Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T13:32:16.137Z Has data issue: false hasContentIssue false

16 - Emerging and emergent tick-borne infections

Published online by Cambridge University Press:  21 August 2009

S. R. Telford
Affiliation:
Division of Infectious Diseases Cummings School of Veterinary Medicine Tufts University 200 Westboro Road North Grafton MA 01536 USA
H. K. Goethert
Affiliation:
Division of Infectious Diseases Cummings School of Veterinary Medicine Tufts University 200 Westboro Road North Grafton MA 01536 USA
Alan S. Bowman
Affiliation:
University of Aberdeen
Patricia A. Nuttall
Affiliation:
Centre for Ecology and Hydrology, Swindon
Get access

Summary

INTRODUCTION

Human activities continue to change the landscape vastly, altering faunal associations and thereby contact with arthropod vectors, producing circumstances that serve as the basis for the emergence of a vector-borne infection. However, few ‘emerging’ tick-borne infections are novel. Many (ehrlichiosis, babesiosis) have long been recognized as veterinary health problems. Some rickettsioses may be due to agents that were once thought to be tick endosymbionts. Others, such as the agents of bartonellosis, may form paratenic or dead-end associations with ticks. Some recently identified agents (deer tick virus, Borrelia lonestari) are ‘in search of an emerging disease’. Emergent epidemiological associations (Masters' disease) are in search of an agent. Finally, apparently well-characterized tick-borne infections, such as Rocky Mountain spotted fever, tularaemia and tick-borne encephalitis, remain neglected by researchers but retain the potential for resurgence. We briefly review the diversity of these infectious agents, identify aetiological enigmas that remain to be solved, and provide a reminder about ‘old friends’ that should not be forgotten in our pursuit of novelty. We suggest that newly recognized agents or tick–pathogen associations receive careful scrutiny before being declared as potential public health burdens.

REDISCOVERED, BETTER CHARACTERIZED, OR NEW?

Modern approaches to identifying and characterizing infectious agents, using nucleic acid amplification and molecular phylogenetic algorithms, are very powerful (Relman, 2002). However, there are fallacious assumptions that: (1) data accumulated by older (‘classical’) methods are not as precise and thus not to be trusted; and (2) a DNA or RNA sequence represents something novel if it does not match one that is already present in GenBank or other genetic information databases.

Type
Chapter
Information
Ticks
Biology, Disease and Control
, pp. 344 - 376
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, R., Kruger, K. & Roggendorf, M. (1986). Spread of early-summer meningoencephalitis in the Federal Republic of Germany. Deutsche medizinische Wochenschrift 111, 927–933.CrossRefGoogle ScholarPubMed
Adelson, M. E., Rao, R. V. S., Tilton, R. C., et al. (2004). Prevalence of Borrelia burgdorferi, Bartonella spp., Babesia microti, and Anaplasma phagocytophila in Ixodes scapularis ticks collected in northern New Jersey. Journal of Clinical Microbiology 42, 2799–2801.CrossRefGoogle ScholarPubMed
Alekseev, A., Dubinina, H., Pol, I. & Schouls, L. M. (2001). Identification of Ehrlichia spp. and Borrelia burgdorferi in Ixodes ticks in the Baltic region of Russia. Journal of Clinical Microbiology 39, 2237–2242.CrossRefGoogle ScholarPubMed
Anderson, B. E., Sims, K. G., Olson, J. G., et al. (1993). Amblyomma americanum: a potential vector of human ehrlichiosis. American Journal of Tropical Medicine and Hygiene 49, 239–244.CrossRefGoogle ScholarPubMed
Anderson, J. F., Magnarelli, L. A. & Sulzer, A. J. (1981). Raccoon babesiosis in Connecticut, USA: Babesia lotori sp. nov. Journal of Parasitology 67, 417–425.CrossRefGoogle Scholar
Andrew, R., Bonnin, J. M. & Williams, S. (1946). Tick typhus in northern Queensland. Medical Journal of Australia 2, 253–258.Google Scholar
Anigstein, L. & Anigstein, D. (1975). A review of the evidence in retrospect for a rickettsial etiology in Bullis Fever. Texas Reports in Biology and Medicine 33, 201–211.Google ScholarPubMed
,Anonymous (1972). Pathogenic Mycoplasmas. Amsterdam: Elsevier.Google Scholar
,Anonymous (1995). Tick-borne encephalitis. Weekly Epidemiological Record 70, 120–122.Google Scholar
Antonov, N. & Naishtat, A. (1937). Far Eastern tick typhus: cases of tropical typhus in the Far East. Medizina Parazitologiya 6, 73–81.Google Scholar
Antykova, L. P. (1989). Epidemiology of tick-borne encephalitis in Leningrad. Trudy Instituta Imeni Pastera 65, 21–25.Google ScholarPubMed
Armstrong, P. M., Brunet, L. R., Spielman, A. & Telford, S. R. (2001). Risk of Lyme disease: perceptions of residents of a lone star tick-infested community. Bulletin of the World Health Organization 79, 916–925.Google ScholarPubMed
Armstrong, P. M., Katavolos, P., Caporale, D. A., et al. (1998). Diversity of Babesia infecting deer ticks (Ixodes dammini). American Journal of Tropical Medicine and Hygiene 58, 739–742.CrossRefGoogle Scholar
Artsob, H. (1989). Powassan encephalitis. In The Arboviruses: Epidemiology and Ecology, vol. 4, ed. Monath, T. P., pp. 29–49. Boca Raton, FL: CRC Press.Google Scholar
Attoui, H., Stirling, J. M., Munderloh, U. G., et al. (2001). Complete sequence characterization of the genome of the St. Croix River virus, a new orbivirus isolated from the cells of Ixodes scapularis. Journal of General Virology 82, 795–804.CrossRefGoogle Scholar
Bajer, A., Pawelczyk, A., Behnke, J. M., Gilert, F. S. & Sinski, E. (2001). Factors affecting the community structure of haemoparasites in bank voles (Clethrionomys glareolus) from the Mazury Lake District region of Poland. Parasitology 122, 43–54.CrossRefGoogle ScholarPubMed
Barbour, A. G. (1996). Does Lyme disease occur in the south? – a survey of emerging tick-borne infections in the region. American Journal of the Medical Sciences 311, 34–40.CrossRefGoogle Scholar
Barken, J. S., Krueth, J., Tilden, R. L., Dumler, J. S. & Kristiansen, B. E. (1996 a). Serological evidence of human granulocytic ehrlichiosis in Norway. European Journal of Clinical Microbiology and Infectious Diseases 15, 829–832.Google Scholar
Barken, J. S., Krueth, J., Wilson-Nordskog, C., et al. (1996 b). Clinical and laboratory characteristics of human granulocytic ehrlichiosis. Journal of the American Medical Association 275, 199–205.Google Scholar
Beati, L., Peter, O., Burgdorfer, W., Aeschlimann, A. & Raoult, D. (1993). Confirmation that Rickettsia helvetica sp. nov. is a distinct species of the spotted fever group rickettsiae. International Journal of Systematic Bacteriology 43, 521–526.CrossRefGoogle Scholar
Beattie, J. F., Michelson, M. L. & Holman, P. J. (2002). Acute babesiosis caused by Babesia divergens in a resident of Kentucky. New England Journal of Medicine 347, 697–698.CrossRefGoogle Scholar
Bell, J. F., Stewart, S. J. & Wikel, S. K. (1979). Resistance to tick-borne Francisella tularensis by tick-sensitized rabbits: allergic klendusity. American Journal of Tropical Medicine and Hygiene 28, 876–880.CrossRefGoogle ScholarPubMed
Belongia, E. A., Reed, K. D., Mitchell, P. D., et al. (1997). Prevalence of granulocytic Ehrlichia infection among white-tailed deer in Wisconsin. Journal of Clinical Microbiology 35, 1465–1468.Google ScholarPubMed
Billings, A. N., Teltow, G., Weaver, S. C. & Walker, D. H. (1998 a). Molecular characterization of a novel Rickettsia species from Ixodes scapularis in Texas. Emerging Infectious Diseases 4, 305–309.CrossRefGoogle ScholarPubMed
Billings, A. N., Yu, J., Teel, P. D. & Walker, D. H. (1998 b). Detection of a spotted fever group rickettsia in Amblyomma cajennense (Acari: Ixodidae) in south Texas. Journal of Medical Entomology 35, 474–478.CrossRefGoogle Scholar
Bjoersdorff, A., Wittesjo, B., Berglund, J., Massung, R. F. & Eliasson, I. (2002). Human granulocytic ehrlichiosis as a common cause of tick-associated fever in southeast Sweden: report from a prospective clinical study. Scandinavian Journal of Infectious Diseases 34, 187–191.CrossRefGoogle ScholarPubMed
Bown, K. J., Begon, M., Bennett, M., Woldehiwet, Z. & Ogden, N. H. (2003). Seasonal dynamics of Anaplasma phagocytophila in a rodent–tick (Ixodes trianguliceps) system, United Kingdom. Emerging Infectious Diseases 9, 63–70.CrossRefGoogle Scholar
Bozeman, F. M., Elisberg, B. L., Humphries, J. W., Runcik, K. & Palmer, D. B. (1970). Serologic evidence of rickettsia canada infection of man. Journal of Infectious Diseases 121, 367–371.CrossRefGoogle Scholar
Brezina, R., Rehacek, J., Ac, P. & Majerska, M. (1969). Two strains of Rickettsiae of Rocky Mountain Spotted Fever group recovered from Dermacentor marginatus ticks in Czechoslovakia. Acta Virologica 13, 142–145.Google ScholarPubMed
Broadhurst, L. E., Kelly, D. J., Chan, C. T., et al. (1998). Laboratory evaluation of a dot–blot enzyme immunoassay for serologic confirmation of illness due to Rickettsia conorii. American Journal of Tropical Medicine and Hygiene 58, 786–789.CrossRefGoogle ScholarPubMed
Broker, M. & Gniel, D. (2003). New foci of tick-borne encephalitis virus in Europe: consequences for travellers from abroad. Travel Medicine and Infectious Diseases 1, 181–184.CrossRefGoogle ScholarPubMed
Brouqui, P. & Matsumoto K. (2007). Bacteriology and phylogeny of Anaplasmataceae. In Rickettsial Diseases, eds. Raoult, D. & Parola, P., pp. 179–198. New York: Informa Healthcare.CrossRefGoogle Scholar
Brouqui, P., Harle, J. R., Delmont, J., et al. (1997). African tick-bite fever: an imported spotless rickettsiosis. Archives of Internal Medicine 157, 119–124.CrossRefGoogle ScholarPubMed
Brouqui, P., Sanogo, Y. O., Caruso, G., Merola, F. & Raoult, D. (2003). Candidatus Ehrlichia walkerii: a new Ehrlichia detected in Ixodes ricinus tick collected from asymptomatic humans in northern Italy. Annals of the New York Academy of Sciences 990, 134–140.CrossRefGoogle ScholarPubMed
Buller, R. S., Arens, M., Hmiel, S. P., et al. (1999). Ehrlichia ewingii, a newly recognized agent of human ehrlichiosis. New England Journal of Medicine 341, 148–155.CrossRefGoogle ScholarPubMed
Burgdorfer, W., Aeschlimann, A., Peter, O., Hayes, S. F. & Philip, R. N. (1979). Ixodes ricinus: vector of a hitherto undescribed spotted-fever group agent in Switzerland. Acta Tropica 36, 357–367.Google ScholarPubMed
Burgdorfer, W., Hayes, S. F. & Mavros, A. J. (1981 a). Nonpathogenic rickettsiae in Dermacentor andersoni: a limiting factor for the distribution of Rickettsia rickettsii. In Rickettsiae and Rickettsial Diseases, eds. Burgdorfer, W. & Anacker, R. L., pp. 585–594. New York: Academic Press.Google Scholar
Burgdorfer, W., Hayes, S. F., Thomas, L. A. & Lancaster, J. L. (1981 b). A new spotted fever group rickettsia from the lone star tick, Amblyomma americanum. In Rickettsiae and Rickettsial Diseases, eds. Burgdorfer, W. & Anacker, R. L., pp. 595–599. New York: Academic Press.Google Scholar
Bustamante, M. E., Varela, G. & Ortiz-Mariotte, C. (1946). Estudios de fiebre manchada en Mexico. Revista de Instituto Salubria y Enfermedades Tropicale 7, 39–48.Google Scholar
Cao, W.-C., Gao, Y.-M., Zhang, P.-H., et al. (2000 a). Identification of Ehrlichia chaffeensis by nested PCR in ticks from southern China. Journal of Clinical Microbiology 38, 2778–2780.Google ScholarPubMed
Cao, W.-C., Zhao, Q.-M., Zhang, P.-H., et al. (2000 b). Granulocytic ehrlichiae in Ixodes persulcatus ticks from an area in China where Lyme disease is endemic. Journal of Clinical Microbiology 38, 4208–4210.Google ScholarPubMed
Centers for Disease Control (2006). Reported Cases of Lyme Disease By Year, United States, 1991–2005. Available online at www.cdc.gov/ncidod/dvbid/Lyme/ld_UpClimbLymeDis.htm/
Chang, C. C., Chomel, B. B., Kasten, R. W., Romano, V. & Tietze, N. (2001). Molecular evidence of Bartonella spp. in questing adult Ixodes pacificus ticks in California. Journal of Clinical Microbiology 39, 1221–1226.CrossRefGoogle ScholarPubMed
Chang, C. C., Hayashidani, H., Pusterla, N., et al. (2002). Investigation of Bartonella infection in ixodid ticks from California. Comparative Immunology Microbiology and Infectious Diseases 25, 229–236.CrossRefGoogle ScholarPubMed
Chastel, C. (1980). Arbovirus transmis par des tiques et associés à des oiseaux de mer: une revue générale. Médecine Tropicale 40, 535–548.Google Scholar
Chastel, C., Main, A. J., Couatarmanach, A., et al. (1984). Isolation of Eyach virus from Ixodes ricinus and I. ventalloi ticks in France. Archives of Virology 82, 161–171.CrossRefGoogle ScholarPubMed
Chen, S. M., Dumler, J. S., Bakken, J. S. & Walker, D. H. (1994). Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. Journal of Clinical Microbiology 32, 589–595.Google ScholarPubMed
Coleman, J. L., Levine, D., Thill, C., Kuhlow, C. & Benach, J. L. (2005). Babesia microti and Borrelia burgdorferi follow independent courses of infection in mice. Journal of Infectious Diseases 192, 1634–1641.CrossRefGoogle ScholarPubMed
Conor, A. & Bruch, A. (1910). Une fièvre éruptive observée en Tunisie. Bulletin de la Société de Pathologie Exotique 3, 492–496.Google Scholar
Conrad, P. A., Kjemtrup, A. M., Carreno, R. A., et al. (2006). Description of Babesia duncani n.sp. (Apicomplexa: Babesiidae) from humans and its differentiation from other piroplasms. International Journal of Parasitology 36, 779–789.CrossRefGoogle ScholarPubMed
Costero, A. & Grayson, M. (1996). Experimental transmission of Powassan virus (Flaviviridae) by Ixodes scapularis ticks (Acari: Ixodidae). American Journal of Tropical Medicine and Hygiene 55, 536–546.CrossRefGoogle Scholar
Dalton, M. J., Clarke, M. J., Holman, R. C., et al. (1995). National surveillance for Rocky Mountain Spotted Fever 1981–1992: epidemiologic summary and evaluation of risk factors for fatal outcome. American Journal of Tropical Medicine and Hygiene 52, 405–413.CrossRefGoogle ScholarPubMed
Daniel, M., Danielova, V. V., Kriz, B., Jirsa, A. & Nozicka, J. (2003). Shift of the tick Ixodes ricinus and tick-borne encephalitis to higher altitudes in Central Europe. European Journal of Clinical Microbiology and Infectious Diseases 22, 327–328.Google ScholarPubMed
Dasch, G. A., Kelly, D. J., Richards, A. L. & Sanchez, J. L. (1993). Western Blotting analysis of sera from military personal exhibiting serological reactivity to spotted fever group rickettsiae. American Journal of Tropical Medicine and Hygiene 49, 220 (abstract).Google Scholar
Dawson, J. E., Stallknecht, D. E., Howerth, E. W., et al. (1994). Susceptibility of white-tailed deer (Odocoileus virginianus) to infection with Ehrlichia chaffeensis, the etiologic agent of human ehrlichiosis. Journal of Clinical Microbiology 32, 2725–2728.Google ScholarPubMed
Lemos, E. R. S, Alvarenga, F. B. F., Cintra, M. L., et al. (2001). Spotted fever in Brazil: a seroepidemiological study and description of clinical cases in an endemic area in the state of São Paolo. American Journal of Tropical Medicine and Hygiene 65, 329–334.CrossRefGoogle Scholar
Marval, F. (1995). L'encephalite à tiques en Suisse: épidemiologie et prévention. Médecine et Hygiène 53, 224–226.Google Scholar
Demma, L. J., Traeger, M. S., Nicholson, W. L., et al. (2005). Rocky Mountain spotted fever from an unexpected tick vector in Arizona. New England Journal of Medicine 353, 587–594.CrossRefGoogle ScholarPubMed
Dennis, D. T., Inglesby, T. V., Henderson, D. A., et al. (2001). Tularaemia as a biological weapon: medical and public health management. Journal of the American Medical Association 285, 2763–2773.CrossRefGoogle ScholarPubMed
Donatien, A. & Lestoquard, F. (1936). Rickettsia bovis, novelle espèce pathogène pour le boeuf. Bulletin de la Société de Pathologie Exotique 29, 1057–1061.Google Scholar
Donatien, A. & Lestoquard, F. (1940). Rickettsiose bovine Algérienne à R. bovis. Bulletin de la Société de Pathologie Exotique 33, 245–248.Google Scholar
Donnelly, J. & Pierce, M. A. (1975). Experiments on the transmission of Babesia divergens to cattle by the tick Ixodes ricinus. International Journal for Parasitology 5, 363–367.CrossRefGoogle ScholarPubMed
Dumler, J. S. & Barken, J. S. (1995). Ehrlichial diseases of humans: emerging tick-borne infections. Clinical Infectious Diseases 20, 1102–1110.CrossRefGoogle ScholarPubMed
Dumler, J. S., Barbet, A. F., Bekker, C. P., et al. (2001). Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. International Journal of Systematic and Evolutionary Microbiology 51, 2145–2165.CrossRefGoogle Scholar
Ebel, G. D., Spielman, A. & Telford, S. R. III (2001). Phylogeny of North American Powassan virus. Journal of General Virology 82, 1657–1665.CrossRefGoogle ScholarPubMed
Eng, T. R., Harkess, J. R., Fishbein, D. B., et al. (1990). Epidemiologic, clinical, and laboratory findings of human ehrlichiosis in the United States 1988. Journal of the American Medical Association 264, 2251–2258.CrossRefGoogle ScholarPubMed
Enigk, K. & Friedhoff, K. (1962). Babesia capreoli n. sp., beim Reh (Capreolus capreolus L.). Zentralblatt für Tropenmedizin und Parazitologie 13, 8–20.Google Scholar
Ereemeva, M. E., Beati, L., Makarova, V. A., et al. (1994). Astrakhan fever rickettsiae: antigenic and genotyping of isolates obtained from human and Rhipicephalus pumilio ticks. American Journal of Tropical Medicine and Hygiene 51, 697–706.CrossRefGoogle Scholar
Eskow, E., Rao, R. V. S. & Mordechai, E. (2001). Concurrent infection of the central nervous system by Borrelia burgdorferi and Bartonella henselae: evidence for a novel tick-borne disease complex. Archives of Neurology 58, 1357–1363.CrossRefGoogle ScholarPubMed
Evans, A. S. (1976). Causation and disease: Henle–Koch postulates revisited. Yale Journal of Biology and Medicine 49, 175–195.Google ScholarPubMed
Ewing, S. A. & Philip, C. B. (1966). Ehrlichia-like rickettsiosis in dogs in Oklahoma and its relationship to Neorickettsia helminthoeca. American Journal of Veterinary Research 27, 67–69.Google ScholarPubMed
Ewing, S. A., Dawson, J. E., Kocan, A. A., et al. (1995). Experimental transmission of Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) among white-tailed deer by Amblyomma americanum (Acari: Ixodidae). Journal of Medical Entomology 32, 368–374.CrossRefGoogle Scholar
Fan, M. & Y., Zhang, J. Z., Chen, M. & Yu, X. J. (1999). Spotted fever group rickettsioses in China. In Rickettsiae and Rickettsial Diseases at the Turn of the Third Millennium, eds. Raoult, D. & Brouqui, P., pp. 247–257. Paris: Elsevier.Google Scholar
Favorov, M. O., Kosoy, M. Y., Tsarev, S. A., Childs, J. E. & Margolis, H. S. (2000). Prevalence of antibody to hepatitis E virus among rodents in the United States. Journal of Infectious Diseases 181, 449–455.CrossRefGoogle ScholarPubMed
Fingerle, V., Goodman, J. L., Johnson, R. C., et al. (1997). Human granulocytic ehrlichiosis in southern Germany: increased seroprevalence in high-risk groups. Journal of Clinical Microbiology 35, 3244–3247.Google ScholarPubMed
Fishbein, D. B., Kemp, A., Dawson, J. E., et al. (1989). Human ehrlichiosis: prospective active surveillance in febrile hospitalized patients. Journal of Infectious Diseases 160, 803–809.CrossRefGoogle ScholarPubMed
Foggie, A. (1951). Studies on the infectious agent of tick-borne fever in sheep. Journal of Pathology and Bacteriology 63, 1–15.CrossRefGoogle Scholar
Foppa, I. M., Krause, P. J., Spielman, A., et al. (2002). Entomologic and serologic evidence of zoonotic transmission of Babesia microti in Switzerland. Emerging Infectious Diseases 8, 722–726.CrossRefGoogle ScholarPubMed
Fournier, P. E., Allombert, C., Supputamongkol, Y., et al. (2004). An eruptive fever associated with antibodies to Rickettsia helvetica in Europe and Thailand. Journal of Clinical Microbiology 42, 816–818.CrossRefGoogle Scholar
Fournier, P. E., Dumler, J. S., Greub, G., et al. (2003). Gene sequence-based criteria for identification of new Rickettsia isolates and description of Rickettsia heilongjiangensis sp. nov. Journal of Clinical Microbiology 41, 5456–5465.CrossRefGoogle ScholarPubMed
Fournier, P.-E., Fujita, H., Takada, N. & Raoult, D. (2002). Genetic identification of rickettsiae isolated from ticks in Japan. Journal of Clinical Microbiology 40, 2176–2181.CrossRefGoogle ScholarPubMed
Fournier, P.-E., Grunnenberer, F., Jaulhac, B., Gastinger, G. & Raoult, D. (2000). Evidence of Rickettsia helvetica infection in humans, eastern France. Emerging Infectious Diseases 6, 389–392.CrossRefGoogle ScholarPubMed
Franca, C. (1910). Sur la classification des piroplasmes et description des deux formes de ces parasites. Archives of the Royal Institute of Bacteriology Camara Pestana Lisbon, Portugal 3, 11–18.Google Scholar
Fredricks, D. N. & Relman, D. A. (1996). Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clinical and Microbiological Reviews 9, 18–33.Google ScholarPubMed
Freundt, E. C., Beatty, D. C., Stegall-Faulk, T. & Wright, S. M. (2005). Possible tick-borne human enterovirus resulting in aseptic meningitis. Journal of Clinical Microbiology 43, 3471–3473.CrossRefGoogle ScholarPubMed
Galvao, M. A. M., Mafra, C. L., Moron, C., Anaya, E. & Walker, D. H. (2003). Rickettsiosis of the genus Rickettsia in South America. Annals of the New York Academy of Sciences 990, 57–61.CrossRefGoogle ScholarPubMed
Gear, J. H. S. (1954). The rickettsial diseases of southern Africa. South African Journal of Clinical Science 5, 158–175.Google Scholar
Gill, V. & Cunha, B. A. (1997). Tularemia pneumonia. Seminars in Respiratory Infections 12, 61–67.Google ScholarPubMed
Goethert, H. K. & Telford, S. R. III (2003 a). Enzootic transmission of Babesia divergens in cottontail rabbits on Nantucket Island. American Journal of Tropical Medicine and Hygiene 69, 455–460.Google ScholarPubMed
Goethert, H. K. & Telford, S. R. III (2003 b). What is Babesia microti?Parasitology 127, 301–309.CrossRefGoogle ScholarPubMed
Goethert, H. K. & Telford, S. R. III (2003 c). Enzootic transmission of Anaplasma bovis in Nantucket cottontail rabbits. Journal of Clinical Microbiology 41, 3744–3747.CrossRefGoogle ScholarPubMed
Goethert, H. K. & Telford, S. R. III (2005). A new Francisella (Beggiatiales: Francisellaceae) inquiline within Dermacentor variabilis Say (Acari: Ixodidae). Journal of Medical Entomology 42, 502–505.CrossRefGoogle Scholar
Goethert, H. K., Shani, I. & Telford, S. R. III (2004). Genotypic diversity of Francisella tularensis infecting Dermacentor variabilis ticks from Martha's Vineyard, Massachusetts. Journal of Clinical Microbiology 42, 4968–4973.CrossRefGoogle ScholarPubMed
Goldman, L., Rockwell, E. & Richfield, D. F. (1952). Histopathological studies on the cutaneous reactions to the bites of various arthropods. American Journal of Tropical Medicine and Hygiene 1, 514–525.CrossRefGoogle ScholarPubMed
Goldwasser, R. A., Steiman, Y., Klingberg, W., Swartz, T. A. & Klingberg, M. A. (1974). The isolation of strains of rickettsiae of the spotted fever group in Israel and their differentiation from other members of the group by immunofluorescence methods. Scandinavian Journal of Infectious Diseases 6, 53–62.CrossRefGoogle Scholar
Gongora-Biachi, R. A., Zavala-Velazquez, J., Castro-Sansores, C. J. & Gonzalez-Martinez, P. (1999). First case of human ehrlichiosis in Mexico. Emerging Infectious Diseases 5, 481 (letter).CrossRefGoogle ScholarPubMed
Graves, S. & Stenos, J. (2003). Rickettsia honei: a spotted fever group rickettsia on three continents. Annals of the New York Academy of Sciences 990, 62–66.CrossRefGoogle ScholarPubMed
Graves, S., Dwyer, B. W., McColl, B. & McDade, J. E. (1991). Flinders Island Spotted Fever: a newly recognized endemic focus of tick typhus in Bass Strait. II Serological investigations. Medical Journal of Australia 154, 99–104.Google Scholar
Gray, J., Vonstedingk, L. V., Gurtelschmid, M. & Granstrom, M. (2002). Transmission studies of Babesia microti in Ixodes ricinus ticks and gerbils. Journal of Clinical Microbiology 40, 1259–1263.CrossRefGoogle ScholarPubMed
Groen, J., Koraka, P., Nur, Y. A., et al. (2002). Serologic evidence of ehrlichiosis among humans and wild animals in the Netherlands. European Journal of Clinical Microbioogy and Infectious Diseases 21, 46–49.CrossRefGoogle ScholarPubMed
Grzeszczuk, A., Stanczak, J., Kubica-Biernat, B., et al. (2004). Human anaplasmosis in north-eastern Poland: seroprevalence in humans and prevalence in Ixodes ricinus ticks. Annals of Agricultural and Environmental Medicine 11, 99–103.Google ScholarPubMed
Guillaume, B., Heyman, P., Lafontaine, S., et al. (2002). Seroprevalence of human granulocytic ehrlichiosis infection in Belgium. European Journal of Clinical Microbiology and Infectious Diseases 21, 397–400.Google ScholarPubMed
Halos, L., Jamal, T., Maillard, R., et al. (2005). Evidence of Bartonella sp. in questing adult and nymphal Ixodes ricinus ticks from France and co-infection with Borrelia burgdorferi sensu lato and Babesia sp. Veterinary Research 36, 79–87.CrossRefGoogle ScholarPubMed
Harden, V. (1990). Rocky Mountain Spotted Fever: History of a Twentieth-Century Disease. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Hartelt, K., Oehme, R., Frank, H., et al. (2004). Pathogens and symbionts in ticks: prevalence of Anaplasma phagocytophilum (Ehrlichia sp.), Wolbachia sp., Rickettsia sp., and Babesia sp. in Southern Germany. International Journal of Medical Microbiology 293, 86–92.Google Scholar
Hayflick, L. (1969). The Mycoplasmatales and the L-phase of Bacteria. New York: Appleton-Century-Crofts.CrossRefGoogle Scholar
Healing, T. D. (1981). Infections with blood parasites in the small British rodents Apodemus sylvaticus, Clethrionomys glareolus and Microtus agrestis. Parasitology 83, 179–189.CrossRefGoogle ScholarPubMed
Heo, E. J., Park, J. H., Koo, J. R., et al. (2002). Serologic and molecular detection of Ehrlichia chaffeensis and Anaplasma phagocytophila (human granulocytic ehrlichiosis agent) in Korean patients. Journal of Clinical Microbiology 40, 3082–3085.CrossRefGoogle Scholar
Heppner, D. G., Wongsrichanalai, C., Walsh, D. S., et al. (1997). Human ehrlichiosis in Thailand. Lancet 350, 785–786.CrossRefGoogle ScholarPubMed
Herwaldt, B. L., Caccio, S., Gherlinzoni, F., et al. (2003). Molecular characterization of a non-Babesia divergens organism causing babesiosis in Europe. Emerging Infectious Diseases 9, 942–948.CrossRefGoogle Scholar
Herwaldt, B. L., Bruyn, G., Pieniazek, N. J., et al. (2004). Babesia divergens-like infection, Washington State. Emerging Infectious Diseases 10, 622–629.CrossRefGoogle Scholar
Herwaldt, B. L., Kjemtrup, A. M., Conrad, P. A., et al. (1997). Transfusion-transmitted babesiosis in Washington State: first reported case caused by a WAI-type parasite. Journal of Infectious Diseases 175, 1259–1262.CrossRefGoogle ScholarPubMed
Herwaldt, B. L., Persing, D. H., Precigout, E. A., et al. (1996). A fatal case of babesiosis in Missouri: identification of another piroplasm that infects humans. Annals of Internal Medicine 124, 643–650.CrossRefGoogle ScholarPubMed
Hildebrant, A., Hunfeld, K. P., Baier, M., et al. (2007). First confirmed autochthonous case of human Babesia Microti infection in Europe. European Journal of Clinical Microbiology and Infectious Diseases 26, 595–601.CrossRefGoogle Scholar
Hoare, C. A. (1980). Comparative aspects of human babesiosis. Transactions of the Royal Society of Tropical Medicine and Hygiene 74, 143–148.CrossRefGoogle ScholarPubMed
Holden, K., Hodzic, E., Feng, S., et al. (2005). Coinfection with Anaplasma phagocytophilum alters Borrelia burgdorferi population distribution in C3H/HeN mice. Infection and Immunity 73, 3440–3444.CrossRefGoogle ScholarPubMed
Holman, P. J., Spencer, A. M., Droleskey, R. E., Goethert, H. K. & Telford, S. R. (2005 a). In vitro cultivation of a zoonotic Babesia sp. isolated from eastern cottontail rabbits (Sylvilagus floridanus) on Nantucket Island, Massachusetts. Journal of Clinical Microbiology 43, 3995–4001.CrossRefGoogle ScholarPubMed
Holman, P. J., Spencer, A. M., Telford, S. R. III, et al. (2005 b). Comparative infectivity of Babesia divergens and a zoonotic Babesia divergens-like parasite in cattle. American Journal of Tropical Medicine and Hygiene 73, 865–870.Google Scholar
Hopla, C. (1974). The ecology of tularemia. Advances in Veterinary Sciences and Comparative Medicine 18, 25–53.Google ScholarPubMed
Hubalek, Z., Calisher, C. H. & Mittermayer, T. (1987). A new subtype (‘Brezova’) of Tribec orbivirus (Kemerovo group) isolated from Ixodes ricinus males in Czechoslovakia. Acta Virologica 31, 91–92.Google Scholar
Hunfeld, K. P., Lambert, A., Kampen, H., et al. (2002). Seroprevalence of Babesia infections in humans exposed to ticks in midwestern Germany. Journal of Clinical Microbiology 40, 2431–2436.CrossRefGoogle ScholarPubMed
Ibarra, V., Portillo, A., Santibanez, S., et al. (2005). Debonel/Tibola: is Rickettsia slovaca the only etiological agent?Annals of the New York Acadeny of Sciences 1063, 346–348.CrossRefGoogle ScholarPubMed
Inokuma, H., Brouqui, P., Drancourt, M. & Raoult, D. (2001). Citrate synthase gene sequence: a new tool for phylogenetic analysis and identification of Ehrlichia. Journal of Clinical Microbiology 39, 3031–3039.CrossRefGoogle ScholarPubMed
James, A. M., Liveris, D., Wormser, G. P., et al. (2001). Borrelia lonestari infection after a bite by an Amblyomma americanum tick. Journal of Infectious Diseases 183, 1810–1814.CrossRefGoogle ScholarPubMed
Jellison, W. L. (1974). Tularemia in North America. Missoula, MT: University of Montana Press.Google Scholar
Jellison, W. L. & Parker, R. R. (1944). Rodents, rabbits and tularemia in North America: some zoological and epidemiological considerations. American Journal of Tropical Medicine 25, 349–362.Google Scholar
Joyner, L. P., Davies, S. F. M. & Kendall, S. B. (1963). The experimental transmission of Babesia divergens by Ixodes ricinus. Experimental Parasitology 14, 367–373.CrossRefGoogle ScholarPubMed
Kaiser, R. (1996). Tick-borne encephalitis in southwestern Germany. Infection 24, 398–399.CrossRefGoogle ScholarPubMed
Kawahara, M., Ito, T., Suto, C., et al. (1999). Comparison of Ehrlichia muris strains isolated from wild mice and ticks and serologic survey of humans and animals with E. muris as antigen. Journal of Clinical Microbiology 37, 1123–1129.Google Scholar
Kawahara, M., Rikihisa, Y., Lin, Q., et al. (2006). Genetic variants of Anaplasma phagocytophilum, Anaplasma bovis, Anaplasma centrale and Ehrlichia species in wild deer on two major islands in Japan. Applied Environmental Microbiology 72, 1102–1109.CrossRefGoogle ScholarPubMed
Kawamura, R. (1926). Studies on Tsutsugamushi Disease (Japanese Flood Fever). Cincinnati, OH: Spokesman Printing Co.Google Scholar
Kelly, P. J., Beati, L., Mason, P. R., et al. (1996). Rickettsia africae sp. nov., the etiological agent of African tick bite fever. International Journal of Systematic Bacteriology 46, 611–614.CrossRefGoogle ScholarPubMed
Kelly, P. J., Mason, P. R., Matthewman, L. A. & Raoult, D. (1991). Seroepidemiology of Spotted-Fever Group rickettsial infections in humans in Zimbabwe. Journal of Tropical Medicine and Hygiene 94, 304–309.Google ScholarPubMed
Keysary, A., Amram, L., Keren, G., et al. (1999). Serologic evidence of human monocytic and granulocytic ehrlichiosis in Israel. Emerging Infectious Diseases 5, 775–778.CrossRefGoogle ScholarPubMed
Kim, C. M., Kim, M. S., Park, J. H. & Chae, J. S. (2003). Identification of Ehrlichia chaffeensis, Anaplasma phagocytophilum, and Anaplasma bovis in Haemaphysalis longicornis and Ixodes persulcatus ticks from Korea. Vector Borne and Zoonotic Diseases 3, 17–26.CrossRefGoogle ScholarPubMed
Kjemtrup, A. M., Lee, B., Fritz, C. L., et al. (2002). Investigation of transfusion transmission of a WA1-type babesial parasite to a premature infant in California. Transfusion 42, 1482–1487.CrossRefGoogle ScholarPubMed
Kjemtrup, A. M., Thomford, J., Robinson, T. & Conrad, P. A. (2000). Phylogenetic relationships of human and wildlife piroplasm isolates in the western United States inferred from the 18S nuclear small subunit RNA gene. Parasitology 120, 487–493.CrossRefGoogle ScholarPubMed
Kokernot, R. H., Calisher, C. H., Stannard, L. J. & Hayes, J. (1969). Arbovirus studies in the Ohio–Mississippi basin 1964–1967. VII. Lone Star virus, a hitherto unknown agent isolated from the tick Amblyomma americanum. American Journal of Tropical Medicine and Hygiene 18, 789–795.CrossRefGoogle ScholarPubMed
Krampitz, H. E. & Baumler, W. (1978). Occurrence, host range and seasonal prevlance of Babesia microti (Franca 1912) in rodents in Southern Germany. Zeitschrift für Parasitenkunde 58, 15–33.CrossRefGoogle Scholar
Krampitz, H. E. & Kleinschmidt, A. (1960). Grahamella Brumpt 1911: biologische und morphologische Untersuchungen. Zeitschrift für Tropenmedizin und Parasitologie 11, 336–352.Google Scholar
Krause, P. J., Telford, S. R. III, Spielman, A., et al. (1996). Concurrent Lyme disease and babesiosis: evidence for increased severity and duration of illness. Journal of the American Medical Association 275, 1657–1660.CrossRefGoogle ScholarPubMed
Krinsky, W. L. & Burgdorfer, W. (1976). Trypanosomes in Amblyomma americanum from Oklahoma. Journal of Parasitology 62, 824–825.CrossRefGoogle ScholarPubMed
Kunz, C. (1992). Tick-borne encephalitis in Europe. Acta Leidensia 60, 1–14.Google Scholar
Lakos, A. & Raoult, D. (1999). Tick-borne lymphadenopathy (TIBOLA), a Rickettsia slovaca infection? In Rickettsiae and Rickettsial Diseases at the Turn of the Third Millennium, eds. Raoult, D. & Brouqui, P., pp. 258–261. Paris: Elsevier.Google Scholar
Lebech, A. M., Hansen, K., Pancholi, P., et al. (1998). Immunoserologic evidence of human granulocytic ehrlichiosis in Danish patients with Lyme neuroborreliosis. Scandinavian Journal of Infectious Diseases 30, 173–176.Google ScholarPubMed
Lemon, S. M. & Brown, E. A. (1995). Hepatitis C virus. In Mandell, Douglas and Bennett's Principles and Practice of Infectious Diseases, 4th edn, eds. Mandell, G. L., Bennett, J. E. & Dolin, R., pp. 1474–1486. New York: Churchill Livingstone.Google Scholar
Levin, M. L. & Fish, D. (2000). Immunity reduces reservoir host competence of Peromyscus leucopus for Ehrlichia phagocytophila. Infection and Immunity 68, 1514–1518.CrossRefGoogle ScholarPubMed
Little, S. E., Dawson, J. E., Lockhart, J. M., et al. (1997). Development and use of specific polymerase chain reaction for the detection of an organism resembling Ehrlichia sp. in white-tailed deer. Journal of Wildlife Diseases 33, 246–253.CrossRefGoogle ScholarPubMed
Lockhart, J. M., Davidson, W. R., Dawson, J. E. & Stallknecht, D. E. (1995). Temporal association of Amblyomma americanum with the presence of Ehrlichia chaffeensis reactive antibodies in white-tailed deer. Journal of Wildlife Diseases 31, 119–124.CrossRefGoogle ScholarPubMed
Lockhart, J. M., Davidson, W. R., Stallknecht, D. E., Dawson, J. E. & Howerth, E. W. (1997 a). Isolation of Ehrlichia chaffeensis from wild white-tailed deer (Odocoileus virginianus) confirms their role as natural reservoir hosts. Journal of Clinical Microbiology 35, 1681–1686.Google ScholarPubMed
Lockhart, J. M., Davidson, W. R., Stallknecht, D. E., Dawson, J. E. & Little, S. E. (1997 b). Natural history of Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) in the piedmont physiographic province of Georgia. Journal of Parasitology 83, 887–894.CrossRefGoogle ScholarPubMed
Ludham, G. B., Bridges, J. B. & Benn, E. C. (1964). Association of Stevens–Johnson syndrome with antibodies for Mycoplasma pneumoniae. Lancet i, 958–959.Google Scholar
Lvov, D. K., Leonova, G. N., Gromashevsky, V. L., et al. (1978). Sikhote-Alin virus, a new member of the cardiovirus group (Picornaviridae) isolated from Ixodes persulcatus ticks in Primorie region. Acta Virologica 22, 458–463.Google ScholarPubMed
Maguire, T. (1970). The laboratory transmission of coxsackie A6 virus by mosquitoes. Journal of Hygiene 68, 625–630.CrossRefGoogle Scholar
Mahara, F. (1984). Three Weil-Felix (OX2) positive cases with skin eruptions and high fever. Journal of the American Medical Association 68, 4–7.Google Scholar
Mahara, F. (1997). Japanese spotted fever: report of 31 cases and review of the literature. Emerging Infectious Diseases 3, 105–111.CrossRefGoogle ScholarPubMed
Main, A. J. & Carey, A. B. (1980). Connecticut virus: a new Sawgrass group virus from Ixodes dentatus (Acari, Ixodidae). Journal of Medical Entomology 17, 473–476.CrossRefGoogle Scholar
Makinen, J., Vuorinen, I., Oksi, J., et al. (2003). Prevalence of granulocytic Ehrlichia and Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected from Southwest Finland and from Vormsi Island in Estonia. Acta Pathologica, Microbiologica et Immunologica Seandinavica 111, 355–362.CrossRefGoogle Scholar
Marconi, R. T., Liveris, D. & Schwartz, I. (1995). Identification of novel insertion elements, restriction fragment length polymorphism patterns, and discontinuous 23S rRNA in Lyme disease spirochetes: phylogenetic analyses of rRNA genes and their intergenic spacers in Borrelia japonica sp. nov. and genomic group 21038 (Borrelia andersoni sp. nov.) isolates. Journal of Clinical Microbiology 33, 2427–2434.Google Scholar
Martin, P. A. & Schmidtmann, E. T. (1998). Isolation of aerobic microbes from Ixodes scapularis (Acari: Ixodidae), the vector of Lyme disease in the eastern United States. Journal of Economic Entomology 91, 864–868.CrossRefGoogle Scholar
Mason, J. H. & Alexander, R. A. (1939). Studies of the rickettsias of the typhus–Rocky Mountain spotted fever group in South Africa. III. The disease in the experimental animal: cross-immunity tests. Onderstepoort Journal of Veterinary Animal Industry 13, 41–66.Google Scholar
Massung, R. F., Mauel, M., Owens, J. H., et al. (2002). Genetic variants of Ehrlichia phagocytophila, Rhode Island and Connecticut. Emerging Infectious Diseases 8, 467–472.CrossRefGoogle ScholarPubMed
Masters, E. J. & Donnell, H. D. (1995). Lyme and/or Lyme-like disease in Missouri. Missouri Medicine 92, 346–353.Google ScholarPubMed
Masters, E., Granter, S., Duray, P. & Cordes, P. (1998). Physician-diagnosed erythema migrans and erythema migrans-like rashes following Lone Star tick bites. Archives of Dermatology 134, 955–960.CrossRefGoogle ScholarPubMed
Maxey, E. E. (1899). Some observations on the so-called spotted fever of Idaho. Medical Sentinel of Portland 7, 433–438.Google Scholar
McQuiston, J. H., Paddock, C. D., Holman, R. C. & Childs, J. E. (1999). The human ehrlichioses in the United States. Emerging Infectious Diseases 5, 635–642.CrossRefGoogle ScholarPubMed
Megaw, J. W. (1921). A typhus like fever in India, possibly transmitted by ticks. Indian Medical Gazette 56, 361–371.Google ScholarPubMed
Monteiro, J. L., Fonseca, F. & Prado, A. (1931). Pesquisas epidemiológicas sobre o typhus exanthematico de São Paolo. Memorias Instituto Butantan 6, 139–173.Google Scholar
Morais, J. D., Dawson, J. E., Greene, C., et al. (1991). First European case of ehrlichiosis (letter). Lancet 338, 633–634.CrossRefGoogle Scholar
Murphy, G. L., Ewing, S. A., Whitworth, L. C., Fox, J. C. & Kocan, A. A. (1998). A molecular and serologic survey of Ehrlichia canis, E. chaffeensis, and E. ewingii in dogs and ticks from Oklahoma. Veterinary Parasitology 79, 325–339.CrossRefGoogle Scholar
Murray, R. G. E. & Schleifer, K. H. (1994). Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes. International Journal of Systematic Bacteriology 44, 174–176.CrossRefGoogle ScholarPubMed
Nadelman, R. B., Herman, E. & Wormser, G. P. (1997). Screening for Lyme disease in hospitalized psychiatric patients: prospective serosurvey in an endemic area. Mount Sinai Journal of Medicine 64, 409–412.Google Scholar
Niebylski, M. L., Peacock, M. G., Fischer, E. R., Porcella, S. F. & Schwan, T. G. (1997 a). Characterization of an endosymbiont infecting wood ticks, Dermacentor andersoni, as a member of the genus Francisella. Applied and Environmental Microbiology 63, 3933–3940.Google ScholarPubMed
Niebylski, M. L., Schrumpf, M. E., Burgdorfer, W., et al. (1997 b). Rickettsia peacockii sp. nov., a new species infecting wood ticks, Dermacentor andersoni, in western Montana. International Journal of Systematic Bacteriology 47, 446–452.CrossRefGoogle ScholarPubMed
Nilsson, K., Lindquist, O., Liu, A. J., et al. (1999). Rickettsia helvetica in Ixodes ricinus ticks in Sweden. Journal of Clinical Microbiology 37, 400–403.Google ScholarPubMed
Nilsson, K., Lindquist, O. & Pahlson, C. (1999). Association of Rickettsia helvetica with chronic perimyocarditis in sudden cardiac death. Lancet 354, 1169–1173.CrossRefGoogle ScholarPubMed
Nilsson, K., Liu, A., Pahlson, C. & Lindquist, O. (2005 a). Demonstration of intracellular microorganisms (Rickettsia spp., Chlamydia pneumoniae, Bartonella spp.) in pathological human aortic valves by PCR. Journal of Infection 50, 46–52.CrossRefGoogle ScholarPubMed
Nilsson, K., Lukinius, A., Pahlson, C., et al. (2005 b). Evidence of Rickettsia spp. infection in Sweden: a clinical, ultrastructural and serological study. APMIS 113, 126–134.CrossRefGoogle ScholarPubMed
Nilsson, K., Pahlson, C., Lukinius, A., et al. (2001). Presence of Rickettsia helvetica in granulomatous tissue from patients with sarcoidosis. Journal of Infectious Diseases 185, 1128–1138.CrossRefGoogle Scholar
Noda, H., Munderloh, U. G. & Kurtti, T. J. (1997). Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Applied and Environmental Microbiology 63, 3926–3932.Google ScholarPubMed
Noguchi, H. (1926). The experimental transmission of Bartonella bacilliformis by ticks (Dermacentor andersoni). Journal of Experimental Medicine 44, 729–734.CrossRefGoogle Scholar
Norval, R. A. I. (1977 a). Ecology of the tick Amblyomma hebraeum Koch in Eastern Cape Province of South Africa. I. Distribution and seasonal activity. Journal of Parasitology 63, 734–739.CrossRefGoogle ScholarPubMed
Norval, R. A. I. (1977 b). Studies on ecology of the tick Amblyomma hebraeum Koch in Eastern Cape-Province of South Africa. II. Survival and development. Journal of Parasitology 63, 740–747.CrossRefGoogle ScholarPubMed
Nuti, M., Serafini, D. A., Bassetti, D., et al. (1998). Ehrlichia infection in Italy. Emerging Infectious Diseases 4, 663–665.CrossRefGoogle ScholarPubMed
Ogden, N. H., Bown, K., Horrocks, B. K., Woldehiwet, Z. & Bennett, M. (1998). Granulocytic Ehrlichia infection in ixodid ticks and mammals in woodlands and uplands of the UK. Medical and Veterinary Entomology 12, 423–429.CrossRefGoogle Scholar
Ohashi, N., Inayoshi, M., Kitamura, K., et al. (2005). Anaplasma phagocytophilum-infected ticks, Japan. Emerging Infectious Diseases 11, 1780–1783.CrossRefGoogle ScholarPubMed
Oksi, J., Viljanen, M. K., Kalimo, H., et al. (1993). Fatal encephalitis caused by concomitant infection with tick-borne encephalitis virus and Borrelia burgdorferi. Clinical Infectious Diseases 16, 392–396.CrossRefGoogle ScholarPubMed
Oliver, J. H. Jr, Owsley, M. R., Hutcheson, H. J., et al. (1993). Conspecificity of the ticks Ixodes scapularis and Ixodes dammini (Acari: Ixodidae). Journal of Medical Entomology 30, 54–63.CrossRefGoogle Scholar
Olsufiev, N. G., Emelyanova, O. S. & Dunayeva, T. N. (1959). Comparative study of strains of B. tularense. II. Evaluation of criteria of virulence of Bacterium tularense in the Old and New World and their taxonomy. Journal of Hygiene, Epidemiology, Microbiology and Immunology 3, 138–149.Google Scholar
O'Neill, S. L., Giordano, R., Colbert, A. M. E., Karr, T. L. & Robertson, H. M. (1992). 16S ribosomal RNA phylogenetic analysis of the bacterial endosymbionts associatied with cytoplasmic incompatibility in insects. Proceedings of the National Academy of Sciences of the USA 89, 2699–2702.CrossRefGoogle Scholar
Oteo, J. A. & Ibarra, V. (2002). DEBONEL (Dermacentor-borne-necrosis- erythema-lymphadenopathy): a new tick-borne disease?Enfermedades Infecciosas y Microbiologia Clínica 20, 51–52.Google Scholar
Oteo, J. A., Blanco, J. R., Artola, Martinez V. & Ibarra, V. (2000). First report of human granulocytic ehrlichiosis from southern Europe (Spain). Emerging Infectious Diseases 6, 430–432.CrossRefGoogle Scholar
Paddock, C. D., Folk, S. M., Shore, G. M., et al. (2001). Infections with Ehrlichia chaffeensis and Ehrlichia ewingii in persons coinfected with human immunodeficiency virus. Clinical Infectious Diseases 33, 1586–1594.CrossRefGoogle ScholarPubMed
Paddock, C. D., Sumner, J. W., Comer, J. A., et al. (2004). Rickettsia parkeri: a newly recognized cause of spotted fever rickettsiosis in the United States. Clinical Infectious Diseases 38, 805–811.CrossRefGoogle ScholarPubMed
Parker, R. R., Spencer, R. R. & Francis, E. (1924). Tularemia infection in ticks of the species Dermacentor andersoni Stiles in the Bitterroot Valley, Montana. Public Health Reports 39, 1057–1073.CrossRefGoogle Scholar
Parola, P., Cornet, J.-P., Sanogo, Y. O., et al. (2003). Identification of new Ehrlichia, Anaplasma, and Rickettsia genotypes in ticks from the Thai–Myanmar border and Vietnam. Journal of Clinical Microbiology 41, 1600–1608.CrossRefGoogle Scholar
Parola, P. P. & Raoult, D. R. (2000). New tick-transmitted rickettsial diseases. In Tick-borne Infectious Diseases: Diagnosis and Management, ed. Cunha, B. A., pp. 233–250. New York: Marcel Dekker.CrossRefGoogle Scholar
Parola, P., Paddock, C. D. & Raoult, D. (2005). Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clinical Microbiology Reviews 18, 719–756.CrossRefGoogle ScholarPubMed
Parola, P., Vestris, G., Martinez, D., et al. (1999). Tick-borne rickettsiosis in Guadeloupe, the French West Indies: isolation of Rickettsia africae from Amblyomma variegatum ticks and serosurvey in humans, cattle, and goats. American Journal of Tropical Medicine and Hygiene 60, 888–893.CrossRefGoogle ScholarPubMed
Pavlovsky, E. N. (1966). Natural Nidality of Transmissible Diseases. Urbana, IL: University of Illinois Press.Google Scholar
Pegram, P. S. Jr, Sessler, C. N., London, W. L. & Burgdorfer, W. (1983). Lyme disease in North Carolina. Southern Medical Journal 76, 740–742.CrossRefGoogle ScholarPubMed
Perez, M., Bodor, M., Zhang, C., Xiong, Q. & Rikihisa, Y. (2006). Human infection with Ehrlichia canis accompanied by clinical signs in Venezuela. Annals of the New York Academy of Sciences 1078, 110–117.CrossRefGoogle ScholarPubMed
Perez, M., Rikihisa, Y. & Wen, B. H. (1996). Ehrlichia canis-like agent isolated from a man in Venezuela: antigenic and genetic characterization. Journal of Clinical Microbiology 34, 2133–2139.Google ScholarPubMed
Persing, D. H., Herwaldt, B. L., Glaser, C., et al. (1995). Infection with a Babesia-like organism in northern California. New England Journal of Medicine 332, 298–303.CrossRefGoogle ScholarPubMed
Petrovec, M., Furlan, Lotric S., Zupanc, T. A., et al. (1997). Human disease in Europe caused by a granulocytic Ehrlichia species. Journal of Clinical Microbiology 35, 1556–1559.Google ScholarPubMed
Philip, C. B., Hoogstraal, H., Reiss-Gutfreund, R. & Clifford, C. M. (1966). Evidence of rickettsial disease agents in ticks from Ethiopian cattle. Bulletin of the World Health Organization 35, 127–131.Google ScholarPubMed
Pierard, D., Levtchenko, E., Dawson, J. E. & Lauwers, S. (1995). Ehrlichiosis in Belgium. Lancet 346, 1233–1234.CrossRefGoogle ScholarPubMed
Piesman, J., Mather, T. N., Telford, S. R. III & Spielman, A. (1986). Concurrent Borrelia burgdorferi and Babesia microti infection in nymphal Ixodes dammini. Journal of Clinical Microbiology 24, 446–447.Google ScholarPubMed
Pijper, A. (1936). Etude expérimentale comparée de la fièvre boutonneuse et de tick bite fever. Archives du Institut Pasteur Tunis 25, 388–401.Google Scholar
Planck, A., Eklund, A., Grunewald, J. & Vene, S. (2004). No serological evidence of Rickettsia helvetica infection in Scandinavian sarcoidosis patients. European Respiratory Journal 24, 811–813.CrossRefGoogle ScholarPubMed
Polin, H., Hufnagl, P., Haunschmid, R., Gruber, F. & Ladurner, G. (2004). Molecular evidence of Anaplasma phagocytophilum in Ixodes ricinus ticks and wild animals in Austria. Journal of Clinical Microbiology 42, 2285–2286.CrossRefGoogle ScholarPubMed
Pomerantsev, B. I. (1959). Ixodid Ticks (Ixodidae). Washington, DC: American Institute of Biological Sciences.Google Scholar
Pretorius, A.-M. & Birtles, R. J. (2002). Rickettsia aeschlimannii: a new pathogenic spotted fever group rickettsia, South Africa. Emerging Infectious Diseases 8, 874 (letter).CrossRefGoogle ScholarPubMed
Quick, R. E., Herwaldt, B. L., Thomford, J. W., et al. (1993). Babesiosis in Washington State: a new species of Babesia?Annals of Internal Medicine 119, 284–290.CrossRefGoogle ScholarPubMed
Randolph, S. E. (2002). Predicting the risk of tick-borne diseases. International Journal of Medical Microbiology 291 (Suppl. 33), 6–10.CrossRefGoogle ScholarPubMed
Randolph, S. E. & Rogers, D. J. (2000). Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proceedings of the Royal Society of London B 267, 1741–1744.CrossRefGoogle ScholarPubMed
Raoult, D., Berbis, P., Roux, V., Xu, W. & Maurin, M. (1997). A new tick-transmitted disease due to Rickettsia slovaca. Lancet 350, 112–113.CrossRefGoogle ScholarPubMed
Raoult, D., Brouqui, P. & Roux, V. (1996). A new spotted fever group rickettsiosis. Lancet 348, 412.CrossRefGoogle ScholarPubMed
Raoult, D., Fournier, P. E., Abboud, P. & Caron, F. (2002). First documented human Rickettsia aeschlimannii infection. Emerging Infections Diseases 8, 748–749.CrossRefGoogle ScholarPubMed
Reid, H. W. (1986). Louping ill. In The Arboviruses: Epidemiology and Ecology, vol. 3, ed. Monath, T. P., pp. 117–135. Boca Raton, FL: CRC Press.Google Scholar
Relman, D. A. (2002). Mining the world for new pathogens. American Journal of Tropical Medicine and Hygiene 67, 133–134.CrossRefGoogle ScholarPubMed
Rich, S. M., Armstrong, P. M., Smith, R. D. & Telford, S. R. (2001). Lone star tick-infecting borreliae are most closely related to the agent of bovine borreliosis. Journal of Clinical Microbiology 39, 494–497.CrossRefGoogle ScholarPubMed
Richmond, J. Y. & McKinney, R. W. (1993). Biosafety in Microbiological and Biomedical Laboratories, 3rd edn. Washington, DC: US Department of Health and Human Services.Google Scholar
Richter, P. J. Jr, Kimsey, R. B., Madigan, J. E., et al. (1996). Ixodes pacificus (Acari: Ixodidae) as a vector of Ehrlichia equi (Rickettsiales: Ehrlichiae). Journal of Medical Entomology 33, 1–5.CrossRefGoogle Scholar
Ricketts, H. T. (1906). The transmission of Rocky Mountain spotted fever by the bite of the wood tick (Dermacentor occidentalis). Journal of the American Medical Association 47, 358 (letter).CrossRefGoogle Scholar
Ripoll, C. M., Remondegui, C. E., Ordonez, G., et al. (1999). Evidence of rickettsial spotted fever and ehrlichial infections in a subtropical territory of Jujuy, Argentina. American Journal of Tropical Medicine and Hygiene 61, 350–354.CrossRefGoogle Scholar
Roberts, D., Wang, X., Kemp, R. G. & Felz, M. W. (1999). Solitary erythema migrans in Georgia and South Carolina. Archives of Biochemistry and Biophysics 371, 326–331.Google Scholar
Robertson, R. G. & Wisseman, C. L. (1973). Tick-borne rickettsiae of the spotted fever group in West Pakistan. II. Serological classification of isolates from West Pakistan and Thailand: evidence for two new species. American Journal of Epidemiology 97, 55–64.CrossRefGoogle ScholarPubMed
Root, R. B. (1967). The niche exploitation pattern of the blue-gray gnatcatcher. Ecological Monographs 37, 317–350.CrossRefGoogle Scholar
Salgo, M. P., Telzak, E. E., Currie, B., et al. (1988). A focus of Rocky Mountain spotted fever within New York city. New England Journal of Medicine 318, 1345–1348.CrossRefGoogle ScholarPubMed
Sanogo, Y. O., Zeaiter, Z., Caruso, G., et al. (2003). Detection of Bartonella henselae in ticks Ixodes ricinus (Acari: Ixodidae) removed from humans in Belluno Province, Italy. Emerging Infectious Diseases 9, 329–332.CrossRefGoogle ScholarPubMed
Sant'Ana, J. F. (1911). On a disease in man following tick bites and occuring in Lourenço Marques. Parasitology 4, 87–88.CrossRefGoogle Scholar
Santos, A. S., Santos-Silva, M. M., Almeida, V. C., Bacellar, F. and Dumler, J. S. (2004). Detection of Anaplasma phagocytophilum DNA in Ixodes ticks (Acari: Ixodidae) from Madeira Island and Setubal District mainland, Portugal. Emerging Infectious Diseases 10, 1643–1648.CrossRefGoogle ScholarPubMed
Schabereiter-Gurtner, C., Lubitz, W. & Rolleke, S. (2003). Application of broad range 16S rRNA PCR amplification and DGGE fingerprinting for detection of tick-infecting bacteria. Journal of Microbiological Methods 52, 251–260.CrossRefGoogle ScholarPubMed
Schouls, L. M., Pol, I., Rijpkema, S. G. & Schot, C. S. (1999). Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus ticks. Journal of Clinical Microbiology 37, 2215–2222.Google ScholarPubMed
Shibata, S., Kawahara, M., Rikihisa, Y., et al. (2000). New Ehrlichia species closely related to Ehrlichia chaffeensis isolated from Ixodes ovatus ticks in Japan. Journal of Clinical Microbiology 38, 1331–1338.Google ScholarPubMed
Shih, C. M., Liu, L. P., Chung, W. C., Ong, S. J. & Wang, C. C. (1997). Human babesiosis in Taiwan: asymptomatic infection with a Babesia microti–like organism in a Taiwanese woman. Journal of Clinical Microbiology 35, 450–454.Google Scholar
Shypnov, S., Parola, P., Rudakov, N., et al. (2001). Detection and identification of spotted fever group rickettsiae in Dermacentor ticks from Russia and Central Kazakhstan. European Journal of Clinical Microbiology and Infectious Diseases 20, 903–905.CrossRefGoogle Scholar
Shypnov, S. S., Fournier, P.-E., Rudakov, N. & Raoult, D. (2003). ‘Candidatus Rickettsia tarasevichae’ in Ixodes persulcatus ticks collected in Russia. Annals of the New York Academy of Sciences 990, 162–172.CrossRefGoogle Scholar
Simser, J. A., Palmer, A. T., Fingerle, V., et al. (2002). Rickettsia monacensis sp. nov., a spotted fever group rickettsia, from ticks (Ixodes ricinus) collected in a European city park. Applied and Environmental Microbiology 68, 4559–4566.CrossRefGoogle Scholar
Skotarczak, B., Rymaszewska, A. & Adamska, M. (2003). Polymerase chain reaction in detection of human granulocytic ehrlichiosis (HGE) agent DNA in Ixodes ricinus ticks. Folia Medica Cracoviensia 44, 179–186.Google ScholarPubMed
Škrabalo, Z. & Deanovic, Ž. (1957). Piroplasmosis in man: report on a case. Documenta de Medicina Geographica et Tropica 9, 11–16.Google ScholarPubMed
Smith, T. & Kilborne, F. L. (1893). Investigation into the Nature, Causation, and Prevention of Texas or Southern Cattle Fever, Bureau of Animal Industries Bulletin No. 1. Washington, DC: US Department of Agriculture.Google Scholar
Spencer, A. M., Goethert, H. K., Telford, S. R. & Holman, P. J. (2006). In vitro host erythrocyte specificity and differential morphology of Babesia divergens and a zoonotic Babesia sp. from eastern cottontail rabbits (Sylvilagus floridanus). Journal of Parasitology 92, 333–340.Google Scholar
Spielman, A. & Rossignol, P. (1984). Insect vectors and scalars. In Tropical and Geographic Medicine, eds. Warren, K. S. & Mahmoud, A. F., pp. 167–183. New York: McGraw-Hill.Google Scholar
Steere, A. C., McHugh, G., Suarez, C., et al. (2003). Prospective study of coinfection in patients with erythema migrans. Clinical Infectious Diseases 36, 1078–1081.CrossRefGoogle ScholarPubMed
Stenos, J., Roux, V., Walker, D. H. & Raoult, D. (1998). Rickettsia honei sp. nov., the aetiological agent of Flinders Island spotted fever in Australia. International Journal of Systematic Bacteriology 48, 1399–1404.CrossRefGoogle ScholarPubMed
Stewart, R. S. (1991). Flinders Island spotted fever: a newly recognized endemic focus of tick typhus in Bass Strait. I. Clinical and epidemiological features. Medical Journal of Australia 154, 94–99.Google Scholar
Stuen, S., Pol, I., Bergstrom, K. & Schouls, L. A. (2002). Identification of Anaplasma phagocytophilum (formerly Ehrlichia phagocytophila) variants in blood from sheep in Norway. Journal of Clinical Microbiology 40, 3192–3197.CrossRefGoogle Scholar
Suitor, E. C. & Weiss, E. (1961). Isolation of a Rickettsia-like microorganism (Wolbachia persica n. sp.) from Argas persicus (Oken). Journal of Infectious Diseases 108, 95–99.CrossRefGoogle Scholar
Sumption, K. J., Wright, D. J., Cutler, S. J. & Dale, B. A. (1995). Human ehrlichiosis in the UK. Lancet 346, 1487–1488.CrossRefGoogle ScholarPubMed
Sun, L. V., Scoles, G. A., Fish, D. & O'Neill, S. L. (2000). Francisella-like endosymbionts of ticks. Journal of Invertebrate Pathology 76, 301–303.CrossRefGoogle ScholarPubMed
Tarasevich, I. V., Makarova, V. A., Fetisova, N. F., et al. (1991). Astrakhan fever: a spotted fever rickettsiosis. Lancet 337, 172–173.CrossRefGoogle ScholarPubMed
Tarnvik, A., Sandstrom, G. & Sjostedt, A. (1996). Epidemiological analysis of tularaemia in Sweden 1931–1993. FEMS Immunology and Medical Microbiology 13, 201–204.CrossRefGoogle ScholarPubMed
Taroura, S., Shimada, Y., Sakata, Y., et al. (2005). Detection of DNA of ‘Candidatus Mycoplasma haemominutum’ and Spiroplasma sp. in unfed ticks collected from vegetation in Japan. Journal of Veterinary Medical Science 67, 1277–1279.CrossRefGoogle ScholarPubMed
Telford, S. R. (1998). The name Ixodes dammini epidemiologically justified. Emerging Infectious Diseases 4, 132–134.CrossRefGoogle ScholarPubMed
Telford, S. R. & Foppa, I. M. (2000). Tickborne encephalitides. In Tickborne Infectious Diseases, Diagnosis and Management, ed. Cunha, B. A., pp. 193–214. New York: Marcel Dekker.CrossRefGoogle Scholar
Telford, S. R. & Goethert, H. K. (2004). Emerging tick-borne infections: rediscovered and better characterized, or truly new?Parasitology 129, S301–S327.CrossRefGoogle ScholarPubMed
Telford, S. R. III & Maguire, J. H. (2005). Babesiosis. In Tropical Infectious Diseases: Priniciples, Pathogens, and Practice, vol. 2, eds. Guerrant, R., Walker, D. H. & Weller, P. F., pp. 1063–1071. London: Churchill Livingstone.Google Scholar
Telford, S. R., Armstrong, P. M., Katavolos, P., et al. (1997). A new tick-borne encephalitis-like virus infecting New England deer ticks, Ixodes dammini. Emerging Infectious Diseases 3, 165–170.CrossRefGoogle ScholarPubMed
Telford, S. R., Dawson, J. E., Katavolos, P., et al. (1996). Perpetuation of the agent of human granulocytic ehrlichiosis in a deer tick-rodent cycle. Proceedings of the National Academy of Sciences of theUSA 93, 6209–6214.CrossRefGoogle Scholar
Telford, S. R., Gorenflot, A., Brasseur, P. & Spielman, A. (1993). Babesial infections in humans and wildlife. In Parasitic Protozoa, vol. 5, ed. Kreier, J. P., pp. 1–47. San Diego, CA: Academic Press.Google Scholar
Telford, S. R. III, Korenberg, E. I., Goethert, H. K., et al. (2002). Detection of natural foci of babesiosis and granulocytic ehrlichiosis in Russia. Journal of Microbiology, Epidemiology and Immunology 6, 21–25.Google Scholar
Telford, S. R. III, Lepore, T. J., Snow, P., Warner, C. K. & Dawson, J. E. (1995). Human granulocytic ehrlichiosis in Massachusetts. Annals of Internal Medicine 123, 277–279.CrossRefGoogle ScholarPubMed
Tenckhoff, B., Kolmel, H. W., Wolf, V. & Lange, R. (1994). Production and characterization of a polyclonal antiserum against Spiroplasma mirum. Zentralblatt für Bakteriologie 280, 409–415.CrossRefGoogle ScholarPubMed
Tenter, A. M., Barta, J. R., Beveridge, I., et al. (2002). The conceptual basis for a new classification of the coccidia. International Journal for Parasitology 32, 595–616.CrossRefGoogle ScholarPubMed
Theil, K. W., McCloskey, C. M. & Scott, D. P. (1993). Serologic evidence for rabbit syncytial virus in eastern cottontails (Sylvilagus floridanus) in Ohio. Journal of Wildlife Diseases 29, 470–474.CrossRefGoogle Scholar
Thomford, J. W., Conrad, P. A., Boyce, W. M., Holman, P. J. & Jessup, D. A. (1993). Isolation and in vitro cultivation of Babesia parasites from free-ranging desert bighorn sheep (Ovis canadensis nelsoni) and mule deer (Odocoileus hemionus) in California. Journal of Parasitology 79, 77–84.CrossRefGoogle Scholar
Treib, J. (1994). First case of tick-borne encephalitis in the Saarland. Infection 22, 368–369.CrossRefGoogle ScholarPubMed
Tsuji, M., Wei, Q., Zamoto, A., et al. (2001). Human babesiosis in Japan: epizootiologic survey of rodent reservoir and isolation of new type of Babesia microti-like parasite. Journal of Clinical Microbiology 39, 4316–4322.CrossRefGoogle ScholarPubMed
Tully, J. F., Rose, D. L., Yunker, C. E., et al. (1995). Spiroplasma ixodetis. sp. nov., a new species from Ixodes pacificus ticks collected in Oregon. International Journal of Systematic Bacteriology 45, 23–28.CrossRefGoogle ScholarPubMed
Tully, J. F., Whitcomb, R. F., Rose, D. L., Williamson, D. L. & Bove, J. M. (1983). Characterization and taxonomic status of tick spiroplasmas: a review. Yale Journal of Biology and Medicine 56, 599–603.Google ScholarPubMed
Tyzzer, E. E. (1938). Cytoecetes microti, n.g., n.sp., a parasite developing in granulocytes and infective for small rodents. Parasitology 30, 242–257.CrossRefGoogle Scholar
Uchida, T. (1993). Rickettsia japonica, the etiologic agent of oriental spotted fever. Microbiology and Immunology 37, 91–102.CrossRefGoogle ScholarPubMed
Unsworth, N. B., Stenos, J., McGregor, A. R., Dyer, J. R. & Graves, S. R. (2005). Not only ‘Flinders Island’ spotted fever. Pathology 37, 242–245.CrossRefGoogle ScholarPubMed
Urvolgyi, J. & Brezina, R. (1976). Rickettsia slovaca: new member of spotted fever-group rickettsiae. Folia Microbiologica 21, 503–503.Google Scholar
Peenen, P. F., Chang, S. J., Banknieder, A. R. & Santana, F. J. (1977). Piroplasms from Taiwanese rodents. Journal of Protozoology 24, 310–312.CrossRefGoogle ScholarPubMed
Varela, A. S., Luttrell, M. P., Howerth, E. W., et al. (2004). First culture isolation of Borrelia lonestari, putative agent of southern tick-associated rash illness. Journal of Clinical Microbiology 42, 1163–1169.CrossRefGoogle ScholarPubMed
Venzal, J. M., Portillo, A, Estrada-Peña, A., et al. (2004). Rickettsia parkeri in Amblyomma triste from Uruguay. Emerging Infectious Diseases 10, 1493–1495.CrossRefGoogle ScholarPubMed
Vestris, G., Rolain, J. E., Fournier, P. E., et al. (2003). Seven years' experience of isolation of Rickettsia spp. from clinical specimens using the shell vial cell culture assay. Annals of the New York Academy of Sciences 990, 371–374.CrossRefGoogle ScholarPubMed
Vitale, G., Mansueto, S., Rolain, J. M. & Raoult, D. (2005). Rickettsia massiliae human isolation. Emerging Infectious Diseases 2, 174–175.Google Scholar
Vyrostekova, V., Khanakah, G., Kocianova, E., Gurycova, D. & Stanek, G. (2002). Prevalence of coinfection with Francisella tularensis in reservoir animals of Borrelia burgdorferi sensu lato. Wiener klinische Wochenschrift 114, 482–488.Google ScholarPubMed
Walker, D. H. (1998). Tick transmitted diseases in the United States. Annual Review of Public Health 19, 237–269.CrossRefGoogle ScholarPubMed
Walls, J. J., Greig, B., Neitzel, D. F. & Dumler, J. S. (1997). Natural infection of small mammal species in Minnesota with the agent of human granulocytic ehrlichiosis. Journal of Clinical Microbiology 35, 853–855.Google ScholarPubMed
Weder, B., Ketz, E., Matter, L. & Schuman, S. H. (1989). Lyme and other tick-borne diseases acquired in South Carolina in 1988: a survey of 1331 physicians. Journal of Neurology 236, 305–306.Google Scholar
Weller, S. J., Baldridge, G. D., Munderloh, U. G., et al. (1998). Phylogenetic placement of rickettsiae from the ticks Amblyomma americanum and Ixodes scapularis. Journal of Clinical Microbiology 36, 1305–1317.Google ScholarPubMed
Wellmer, H. & Jusatz, H. J. (1981). Geoecological analyses of the spread of tick-borne encephalitis in Central Europe. Social Science and Medicine – Medical GeographyD 15, 159–162.CrossRefGoogle Scholar
Wesslen, L. (2001). Sudden cardiac death in Swedish orienteers. Unpublished Ph. D. thesis, Uppsala University, Sweden.
Wolbach, S. B. (1919). Studies on Rocky Mountain spotted fever. Journal of Medical Research 41, 1–197.Google ScholarPubMed
Woldehiwet, Z. & Scott, G. R. (1993). Tick-borne (pasture) fever. In Rickettsial and Chlamydial Diseases of Domestic Animals, eds. Woldehiwet, Z. & Ristic, M., pp. 233–254. Oxford, UK: Pergamon Press.Google Scholar
Wood, W. W. (1896). Spotted Fever as Reported from Idaho. Washington, DC: US Government Printing Office.Google Scholar
Wormser, G. P., Masters, E., Liveris, D., et al. (2005). Microbiologic evaluation of patients from Missouri with erythema migrans. Clinical Infectious Diseases 40, 423–428.CrossRefGoogle ScholarPubMed
Wurzel, L. G., Cable, R. G. & Leiby, D. A. (2002). Can ticks be vectors for hepatitis C virus?New England Journal of Medicine 347, 1724–1725.CrossRefGoogle ScholarPubMed
Yabsley, M. J., Varela, A. S., Tate, C. M., et al. (2002). Ehrlichia ewingii infection in white-tailed deer (Odocoileus virginianus). Emerging Infectious Diseases 8, 668–671.CrossRefGoogle Scholar
Young, A. S. & Morzaria, S. P. (1986). Biology of Babesia. Parasitology Today 2, 211–219.CrossRefGoogle ScholarPubMed
Zavala-Velazquez, J. E., Sosa, Ruiz J., Solis, Vado I., Billings, A. N. & Walker, D. H. (1999). Serologic study of the prevalence of rickettsiosis in Yucatan: evidence for a prevalent spotted fever group rickettsiosis. American Journal of Tropical Medicine and Hygiene 61, 405–408.CrossRefGoogle ScholarPubMed
Zdrodowski, P. F. & Golinevich, H. M. (1960). The Rickettsial Diseases. New York: Pergamon Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×