Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T16:08:34.368Z Has data issue: false hasContentIssue false

1 - Fundamentals of laser energy absorption

Published online by Cambridge University Press:  04 December 2009

Costas P. Grigoropoulos
Affiliation:
University of California, Berkeley
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Transport in Laser Microfabrication
Fundamentals and Applications
, pp. 1 - 32
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Born, M., and Wolf, E., 1999, Principles of Optics, 7th edn, Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Jellison, G. E. Jr., and Modine, F. A., 1983, “Optical Functions of Silicon between 1.7 and 4.7 eV at Elevated Temperatures,” Phys. Rev. B, 27, 7466–7472.CrossRefGoogle Scholar
Macfarlane, G. G., McLean, T. P., Quarrington, J. E., and Roberts, V., 1958, “Fine Structure in the Absorption-Edge Spectrum of Si,” Phys. Rev., 111, 1245–1254.CrossRefGoogle Scholar
Montaudon, P., Debroux, M. H., Ferrieu, F., and Vareille, A., 1985, “Optical Characterization of Polycrystalline Silicon Films before and after Oxidation,” Thin Solid Films, 125, 235–241.CrossRefGoogle Scholar
Moon, S., Lee, M., Hatano, M., and Grigoropoulos, C. P., 2000, “Interpretation of Optical Diagnostics for the Analysis of Laser Crystallization of Amorphous Silicon Films,” Micro. Therm. Eng., 4, 25–38.Google Scholar
Palik, E. D., 1985, Handbook of Optical Constants of Materials, Vols. I and II, London, Academic Press.Google Scholar
Prokhorov, A. M., Konov, V. I., Ursu, I., and Mihailescu, I. N., 1990, Laser Heating of Metals, Bristol, Adam Hilger, p. 17.Google Scholar
Shvarev, K. M., Baum, B. A., and Geld, P. V., 1974, “Optical Properties of Liquid Silicon,” Fiz. Tverd. Tela, 16, 3246–3248.Google Scholar
Sun, B. K., Zhang, X., and Grigoropoulos, C. P., 1997, “Spectral Optical Functions of Silicon in the Range of 1.13 to 4.96 eV at Elevated Temperatures,” Int. J. Heat Mass Transfer, 40, 1591–1600.CrossRefGoogle Scholar
Thurmond, C. D., 1975, “Standard Thermodynamic Functions for Formation of Electrons and Holes in Si, GaAs and GaP,” J. Electrochem. Soc., 122, 1133.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×