Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-11T14:47:24.629Z Has data issue: false hasContentIssue false

6 - Clays modified with thermally stable ionic liquids with applications in polyolefin and polylactic acid nanocomposites

from Part I - Thermal stability

Published online by Cambridge University Press:  05 August 2011

Vikas Mittal
Affiliation:
The Petroleum Institute, Abu Dhabi
Get access

Summary

Introduction

A variety of discontinuous (short) functional fillers may be combined with thermoplastic or thermoset matrices to produce composites. The fillers may differ in shape (fibers, platelets, flakes, spheres, or irregulars), aspect ratio, and size. When the fully dispersed (exfoliated or deagglomerated) fillers are of nanoscale dimensions, the materials are known as nanocomposites. They differ from conventional microcomposites in that they contain a significant number of interfaces available for interactions between the intermixed phases. As a result of their unique properties, nanocomposites have great potential for applications involving polymer property modification utilizing low filler concentrations for minimum weight increase; examples include mechanical, electrical, optical, and barrier properties improvement and enhanced flame retardancy.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandre, M.Dubois, P.Polymer-layered silicate nanocomposites, properties and uses of a new class of materialsMaterials Science and Engineering R: Reports 28 2000 1CrossRefGoogle Scholar
Andersen, P. G.Compounding polymer nanocompositesNPE Educational Conference: Nanotechnology Applications for PolymersChicagoNPE 2009Google Scholar
Awad, W. H.Gilman, W.Nyden, M.Harris, R. H.Sutto, T. E.Callahan, J.Trulove, P. C.DeLong, H. C.Fox, D. M.Thermal degradation studies of alkyl-imidazolium salts and their application in nanocompositesThermochimica Acta 409 2004 3CrossRefGoogle Scholar
Billingham, J.Breen, C.Yarwood, J.Adsorption of polyamine, polyacrylic acid and polyethylene glycol on montmorillonite: An in situ study using ATR-FTIRVibrational Spectroscopy 14 1997 19CrossRefGoogle Scholar
Bradaric, C. J.Downard, A.Kennedy, C.Robertson, A. J.Zhou, Y.Industrial preparation of phosphonium ionic liquidsGreen Chemistry 5 2003 143CrossRefGoogle Scholar
Bonnet, L. G.Kariuki, B. M.Ionic liquids: Synthesis and characterization of triphenylphosphonium tosylatesEuropean Journal of Inorganic Chemistry 2 2006 437CrossRefGoogle Scholar
Burnside, S. D.Giannelis, E. P.Synthesis and properties of new poly(dimethylsiloxane) nanocompositesChemistry of Materials 7 1995 1597CrossRefGoogle Scholar
Byrne, C.McNally, T.Armstrong, C. G. 2005
Calderon, J. U.Lennox, B.Kamal, M. R.Polystyrene/phosphonium organoclay nanocomposites by melt compoundingInternational Polymer Processing 1 2008 119CrossRefGoogle Scholar
Chang, J. H.An, Y. U.Sur, G. S.Poly(lactic acid) nanocomposites with various organoclays. 1. Thermomechanical properties, morphology, and gas permeabilityJournal of Polymer Science, Part B: Polymer Physics 41 2003 94CrossRefGoogle Scholar
Chigwada, G.Wang, D.Wilkie, C. A.Polystyrene nanocomposites based on quinolinium and pyridinium surfactantsPolymer Degradation and Stability 91 2006 848CrossRefGoogle Scholar
Chouzouri, G. 2003
Choy, J. H.Kwak, S. Y.Park, J. S.Jeong, Y. J.Portier, J.Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxideJournal of American Chemical Society 121 1999 1399CrossRefGoogle Scholar
Costantino, U.Ambrogi, V.Nocchetti, M.Perioli, L.Hydrotalcite-like compounds: Versatile layered hosts of molecular anions with biological activityMicroporous Mesoporous Materials 107 2008 149CrossRefGoogle Scholar
Ding, Y.Guo, C.Dong, J.-Y.Wang, Z.Novel organic modification of montmorillonite in hydrocarbon solvent using ionic liquids – Type surfactant for the preparation of polyolefin–clay nanocompositesJournal of Applied Polymer Science 102 2006 4314CrossRefGoogle Scholar
Ding, Y.Xiong, R.Wang, S.Zhang, X.Aggregative structure of the 1-octadecyl-3-methylimidazolium cation in the interlayer of montmorillonite and its effect of polypropylene melt intercalationJournal of Polymer Science, Part B: Polymer Physics 45 2007 1252CrossRefGoogle Scholar
Ding, Y.Zhang, X.Xiong, R.Wu, S.Zha, M.Tang, H.Effects of montmorillonite interlayer micro-circumstance on the PP melting intercalationEuropean Polymer Journal 44 2008 24CrossRefGoogle Scholar
Gao, F.Clay/polymer composites: The storyMaterials Today 20 2004 50CrossRefGoogle Scholar
Giannelis, E. P.Polymer-layered silicate nanocomposites: Synthesis, properties and applicationsApplied Organometallic Chemistry 12 1998 6753.0.CO;2-V>CrossRefGoogle Scholar
Gilman, J. W.Awad, W. H.Davis, R. D.Shields, J.Haris, R. H.David, C.Morgan, A. B.Sutto, T. E.Callahan, J.Trulove, P. C.DeLong, H. C.Polymer/layered silicate nanocomposites from thermally stable trialkylimidazolium-treated montmorilloniteChemistry Materials 14 2002 3776CrossRefGoogle Scholar
Ha, J. U.Xanthos, M.Functionalization of nanoclays with ionic liquids for polypropylene compositesPolymer Composites 30 2008 534CrossRefGoogle Scholar
Ha, J. U.Xanthos, M.Novel modifiers for layered double hydroxides and their effects on the properties of polylactic acid compositesApplied Clay Science 47 2010 303CrossRefGoogle Scholar
Huddleston, J. G.Visser, A. E.Reichert, M. W.Willauer, H. D.Broker, G. A.Rogers, R. D.Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cationGreen Chemistry 3 2001 156CrossRefGoogle Scholar
Howlett, P. C.Zhang, S.Macfarlane, D. R.Forsyth, M.An investigation of a phosphinate-based ionic liquid for corrosion protection of magnesium alloy AZ31Australian Journal of Chemistry 60 2007 43CrossRefGoogle Scholar
Kim, N. H.Malhotra, S. V.Xanthos, M.Modification of cationic nanoclays with ionic liquidsMicroporous Mesoporous Materials 96 2006 29CrossRefGoogle Scholar
Kamena, K.Nanoclays and their emerging marketsFunctional Fillers for PlasticsXanthos, M.WeinheimWiley-VCH 2010 177CrossRefGoogle Scholar
Kyowa Chemical Industryhttp://www.kyowa-chem.co.jp/indexe.html 2008
Linares, C. F.Brikgi, M.Interaction between antimicrobial drugs and antacid based on cancrinite-type zeoliteMicroporous Mesoporous Materials 96 2006 141CrossRefGoogle Scholar
Modesti, M.Lorenzetti, A.Bon, D.Besco, S.Polymer Degradation and Stability 91 2006 672CrossRef
Mohanty, A.The future of nanomaterialsProceedings of Pira International ConferenceMiami, FLPira International 2005Google Scholar
Morawiec, J.Pawlak, A.Slouf, M.Galeski, A.Piorkowska, E.Krasnikowa, K.European Polymer Journal 41 2005 1115CrossRef
Okada, A.Fukushima, Y.Kawasumi, M.Inagaki, S.Usuki, A.Sugiyama, S.Kurauchi, T.Kamigaito, O.Composite Material and Process for Manufacturing Same 1988
Ogata, N.Kawakage, S.Ogihara, T.Poly(vinyl alcohol) clay and poly(ethylene oxide) clay blend prepared using water as solventJournal of Applied Polymer Science 66 1997 5733.0.CO;2-W>CrossRefGoogle Scholar
Park, K.Xanthos, M.A study on the degradation of polylactic acid in the presence of phosphonium ionic liquidsPolymer Degradation and Stability 92 2009 1350Google Scholar
Patel, S. H.Processing aidsFunctional Fillers for PlasticsXanthos, M.WeinheimWiley–VCH 2010Google Scholar
Paul, M. A.Alexandre, M.Degee, P.Henrist, C.Rulmont, A.Dubois, P.New nanocomposites materials based on plasticized poly(l-lactide) and organo-modified montmorillonites: Thermal and morphological studyPolymer 44 2003 443CrossRefGoogle Scholar
Pavan, P. C.Crepaldi, E. L.Valim, J. B.Sorption of anionic surfactants on layered double hydroxidesJournal of Colloid and Interface Science 229 2000 346CrossRefGoogle ScholarPubMed
Rahman, M.Brazel, C. S.Effectiveness of phosphonium, ammonium and imidazolium based ionic liquids as plasticizers for poly(vinyl chloride): Thermal and ultraviolet stabilityPolymeric Preprints (American Chemical Society Division of Polymer Chemistry 45 2004 301Google Scholar
Scott, M. P.Benton, M. G.Rahman, M.Brazel, C. S.Ionic Liquids as Green Solvents: Progress and ProspectsWashington, DCAmerican Chemical Society 2003Google Scholar
Sinha Ray, S.Okamoto, M.Polymer/layered silicate nanocomposites: A review from preparation to processingProgress in Polymer Science 28 2003 1539CrossRefGoogle Scholar
Stoeffler, K.Lafleur, P. G.Denault, J.Effect of intercalating agents on clay dispersion and thermal properties in polyethylene/montmorillonite nanocompositesPolymer Engineering and Science 48 2008 1449CrossRefGoogle Scholar
Stoeffler, K.Lafleur, P. G.Denault, J. 2006 263
Vaia, R. A.Giannelis, E. P.Lattice model of polymer melt intercalation in organically modified layered silicatesMacromolecules 30 1997 7990CrossRefGoogle Scholar
Weyershausen, B.Lehmann, K.Industrial application of ionic liquids as performance additivesGreen Chemistry 7 2005 15CrossRefGoogle Scholar
Xanthos, M.Polymers and polymer compositesFunctional Fillers for PlasticsXanthos, M.WeinheimWiley–VCH 2010CrossRefGoogle Scholar
Yano, K.Usuki, A.Okada, A.Kurauchi, T.Kamigaito, O.Synthesis and properties of polyimide–clay hybridJournal of Polymer Science, Part A: Polymer Chemistry 31 1993 2493CrossRefGoogle Scholar
Zhao, H.Malhotra, S. V.Applications of ionic liquids in organic synthesisAldrichimica Acta 35 2007 75Google Scholar
Zhou, Q.Xanthos, M.Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactidesPolymer Degradation and Stability 94 2009 327CrossRefGoogle Scholar
Zhu, L.Xanthos, M.Effects of process conditions and mixing protocols on structure of extruded polypropylene nanocompositesJournal of Applied Polymer Science 93 2004 1891CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×