Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-02T01:12:53.227Z Has data issue: false hasContentIssue false

11 - The role of the lateral nucleus of the amygdala in auditory fear conditioning

Published online by Cambridge University Press:  08 August 2009

Hugh T. Blair
Affiliation:
Department of Psycology University of California 1285 Franz Hall Box 951563 Los Angeles, CA 90095-1563
Karim Nader
Affiliation:
Department of Psychology McGill University Canada Stewart Biological Sciences Building Room N8/8, 398-3511 1205 Dr Penfield Avenue Montreal, Quebec, H3 A 1B1
Glenn E. Schafe
Affiliation:
Department of Psychology and Interdisciplinary Neuroscience Program Yale University 2 Hillhouse Avenue New Haven, Connecticut 06511-6814
Elizabeth P. Bauer
Affiliation:
W. M. Keck Foundation Laboratory of Neurobiology Center for Neural Science 6 Washington Place, Room 276 New York University New York, NY 10003
Sarina M. Rodrigues
Affiliation:
W. M. Keck Foundation Laboratory of Neurobiology Center for Neural Science New York University New York, New York 10003
Joseph E. LeDoux
Affiliation:
University Professor; Professor of Neural Science and Psychology Center for Neural Science New York University 4 Washington Place, Room 809 New York, NY 10003
James R. Pomerantz
Affiliation:
Rice University, Houston
Get access

Summary

Introduction

Classical fear conditioning is a form of associative learning in which subjects are trained to express fear responses to a neutral conditioned stimulus (CS) that is paired with an aversive unconditioned stimulus (US). As a result of such pairing, the CS comes to elicit behavioral, autonomic, and endocrine responses that are characteristically expressed in the presence of danger (Blanchard & Blanchard, 1969; Bolles & Fanselow, 1980; Smith et al., 1980). Fear conditioning has emerged as an especially useful behavioral model for investigating the neurobiological mechanisms of learning and memory, because fear memories are rapidly acquired and long-lasting, involve well-defined stimuli and responses, and depend upon similar neural circuits in different vertebrate species (see Davis & Lee, 1998; LeDoux, 2000; Maren, 1999; Rogan et al., 2001).

In this chapter, we review studies that have investigated the role of the amygdala in fear learning. We argue that neural plasticity in the lateral amygdala is critical for storing memories of the association between the CS and US during fear conditioning, and discuss how learning and memory are achieved at the cellular or molecular level. Alternative views of amygdala contributions to fear conditioning are also considered.

The amygdala and fear conditioning

Fear learning depends critically upon the amygdala (Davis & Shi, 2000; Fendt & Fanselow, 1999; LeDoux, 1996, 2000), a cluster of nuclei in the brain's temporal lobe that plays a key role in regulating emotions (Kluver & Bucy, 1939; LeDoux, 1996).

Type
Chapter
Information
Topics in Integrative Neuroscience
From Cells to Cognition
, pp. 299 - 325
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberini, C. M. (2005). Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes?Trends Neuroscience, 28, 51–6.CrossRefGoogle ScholarPubMed
Amorapanth, P., LeDoux, J. E., and Nader, K. (2000). Different lateral amygdala outputs mediate reactions and actions elicited by a fear-arousing stimulus. Nature Neuroscience, 3, 74–9.CrossRefGoogle ScholarPubMed
Andersen, P., Sundberg, S. H., Sveen, O., and Wigstrom, H. (1977). Specific long-lasting potentiation of synaptic transmission in hippocampal slices. Nature, 266, 736–7.CrossRefGoogle ScholarPubMed
Aniksztejn, L. and Ben-Ari, Y. (1991). Novel form of long-term potentiation produced by a K+ channel blocker in the hippocampus, Nature, 349, 67–9.CrossRefGoogle ScholarPubMed
Apergis-Schoute, A. M., Debiec, J., Doyere, V., LeDoux, J. E., and Schafe, G. E. (2005). Auditory fear conditioning and long-term potentiation in the lateral amygdala require ERK/MAP kinase signaling in the auditory thalamus: a role for presynaptic plasticity in the fear system. Journal of Neuroscience, 25, 5730–9.CrossRefGoogle ScholarPubMed
Bach, M. E., Hawkins, R. D., Osman, M., Kandel, E. R., and Mayford, M. (1996). Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency. Cell, 81, 905–15.CrossRefGoogle Scholar
Bailey, C. H., Bartsch, D., and Kandel, E. R. (1996). Toward a molecular definition of long-term memory storage. Proceedings of the National Academy of Sciences USA, 93, 13445–52.CrossRefGoogle Scholar
Bailey, D. J., Sun, W., Thompson, R. F., Kim, J. J., and Helmstetter, F. J. (1999). Acquisition of fear conditioning in rats requires the synthesis of mRNA in the amygdala. Behavioral Neuroscience, 113, 276–82.CrossRefGoogle ScholarPubMed
Barnes, C. A. (1995). Involvement of LTP in memory: are we “searching under the street light”?Neuron, 15, 751–4.CrossRefGoogle ScholarPubMed
Bauer, E. P., LeDoux, J. E., and Nader, K. (2001). Fear conditioning and LTP in the lateral amygdala are sensitive to the same stimulus contingencies. Nature Neuroscience, 4, 687–8.CrossRefGoogle ScholarPubMed
Bauer, E. P., Schafe, G. E., and LeDoux, J. E. (2002). NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. Journal of Neuroscience, 22, 5239–49.CrossRefGoogle ScholarPubMed
Behe, P., Stern, P., Wyllie, D. J., et al. (1995). Determination of NMDA NR1 subunit copy number in recombinant NMDA receptors. Proceedings of the Royal Society of London [Biol], 262, 205–13.CrossRefGoogle ScholarPubMed
Bi, G. Q. and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18, 10464–72.CrossRefGoogle ScholarPubMed
Blair, H. T. and LeDoux, J. E. (2000). Single-unit recording of auditory and nociceptive responses from lateral amygdala neurons during auditory fear conditioning in freely behaving rats. Society for Neuroscience Abstracts, 26, 1254.Google Scholar
Blanchard, D. C. and Blanchard, R. J. (1969). Crouching as an index of fear. Journal of Comparative Physiology Psychology, 67, 370–5.CrossRefGoogle Scholar
Bliss, T. V. P. and Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361, 31–9.CrossRefGoogle ScholarPubMed
Bliss, T. V. P. and Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 331–56.CrossRefGoogle ScholarPubMed
Bolles, R. C. and Fanselow, M. S. (1980). A perceptual-defensive-recuperative model of fear and pain. Behavioral and Brain Sciences, 3, 291–323.CrossRefGoogle Scholar
Bourtchouladze, R., Abel, T., Berman, N., et al. (1998). Different training procedures recruit either one or two critical periods for contextual memory consolidation, each of which requires protein synthesis and PKA. Learning and Memory, 5, 365–74.Google ScholarPubMed
Brown, T. H., Chapman, P. F., Kairiss, E. W., and Keenan, C. L. (1988). Long-term synaptic potentiation. Science, 242, 724–8.CrossRefGoogle ScholarPubMed
Cahill, L. and McGaugh, J. L. (1990). Amygdaloid complex lesions differentially affect retention of tasks using appetitive and aversive reinforcement. Behavioral Neuroscience, 104, 532–43.CrossRefGoogle ScholarPubMed
Cahill, L. and McGaugh, J. L., (1998). Mechanisms of emotional arousal and lasting declarative memory. Trends in Neurosciences, 21, 294–9.CrossRefGoogle ScholarPubMed
Cahill, L., Weinberger, N. M., Roozendaal, B., and McGaugh, J. L. (1999). Is the amygdala a locus of ‘conditioned fear’? Some questions and caveats. Neuron, 23, 227–8.CrossRefGoogle Scholar
Cajal, S. R. Y. (1909). Histologie du systeme nerveux de l'homme et des vertebres. Paris: A. Maloine.Google Scholar
Campeau, S. and Davis, M. (1995). Involvement of subcortical and cortical afferents to the lateral nucleus of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. Journal of Neuroscience, 15, 2312–27.CrossRefGoogle ScholarPubMed
Campeau, S., Miserendino, M. J. D., and Davis, M. (1992). Intra-amygdala infusion of the N-Methyl-d-Aspartate receptor antagonist AP5 blocks acquisition but not expression of fear-potentiated startle to an auditory conditioned stimulus. Behavioral Neuroscience, 106, 569–74.CrossRefGoogle ScholarPubMed
Carew, T. J. (1996). Molecular enhancement of memory formation. Neuron, 16, 5–8.CrossRefGoogle ScholarPubMed
Chapman, P. F., Kairiss, E. W., Keenan, C. L., and Brown, T. H. (1990). Long-term synaptic potentiation in the amygdala. Synapse, 6, 271–8.CrossRefGoogle ScholarPubMed
Clugnet, M. C. and LeDoux, J. E. (1990). Synaptic plasticity in fear conditioning circuits: induction of LTP in the lateral nucleus of the amygdala by stimulation of the medial geniculate body. Journal of Neuroscience, 10, 2818–24.CrossRefGoogle ScholarPubMed
Collins, D. R. and Pare, D. (2000). Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS(+) and CS(−). Learning and Memory, 7, 97–103.CrossRefGoogle Scholar
Davis, H. P. and Squire, L. R. (1984). Protein synthesis and memory. A review. Psychology Bulletin, 96, 518–59.CrossRefGoogle ScholarPubMed
Davis, M. (1997). Neurobiology of fear responses: the role of the amygdala. Journal of Neuropsychology and Clinical Neuroscience, 9, 382–402.Google ScholarPubMed
Davis, M. and Lee, Y. (1998). Fear and anxiety: possible roles of the amygdala and bed nucleus of the stria terminalis. Cognition and Emotion, 12, 277–305.Google Scholar
Davis, M. and Shi, C. (2000). The amygdala. Current Biology, 10, R131.CrossRefGoogle ScholarPubMed
Davis, S., Butcher, S. P., and Morris, R. G. (1992). The NMDA receptor antagonist d-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro. Journal of Neuroscience, 12, 21–34.CrossRefGoogle ScholarPubMed
Doron, N. N. and LeDoux, J. E. (1999). Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. Journal of Comparative Neurology, 412, 383–409.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Dudai, Y. (1989). The Neurobiology of Memory. New York: Oxford University Press.Google Scholar
Dudai, Y. and Eisenberg, M. (2004). Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis. Neuron. Sep. 30, 44(1), 93–100.CrossRefGoogle ScholarPubMed
Eccles, J. C. (1965). Conscious experience and memory. Academic address. Recent Advances in Biological Psychiatry, 8, 235–56.Google ScholarPubMed
Eichenbaum, H. (1997). To cortex: thanks for the memories. Neuron, 19, 481–4.CrossRefGoogle ScholarPubMed
Elgersma, Y. and Silva, A. J. (1999). Molecular mechanisms of synaptic plasticity and memory. Current Opinion in Neurobiology, 9, 209–13.CrossRefGoogle ScholarPubMed
Fanselow, M. S. and Kim, J. J. (1994). Acquisition of contextual Pavlovian fear conditioning is blocked by application of an NMDA receptor antagonist d,l-2-amino-5-phosphonovaleric acid to the basolateral amygdala. Behavioral Neuroscience, 108, 210–12.CrossRefGoogle ScholarPubMed
Fanselow, M. S. and LeDoux, J. E. (1999). Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron, 23, 229–32.CrossRefGoogle ScholarPubMed
Fendt, M. (2001). Injections of the NMDA receptor antagonist aminophosphonopentanoic acid into the lateral nucleus of the amygdala block the expression of fear-potentiated startle and freezing. Journal of Neuroscience, 21, 4111–15.CrossRefGoogle ScholarPubMed
Fendt, M. and Fanselow, M. S. (1999). The neuroanatomical and neurochemical basis of conditioned fear. Neuroscience and Biobehavioral Reviews, 23, 743–60.CrossRefGoogle ScholarPubMed
Frank, D. A. and Greenberg, M. E. (1994). CREB: a mediator of long-term memory from mollusks to mammals. Cell, 79, 5–8.CrossRefGoogle ScholarPubMed
Gean, P.-W., Chang, F.-C., Huang, C.-C., Lin, J.-H., and Way, L.-J. (1993). Long-term enhancement of EPSP and NMDA receptor-mediated synaptic transmission in the amygdala. Brain Research Bulletin, 31, 7–11.Google ScholarPubMed
Gewirtz, J. C. and Davis, M. (1997). Second-order fear conditioning prevented by blocking NMDA receptors in amygdala. Nature, 388, 471–4.CrossRefGoogle ScholarPubMed
Goelet, P., Castellucci, V. F., Schacher, S., and Kandel, E. R. (1986). The long and the short of long-term memory – a molecular framework. Nature, 322, 419–22.CrossRefGoogle Scholar
Goosens, K. A., Hobin, J. A., and Maren, S. (2003). Auditory-evoked spike firing in the lateral amygdala and Pavlovian fear conditioning: mnemonic code or fear bias?Neuron, 40, 1013–22.CrossRefGoogle ScholarPubMed
Goosens, K. A. and Maren, S. (2001). Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learning and Memory, 8, 148–55.CrossRefGoogle ScholarPubMed
Grover, L. M. and Teyler, T. J. (1990). Two components of long-term potentiation induced by different patterns of afferent activation. Nature, 347, 477–9.CrossRefGoogle ScholarPubMed
Hall, J., Thomas, K. L., and Everitt, B. J. (2000). Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nature Neuroscience, 3, 533–5.CrossRefGoogle ScholarPubMed
Hawkins, R. D., Abrams, T. W., Carew, T. J., and Kandel, E. R. (1983). A cellular mechanism of classical conditioning in Aplysia: activity- dependent amplification of presynaptic facilitation. Science, 219, 400–5.CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949). The Organization of Behavior. New York: John Wiley and Sons.Google Scholar
Helmstetter, F. J. and Bellgowan, P. S. (1994). Effects of muscimol applied to the basolateral amygdala on acquisition and expression of contextual fear conditioning in rats. Behavioral Neuroscience, 108, 1005–9.CrossRefGoogle ScholarPubMed
Hollmann, M. and Heinemann, S. (1994). Cloned glutamate receptors. Annual Review of Neuroscience, 17, 31–108.CrossRefGoogle ScholarPubMed
Hölscher, C. (2001). Neuronal Mechanisms of Memory Formation. Cambridge: Cambridge University Press.Google Scholar
Huang, Y. Y. and Kandel, E. R. (1998). Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron, 21, 169–78.CrossRefGoogle ScholarPubMed
Huang, Y. Y., Martin, , , K. C., and Kandel, E. R. (2000). Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. Journal of Neuroscience, 20, 6317–25.CrossRefGoogle ScholarPubMed
Huber, K. M., Mauk, M. D., and Kelly, P. T. (1995). Distinct LTP induction mechanisms: contribution of NMDA receptors and voltage-dependent calcium channels. Journal of Neurophysiology, 73, 270–9.CrossRefGoogle ScholarPubMed
Humeau, Y., Shaban, H., Bissiere, S., and Luthi, A. (2003). Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature, 426, 841–5.CrossRefGoogle ScholarPubMed
Humeau, Y., Herry, C., Kemp, N., et al. (2005). Dendritic spine heterogeneity determines afferent-specific Hebbian plasticity in the amygdala. Neuron, 45, 119–31.CrossRefGoogle ScholarPubMed
Impey, S., Mark, M., Villacres, E. C., et al. (1996). Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron, 16, 973–82.CrossRefGoogle ScholarPubMed
Impey, S., Obrietan, K., Wong, S. T., et al. (1998). Cross talk between ERK and PKA is required for Ca2 + stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron, 21, 869–83.CrossRefGoogle ScholarPubMed
Josselyn, S. A., Shi, C., Carlezon, W. A. Jr., et al. (2001). Long-term memory is facilitated by cAMP response element-binding Protein over expression in the amygdala. Journal of Neuroscience, 21, 2404–12.CrossRefGoogle Scholar
Kandel, E. R. (1997). Genes, synapses, and long-term memory. Journal of Cell Physiology, 173, 124–5.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Kandel, E. R. and Spencer, W. A. (1968). Cellular neurophysiological approaches to the study of learning. Physiological Reviews, 48, 65–134.CrossRefGoogle Scholar
Kapp, B. S., Frysinger, R. C., Gallagher, M., Haselton, J. R. (1979). Amygdala central nucleus lesions: effect on heart rate conditioning in the rabbit. Physiology and Behavior. 23, 1109–17.CrossRefGoogle ScholarPubMed
Kapp, B. S., Whalen, P. J., Supple, W. F., and Pascoe, J. P. (1992). Amygdaloid contributions to conditioned arousal and sensory information processing. In Aggleton, J. P., ed., The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction. New York: Wiley-Liss Inc., pp. 229–54.Google Scholar
Kelso, S. R. and Brown, T. H. (1986). Differential conditioning of associative synaptic enhancement in hippocampal brain slices. Science, 232, 85–7.CrossRefGoogle ScholarPubMed
Kelso, S. R., Ganong, A. H., and Brown, T. H. (1986). Hebbian synapses in hippocampus. Proceedings of the National Academy of Sciences USA, 83, 5326–30.CrossRefGoogle ScholarPubMed
Killcross, S., Robbins, T. W., and Everitt, B. J. (1997). Different types of fear-conditioned behavior mediated by separate nuclei within amygdala. Nature, 388, 377–80.CrossRefGoogle ScholarPubMed
Kim, M. and McGaugh, J. L. (1992). Effects of intra-amygdala injections of NMDA receptor antagonists on acquisition and retention of inhibitory avoidance. Brain Research, 585, 35–48.CrossRefGoogle ScholarPubMed
Kluver, H. and Bucy, P. C. (1939). Preliminary analysis of functions of the temporal lobe in monkeys. Archives of Neurology and Psychiatry, 42, 979–97.CrossRefGoogle Scholar
LeDoux, J. E., ed. (1996). The Emotional Brain. New York: Simon and Schuster.Google Scholar
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–84.CrossRefGoogle Scholar
LeDoux, J. E., Cicchetti, P., Xagoraris, , , A., and Romanski, L. M. (1990). The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. Journal of Neuroscience, 10, 1062–9.CrossRefGoogle ScholarPubMed
LeDoux, J. E. and Farb, C. R. (1991). Neurons of the acoustic thalamus that project to the amygdala contain glutamate. Neuroscience Letters, 134, 145–9.CrossRefGoogle ScholarPubMed
LeDoux, J. E., Iwata, J., Cicchetti, P., and Reis, D. J. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. Journal of Neuroscience, 8, 2517–29.CrossRefGoogle ScholarPubMed
Lee, H. J., Berger, S. Y., Stiedl, O., Spiess, J., and Kim, J. J. (2001a). Post-training injection of catecholaminergic drugs do not modulate fear conditioning in rats and mice. Neuroscience Letters, 303, 123–6.CrossRefGoogle Scholar
Lee, H. J., Choi, J. S., Brown, T. H., and Kim, J. J. (2001b). Amygdalar N-methyl-d-aspartate receptors are critical for the expression of multiple conditioned fear responses. Journal of Neuroscience, 21, 4116–24.CrossRefGoogle Scholar
Lee, H. J. and Kim, J. J. (1998). Amygdalar NMDA receptors are critical for new fear learning in previously fear-conditioned rats. Journal of Neuroscience, 18, 8444–54.CrossRefGoogle ScholarPubMed
Levy, W. B. and Steward, O. (1979). Synapses as associative memory elements in the hippocampal formation. Brain Research, 175, 233–45.CrossRefGoogle ScholarPubMed
Li, X. F., Phillips, R., and LeDoux, J. E. (1995). NMDA and non-NMDA receptors contribute to synaptic transmission between the medial geniculate body and the lateral nucleus of the amygdala. Experimental Brain Research, 105, 87–100.CrossRefGoogle ScholarPubMed
Li, X. F., Stutzmann, G. E., and LeDoux, J. L. (1996). Convergent but temporally separated inputs to lateral amygdala neurons from the auditory thalamus and auditory cortex use different postsynaptic receptors: in vivo intracellular and extracellular recordings in fear conditioning pathways. Learning and Memory, 3, 229–42.CrossRefGoogle ScholarPubMed
Liang, K. C., Hon, W., and Davis, M. (1994). Pre- and posttraining infusion of N-methyl-d-aspartate receptor antagonists into the amygdala impair memory in an inhibitory avoidance task. Behavioral Neuroscience, 108, 241–53.CrossRefGoogle Scholar
Lisman, J. (1994). The CaM kinase II hypothesis for the storage of synaptic memory. Trends in Neuroscience, 17, 406–12.CrossRefGoogle ScholarPubMed
Lynch, G. S., Dunwiddie, T., and Gribkoff, V. (1977). Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature, 266, 737–9.CrossRefGoogle ScholarPubMed
Mactutus, C. F., Riccio, D. C., and Ferek, J. M. (1979). Retrograde amnesia for old (reactivated) memory: some anomalous characteristics, Science, 204, 1319–20.CrossRefGoogle ScholarPubMed
Magee, J. C. and Johnston, D. (1997). A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science, 275, 209–13.CrossRefGoogle ScholarPubMed
Malenka, R. C. (1991). The role of postsynaptic calcium in the induction of long-term potentiation. Molecular Neurobiology, 5, 289–95.CrossRefGoogle ScholarPubMed
Malenka, R. C. and Nicoll, R. A. (1999). Long-term potentiation – a decade of progress?Science, 285, 1870–4.CrossRefGoogle ScholarPubMed
Malinow, R. and Miller, J. P. (1986). Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation. Nature, 320, 529–30.CrossRefGoogle ScholarPubMed
Malkani, S. and Rosen, J. B. (2000). Specific induction of early growth response gene 1 in the lateral nucleus of the amygdala following contextual fear conditioning in rats. Neuroscience, 97, 693–702.CrossRefGoogle ScholarPubMed
Maren, S. (1999). Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. Trends in Neurosciences, 22, 561–7.CrossRefGoogle ScholarPubMed
Maren, S. (2000). Auditory fear conditioning increases CS-elicited spike firing in lateral amygdala neurons even after extensive overtraining. European Journal of Neuroscience, 12, 4047–54.CrossRefGoogle ScholarPubMed
Maren, S., Aharonov, G., Stote, D. L., and Fanselow, M. S. (1996). N-methyl-d-aspartate receptors in the basolateral amygdala are required for both acquisition and expression of conditional fear in rats. Behavioral Neuroscience, 10, 1365–74.CrossRefGoogle Scholar
Maren, S. and Fanselow, M. S. (1996). The amygdala and fear conditioning: has the nut been cracked?Neuron, 16, 237–40.CrossRefGoogle ScholarPubMed
Maren, S., Yap, S. A., and Goosens, K. A. (2001). The amygdala is essential for the development of neuronal plasticity in the medial geniculate nucleus during auditory fear conditioning in rats. Journal of Neuroscience, 21, RC135.CrossRefGoogle ScholarPubMed
Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213–15.CrossRefGoogle ScholarPubMed
Martin, S. J., Grimwood, P. D., and Morris, R. G. M. (2000). Synaptic plasticity and memory: an evaluation of the hypothesis. Annual Review of Neuroscience, 23, 649–711.CrossRefGoogle ScholarPubMed
Mayford, M., Bach, M. E., Huang, Y. Y., et al. (1996). Control of memory formation through regulated expression of a CaMKII transgene. Science, 274, 1678–83.CrossRefGoogle ScholarPubMed
McDonald, A. J. (1984). Neuronal organization of the lateral and basolateral amygdaloid nuclei of the rat. Journal of Comparative Neurology, 222, 589–606.CrossRefGoogle ScholarPubMed
McDonald, A. J. (1998). Cortical pathways to the mammalian amygdala. Progress in Neurobiology, 55, 257–332.CrossRefGoogle ScholarPubMed
McKernan, M. G. and Shinnick-Gallagher, P. (1997). Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature, 390, 607–11.CrossRefGoogle ScholarPubMed
McNaughton, B. L., Douglas, R. M., and Goddard, G. V. (1978). Synaptic enhancement in fascia dentata: cooperativity among coactive afferents. Brain Research, 157, 277–93.CrossRefGoogle ScholarPubMed
Misanin, J. R., Miller, R. R., and Lewis, D. J. (1968). Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science, 160, 554–5.CrossRefGoogle ScholarPubMed
Miserendino, M. J. D., Sananes, C. B., Melia, K. R., and Davis, M. (1990). Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature, 345, 716–18.CrossRefGoogle Scholar
Miyakawa, H., Ross, W. N., Jaffe, D., et al. (1992). Synaptically activated increases in Ca2 + concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca2 + channels. Neuron, 9, 1163–73.CrossRefGoogle ScholarPubMed
Monyer, H., Sprengel, R., Schoepfer, R., et al. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science, 256, 1217–21.CrossRefGoogle ScholarPubMed
Muller, J., Corodimas, K. P., Fridel, Z., and LeDoux, J. E. (1997). Functional inactivation of the lateral and basal nuclei of the amygdala by muscimol infusion prevents fear conditioning to an explicit CS and to contextual stimuli. Behavioral Neuroscience, 111, 683–91.CrossRefGoogle Scholar
Muller, D., Joly, M., and Lynch, G. (1988). Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. Science, 242, 1694–7.CrossRefGoogle ScholarPubMed
Nader, K., Majidishad, P., Amorapanth, P., and LeDoux, J. E. (2001). Damage to the lateral and central, but not other, amygdaloid nuclei prevents the acquisition of auditory fear conditioning. Learning and Memory, 8, 156–63.CrossRefGoogle Scholar
Nader, K., Schafe, G. E., and LeDoux, J. (2000a). Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 406, 722–6.CrossRefGoogle Scholar
Nader, K., Schafe, G. E., and LeDoux, J. (2000b). The labile nature of consolidation theory. Nature Reviews. Neuroscience, 1, 216–19.CrossRefGoogle Scholar
Nakanishi, S. (1992). Molecular diversity of glutamate receptors and implications for brain function. Science, 258, 597–603.CrossRefGoogle ScholarPubMed
Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M. M., and Kato, K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature, 408, 584–8.Google ScholarPubMed
Pare, D., Smith, Y., and Pare, J. F. (1995). Intra-amygdaloid projections of the basolateral and basomedial nuclei in the cat: Phaseolus vulgaris-leucoagglutinin anterograde tracing at the light and electron microscopic level. Neuroscience, 69, 567–83.CrossRefGoogle ScholarPubMed
Paxinos, G. and Watson, C. (1997). The Rat Brain in Stereotaxic Coordinates. Sydney: Academic Press.Google Scholar
Pitkänen, A., Savander, V., and LeDoux, J. E. (1997). Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neuroscience, 20, 517–23.CrossRefGoogle ScholarPubMed
Poremba, A. and Gabriel, M. (2001). Amygdalar efferents initiate auditory thalamic discriminative training-induced neuronal activity. Journal of Neuroscience, 21, 270–8.CrossRefGoogle ScholarPubMed
Poremba, A. and Gabriel, M. J. (1997). Amygdalar lesions block discriminative avoidance learning and cingulothalamic training-induced neuronal plasticity in rabbits. Neuroscience, 17(13), 5237–44.CrossRefGoogle ScholarPubMed
Quirk, G. J., Armony, J. L., and LeDoux, J. E. (1997). Fear conditioning enhances different temporal components of toned-evoked spike trains in auditory cortex and lateral amygdala. Neuron, 19, 613–24.CrossRefGoogle ScholarPubMed
Quirk, G. J., Repa, J. C., and LeDoux, J. E. (1995). Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron, 15, 1029–39.CrossRefGoogle ScholarPubMed
Rainnie, D. G., Asprodini, E. K., and Shinnick-Gallagher, P. (1993). Intracellular recordings from morphologically identified neurons of the basolateral amygdala. Journal of Neurophysiology, 69, 1350–62.CrossRefGoogle ScholarPubMed
Regehr, W. G. and Tank, D. W. (1990). Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CA1 pyramidal cell dendrites. Nature, 345, 807–10.CrossRefGoogle ScholarPubMed
Repa, J. C., Muller, J., Apergis, J., et al. (2001). Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nature Neuroscience, 4, 724–31.CrossRefGoogle Scholar
Rodrigues, S. M., Schafe, G. E., and LeDoux, J. E. (2001). Intraamygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. Journal of Neuroscience, 8, 229–42.Google Scholar
Rogan, M., Staubli, U., and LeDoux, J. (1997). Fear conditioning induces associative long-term potentiation in the amygdala. Nature, 390, 604–7.CrossRefGoogle ScholarPubMed
Rogan, M. T. and LeDoux, J. E. (1995). LTP is accompanied by commensurate enhancement of auditory – evoked responses in a fear conditioning circuit. Neuron, 15, 127–36.CrossRefGoogle Scholar
Rogan, M. T., Weisskopf, M. G., Huang, Y.-Y., Kandel, E. R., and LeDoux, J. E. (2001). Long-term potentiation in the amygdala: implications for memory. In Hölscher, C., ed., Neuronal Mechanisms of Memory Formation. Cambridge: Cambridge University Press, pp. 58–76.Google Scholar
Romanski, L. M., LeDoux, J. E., Clugnet, M. C., and Bordi, F. (1993). Somatosensory and auditory convergence in the lateral nucleus of the amygdala. Behavioral Neuroscience, 107, 444–50.CrossRefGoogle ScholarPubMed
Roozendaal, B., Koolhaas, J. M., and Bohus, B. (1991). Central amygdala lesions affect behavioral and autonomic balance during stress in rats. Physiology and Behavior, 50, 777–81.CrossRefGoogle ScholarPubMed
Rosenblum, K., Berman, D. E., Hazvi, S., Lamprecht, R., and Dudai, Y. (1997). NMDA receptor and the tyrosine phosphorylation of its 2B subunit in taste learning in the rat insular cortex. Journal of Neuroscience, 17, 5129–35.CrossRefGoogle ScholarPubMed
Rosenblum, K., Dudai, Y., and Richter-Levin, G. (1996). Long-term potentiation increases tyrosine phosphorylation of the N-methyl-d-aspartate receptor subunit 2B in rat dentate gyrus in vivo. Proceedings of the National Academy of Sciences USA, 93, 10457–60.CrossRefGoogle ScholarPubMed
Rostas, J. A., Brent, V. A., Voss, K., et al. (1996). Enhanced tyrosine phosphorylation of the 2B subunit of the N-methyl-d-aspartate receptor in long-term potentiation. Proceedings of the National Academy of Sciences USA, 93, 10452–6.CrossRefGoogle ScholarPubMed
Sabatini, B. L. and Svoboda, K. (2000). Analysis of calcium channels in single spines using optical fluctuation analysis. Nature, 408, 589–93.Google ScholarPubMed
Sananes, C. B. and Davis, M. (1992). N-methyl-d-aspartate lesions of the lateral and basolateral nuclei of the amygdala block fear-potentiated startle and shock sensitization of startle. Behavioral Neuroscience, 106, 72–80.CrossRefGoogle ScholarPubMed
Sara, S. J. (2000). Retrieval and reconsolidation: toward a neurobiology of remembering, Learning and Memory, Vol. 7, pp. 73–84.CrossRefGoogle Scholar
Schafe, G. E., Atkins, C. M., Swank, M. W., et al. (2000). Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. Journal of Neuroscience, 20, 8177–87.CrossRefGoogle ScholarPubMed
Schafe, G. E. and LeDoux, J. (2000). Memory consolidation of auditory Pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. Journal of Neuroscience, 20, RC96.CrossRefGoogle ScholarPubMed
Schafe, G. E., Nader, K., Blair, H. T., and LeDoux, J. E. (2001). Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perpective. Trends in Neurosciences, 24, 540–6.CrossRefGoogle Scholar
Schafe, G. E., Nadel, N. V., Sullivan, G. M., Harris, A., and LeDoux, J. E. (1999). Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase. Learning and Memory, 6, 97–110.Google ScholarPubMed
Schoepfer, R., Monyer, H., Sommer, B., et al. (1994). Molecular biology of glutamate receptors. Progress in Neurobiology, 42, 353–7.CrossRefGoogle ScholarPubMed
Smith, O. A., Astley, C. A., DeVito, J. L., Stein, J. M., and Walsh, R. E. (1980). Functional analysis of hypothalamic control of the cardiovascular responses accompanying emotional behavior. Federation Proceedings, 29, 2487–94.Google Scholar
Stevens, C. F. (1998). A million dollar question: does LTP = memory?Neuron, 20, 1–2.CrossRefGoogle ScholarPubMed
Sweatt, J. D. (1999). Toward a molecular explanation for long-term potentiation. Learning and Memory, 6, 399–416.CrossRefGoogle Scholar
Sweatt, J. D. (2000). The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. Journal of Neurochemistry, 76, 1–10.CrossRefGoogle Scholar
Tang, Y. P., Shimizu, E., Dube, G. R., et al. (1999). Genetic enhancement of learning and memory in mice. Nature, 401, 63–9.CrossRefGoogle ScholarPubMed
Tsien, J. Z., Huerta, P. T., and Tonegawa, S. (1996). The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 87, 1327–38.CrossRefGoogle ScholarPubMed
Walker, D. L. and Davis, M. (1997). Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear. Journal of Neuroscience, 17(23), 9375–83.CrossRefGoogle ScholarPubMed
Walker, D. L. and Davis, M. (2000). Involvement of NMDA receptors within the amygdala in short- versus long-term memory for fear conditioning as assessed with fear-potentiated startle. Behavioral Neuroscience, 114, 1019–33.CrossRefGoogle ScholarPubMed
Wallace, K. J. and Rosen, J. B. (2001). Neurotoxic lesions of the lateral nucleus of the amygdala decrease conditioned fear but not unconditioned fear of a predator odor: comparison with electrolytic lesions. Journal of Neuroscience, 21, 3619–27.CrossRefGoogle Scholar
Washburn, M. S. and Moises, H. C. (1992). Electrophysiological and morphological properties of rat basolateral amygdaloid neurons in vitro. Journal of Neuroscience, 12, 4066–79.CrossRefGoogle ScholarPubMed
Watkins, J. C. and Olverman, H. J. (1987). Agonist and antagonists for excitatory amino acid receptors. Trends in Neuroscience, 10, 265–72.CrossRefGoogle Scholar
Weinberger, N. M. (1995). Retuning the brain by fear conditioning. In Gazzaniga, M. S., ed., The Cognitive Neurosciences. Cambridge: MIT Press, pp. 1071–89.Google Scholar
Weisskopf, M. G., Bauer, E. P., and LeDoux, J. E. (1999). L-Type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. Journal of Neuroscience, 19, 10512–19.CrossRefGoogle ScholarPubMed
Weisskopf, M. G. and LeDoux, J. E. (1999). Distinct populations of NMDA receptors at subcortical and cortical inputs to principal cells of the lateral amygdala. Journal of Neurophysiology, 81, 930–4.CrossRefGoogle ScholarPubMed
Wigström, H. and Gustafsson, B. (1986). Postsynaptic control of hippocampal long-term potentiation. Journal of Physiology, 81, 228–36.Google ScholarPubMed
Wilensky, A. E., Schafe, G. E., and LeDoux, J. E. (1999). Functional inactivation of the amygdala before but not after auditory fear conditioning prevents memory formation. Journal of Neuroscience, 19, RC48.CrossRefGoogle Scholar
Wilensky, A. E., Schafe, G. E., and LeDoux, J. E. (2000). The amygdala modulates memory consolidation of fear-motivated inhibitory avoidance learning but not classical fear conditioning. Journal of Neuroscience, 20, 7059–66.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The role of the lateral nucleus of the amygdala in auditory fear conditioning
    • By Hugh T. Blair, Department of Psycology University of California 1285 Franz Hall Box 951563 Los Angeles, CA 90095-1563, Karim Nader, Department of Psychology McGill University Canada Stewart Biological Sciences Building Room N8/8, 398-3511 1205 Dr Penfield Avenue Montreal, Quebec, H3 A 1B1, Glenn E. Schafe, Department of Psychology and Interdisciplinary Neuroscience Program Yale University 2 Hillhouse Avenue New Haven, Connecticut 06511-6814, Elizabeth P. Bauer, W. M. Keck Foundation Laboratory of Neurobiology Center for Neural Science 6 Washington Place, Room 276 New York University New York, NY 10003, Sarina M. Rodrigues, W. M. Keck Foundation Laboratory of Neurobiology Center for Neural Science New York University New York, New York 10003, Joseph E. LeDoux, University Professor; Professor of Neural Science and Psychology Center for Neural Science New York University 4 Washington Place, Room 809 New York, NY 10003
  • Edited by James R. Pomerantz, Rice University, Houston
  • Book: Topics in Integrative Neuroscience
  • Online publication: 08 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541681.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The role of the lateral nucleus of the amygdala in auditory fear conditioning
    • By Hugh T. Blair, Department of Psycology University of California 1285 Franz Hall Box 951563 Los Angeles, CA 90095-1563, Karim Nader, Department of Psychology McGill University Canada Stewart Biological Sciences Building Room N8/8, 398-3511 1205 Dr Penfield Avenue Montreal, Quebec, H3 A 1B1, Glenn E. Schafe, Department of Psychology and Interdisciplinary Neuroscience Program Yale University 2 Hillhouse Avenue New Haven, Connecticut 06511-6814, Elizabeth P. Bauer, W. M. Keck Foundation Laboratory of Neurobiology Center for Neural Science 6 Washington Place, Room 276 New York University New York, NY 10003, Sarina M. Rodrigues, W. M. Keck Foundation Laboratory of Neurobiology Center for Neural Science New York University New York, New York 10003, Joseph E. LeDoux, University Professor; Professor of Neural Science and Psychology Center for Neural Science New York University 4 Washington Place, Room 809 New York, NY 10003
  • Edited by James R. Pomerantz, Rice University, Houston
  • Book: Topics in Integrative Neuroscience
  • Online publication: 08 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541681.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The role of the lateral nucleus of the amygdala in auditory fear conditioning
    • By Hugh T. Blair, Department of Psycology University of California 1285 Franz Hall Box 951563 Los Angeles, CA 90095-1563, Karim Nader, Department of Psychology McGill University Canada Stewart Biological Sciences Building Room N8/8, 398-3511 1205 Dr Penfield Avenue Montreal, Quebec, H3 A 1B1, Glenn E. Schafe, Department of Psychology and Interdisciplinary Neuroscience Program Yale University 2 Hillhouse Avenue New Haven, Connecticut 06511-6814, Elizabeth P. Bauer, W. M. Keck Foundation Laboratory of Neurobiology Center for Neural Science 6 Washington Place, Room 276 New York University New York, NY 10003, Sarina M. Rodrigues, W. M. Keck Foundation Laboratory of Neurobiology Center for Neural Science New York University New York, New York 10003, Joseph E. LeDoux, University Professor; Professor of Neural Science and Psychology Center for Neural Science New York University 4 Washington Place, Room 809 New York, NY 10003
  • Edited by James R. Pomerantz, Rice University, Houston
  • Book: Topics in Integrative Neuroscience
  • Online publication: 08 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541681.016
Available formats
×