Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T06:24:40.683Z Has data issue: false hasContentIssue false

Part I - Biological control theory: past and present

Published online by Cambridge University Press:  13 August 2009

Bradford A. Hawkins
Affiliation:
University of California, Irvine
Howard V. Cornell
Affiliation:
University of Delaware
Get access

Summary

The need to provide a conceptual foundation for biological control to support its empirical basis was realized by early workers. Indeed, the spectacular successes achieved by some early biological control projects directly stimulated the development of host–parasitoid theory in the 1930s. This legacy continues to the present, and population dynamic theory generated 60 years ago continues to form much of the theoretical basis of biological control. In Chapter 1, Berryman provides a cogent review of the historical development of ecological theory as it relates to biological control, focusing on discrete-time (difference) models that best describe systems in which the insects reproduce seasonally. Since biological control at its best is permanent and stable (in the sense that fluctuations in pest densities are heavily constrained over large geographic areas), the notion of ‘regulation’ is deeply ingrained in biological control theory. Berryman discusses regulation in the context of control theory and ecological engineering, engineering principles that share a large number of attributes with standard population dynamic theory. Although some biological control workers may be uncomfortable with the application of mechanical constructs to biological systems, all will readily recognize the overlap between the underlying principles of control theory and ecological theory. Perhaps fewer will be familiar with the state of predator–prey theory. An increasingly intense debate has been developing in recent years concerning whether predator–prey dynamics is best described by the long-standing ‘prey–dependent’ models or by ‘ratio-dependent’ models.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×