, eds. Ishmail, K., Ikoma, T., and Smith, H. I., IOP Conf. Ser. 127, 157 (1992).
Fukai, Y. K., Yamada, S., and Nakano, H., Appl. Phys. Lett. 56, 2133 (1990).CrossRef
Davies, J. H. and Nixon, J. A., Phys. Rev. B39, 3423 (1989); Nixon, J. A., Davies, J. H., and Baranger, H. U., Phys. Rev. B43, 12638 (1991).
Takagaki, Y. and Ferry, D. K., J. Phys.: Cond. Matter 4, 10421 (1992).
Thouless, D. J., J. Non-Cryst. Sol. 35/36, 3 (1980).CrossRef
Howard, R. E., Jackel, L. D., Mankiewich, P. M., and Skocpol, W. J., Science 231, 346 (1986).CrossRef
Imry, J., Europhys. Lett. 1, 249 (1986).CrossRef
Nozières, P. and Pines, D., Theory of Quantum Liquids, (New York, Benjamin, 1966).Google Scholar
Sarma, S. Das, in Quantum Transport in Ultrasmall Devices, eds. Ferry, D. K., Grubin, H. L., Jacoboni, C., and Jauho, A.-P. (New York, Plenum Press, 1995).Google Scholar
See, for example, the discussion in Lee, P. A. and Ramakrishnan, T. V., Rev. Mod. Phys. 57, 287 (1985).CrossRef
Altshuler, B. L. and Aronov, A. G., Sol. State Commun. 39, 115 (1979); Zh. Eksp.Teor. Fiz. Pis'ma Red. [JETP Lett. 30, 514 (1979)].CrossRef
Ferry, D. K., Semiconductors (New York, Macmillan, 1991).Google Scholar
Ridley, B. K., Quantum Processes in Semiconductors (Oxford, Oxford University Press, 1982).Google Scholar
Madelung, O., Introduction to Solid State Theory (Berlin, Springer-Verlag, 1978), pp. 104–9.CrossRefGoogle Scholar
Lugli, P. and Ferry, D. K., Appl. Phys. Lett. 46, 594 (1985); IEEE Electron Dev. Lett. 6, 25 (1985).CrossRef
Fetter, A. L. and Walecka, J. D., Quantum Theory of Many-Particle Systems (New York, McGraw-Hill, 1971).Google Scholar
Mahan, G. D., Many-Particle Physics (New York, Plenum, 1981).Google Scholar
Enz, C. P., A Course on Many-Body Theory Applied to Solid State Physics (Singapore, World Scientific Press, 1992).CrossRefGoogle Scholar
Vinter, B., Phys. Rev. B 13, 4447 (1976).CrossRef
Vinter, B., Phys. Rev. B 15, 3947 (1977).CrossRef
Ando, T., Fowler, A. B., and Stern, F., Rev. Mod. Phys. 54, 437 (1982).CrossRef
Fukuyama, H., in Electron-Electron Interactions in Disordered Systems, eds. Efros, A. L. and Pollak, M. (Amsterdam, North-Holland, 1985).Google Scholar
Chaplik, A. V., Sov. Phys. JETP 33, 997 (1971).
Giuliani, G. F. and Quinn, J. J., Phys. Rev. B 26, 4421 (1982).CrossRef
Altshuler, B. L., Khmelnitzkii, D. E., Larkin, A. L., and Lee, P. A., Phys. Rev. Lett. 44, 1288 (1980).CrossRef
Fukuyama, H., J. Phy. Soc. Jpn. 49, 644 (1980).CrossRef
Ferry, D. K., Semiconductor Transport (London, Taylor and Francis, 2000), Chapter 7.CrossRefGoogle Scholar
Bird, J. P., Ishibashi, K., Ferry, D. K., et al., Phys. Rev. B 51, 18037 (1995).CrossRef
Prasad, C., Ferry, D. K., Shailos, A., et al., Phys. Rev. B 62, 15356 (2000).CrossRef
Altshuler, B. L. and Aronov, A. G., in Electron-Electron Interactions in Disordered Systems, eds. Efros, A. L. and Pollak, M. (Amsterdam, North-Holland, 1985).Google Scholar
Altshuler, B. L., Aronov, A. G., and Khmelnitskii, D. E., J. Phys. C 15, 7367 (1982).CrossRef
Golubev, D. S. and Zaikin, A. D., Phys. Rev. Lett. 81, 1074 (1998).CrossRef
Mohanty, P., Jariwala, E. M. Q., and Webb, R. A., Phys. Rev. Lett. 78, 861 (1979).
Pivin, D. P., Andresen, A., Bird, J. P., and Ferry, D. K., Phys. Rev. Lett. 82, 4687 (1999).CrossRef
Altshuler, B. L., Khmelnitzkii, D. E., Larkin, A. L., and Lee, P. A., Phys. Rev. B 22, 5142 (1980).CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×