Skip to main content Accessibility help
  • Print publication year: 2015
  • Online publication date: April 2015

Chapter 20 - Tumor microenvironment: blood vascular system in cancer metastasis

from Part 4 - Functional networks of events that modulate phenotypic manifestation of cancer


1 Langley, R.R. and Fidler, I.J. 2007. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis, Endocr Rev, 28: 297–321.
2 Woodhouse, E.C., Chuaqui, R.F. and Liotta, L.A. 1997. General mechanisms of metastasis, Cancer, 80: 1529–1537.
3 Singh, R.K. and Fidler, I.J. 1996. Regulation of tumor angiogenesis by organ-specific cytokines, Curr Top Microbiol Immunol, 213: 1–11.
4 Hart, I.R. 1982. “Seed and soil” revisited: mechanisms of site-specific metastasis, Cancer Metastasis Rev, 1: 5–16.
5 Tarin, D., Price, J.E., Kettlewell, M.G., et al. 1984. Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts, Cancer Res, 44: 3584–3592.
6 Fidler, I.J. 1990. Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture, Cancer Res, 50: 6130–6138.
7 Baker, C.H., Kedar, D., McCarty, M.F., et al. 2002. Blockade of epidermal growth factor receptor signaling on tumor cells and tumor-associated endothelial cells for therapy of human carcinomas, Am J Pathol, 161: 929–938.
8 Paget, S. 1989. The distribution of secondary growths in cancer of the breast. 1889, Cancer Metastasis Rev, 8: 98–101.
9 Rusciano, D. and Burger, M.M. 1992. Why do cancer cells metastasize into particular organs? Bioessays, 14: 185–194.
10 Weiss, L. 1992. Comments on hematogenous metastatic patterns in humans as revealed by autopsy, Clin Exp Metastasis, 10: 191–199.
11 Chambers, A.F., Groom, A.C. and MacDonald, I.C. 2002. Dissemination and growth of cancer cells in metastatic sites, Nat Rev Cancer, 2: 563–572.
12 Orr, F.W. and Wang, H.H. 2001. Tumor cell interactions with the microvasculature: a rate-limiting step in metastasis, Surg Oncol Clin N Am, 10: 357–381.
13 Thorlacius, H., Prieto, J., Raud, J., et al. 1997. Tumor cell arrest in the microcirculation: lack of evidence for a leukocyte-like rolling adhesive interaction with vascular endothelium in vivo, Clin Immunol Immunopathol, 83: 68–76.
14 Pauli, B.U. and Knudson, W. 1988. Tumor invasion: a consequence of destructive and compositional matrix alterations, Hum Pathol, 19: 628–639.
15 Pauli, B.U., Augustin-Voss, H.G., el-Sabban, M.E., Johnson, R.C. and Hammer, D.A. 1990. Organ preference of metastasis. The role of endothelial cell adhesion molecules, Cancer Metastasis Rev, 9: 175–189.
16 Nicolson, G.L. 1991. Molecular mechanisms of cancer metastasis: tumor and host properties and the role of oncogenes and suppressor genes, Curr Opin Oncol, 3: 75–92.
17 Rajotte, D., Arap, W., Hagedorn, M., et al. 1998. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display, J Clin Invest, 102: 430–437.
18 Pauli, B.U. and Lee, C.L. 1988. Organ preference of metastasis. The role of organ-specifically modulated endothelial cells, Lab Invest, 58: 379–387.
19 Auerbach, R., Lu, W.C., Pardon, E., et al. 1987. Specificity of adhesion between murine tumor cells and capillary endothelium: an in vitro correlate of preferential metastasis in vivo, Cancer Res, 47: 1492–1496.
20 Auerbach, R. 1988. Patterns of tumor metastasis: organ selectivity in the spread of cancer cells, Lab Invest, 58: 361–364.
21 Nicolson, G.L. 1991. Tumor and host molecules important in the organ preference of metastasis, Semin Cancer Biol, 2: 143–154.
22 Nicolson, G.L. 1991. Gene expression, cellular diversification and tumor progression to the metastatic phenotype, Bioessays, 13: 337–342.
23 Johnson, R.C., Augustin-Voss, H.G., Zhu, D.Z. and Pauli, B.U. 1991. Endothelial cell membrane vesicles in the study of organ preference of metastasis, Cancer Res, 51: 394–399.
24 Gunthert, U., Hofmann, M., Rudy, W., et al. 1991. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells, Cell, 65: 13–24.
25 Zetter, B.R. 1997. On target with tumor blood vessel markers, Nat Biotechnol, 15: 1243–1244.
26 McCarthy, J.B., Skubitz, A.P., Iida, J., et al. 1991. Tumor cell adhesive mechanisms and their relationship to metastasis, Semin Cancer Biol, 2: 155–167.
27 Zetter, B.R. 1990. The cellular basis of site-specific tumor metastasis, N Engl J Med, 322: 605–612.
28 Fidler, I.J. 1973. The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis, Eur J Cancer, 9: 223–227.
29 Palumbo, J.S., Talmage, K.E., Massari, J.V., et al. 2007. Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and -independent mechanisms, Blood, 110: 133–141.
30 Cotmore, S.F. and Carter, R.L. 1973. Mechanisms of enhanced intrahepatic metastasis in surfactant-treated hamsters: an electron microscopy study, Int J Cancer, 11: 725–738.
31 Crissman, J.D., Hatfield, J., Schaldenbrand, M., Sloane, B.F. and Honn, K.V. 1985. Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study, Lab Invest, 53: 470–478.
32 Gasic, G.J., Gasic, T.B. and Stewart, C.C. 1968. Antimetastatic effects associated with platelet reduction, Proc Natl Acad Sci USA, 61: 46–52.
33 Karpatkin, S., Pearlstein, E., Ambrogio, C. and Coller, B.S. 1988. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo, J Clin Invest, 81: 1012–1019.
34 Camerer, E., Qazi, A.A., Duong, D.N., et al. 2004. Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis, Blood, 104: 397–401.
35 Honn, K.V., Tang, D.G. and Crissman, J.D. 1992. Platelets and cancer metastasis: a causal relationship? Cancer Metastasis Rev, 11: 325–351.
36 Honn, K.V., Tang, D.G., Grossi, I.M., et al. 1994. Enhanced endothelial cell retraction mediated by 12(S)-HETE: a proposed mechanism for the role of platelets in tumor cell metastasis, Exp Cell Res, 210: 1–9.
37 Burdick, M.M. and Konstantopoulos, K. 2004. Platelet-induced enhancement of LS174T colon carcinoma and THP-1 monocytoid cell adhesion to vascular endothelium under flow, Am J Physiol Cell Physiol, 287: C539–C547.
38 Palumbo, J.S., Talmage, K.E., Massari, J.V., et al. 2005. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells, Blood, 105: 178–185.
39 Borsig, L., Wong, R., Hynes, R.O., Varki, N.M. and Varki, A. 2002. Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis, Proc Natl Acad Sci USA, 99: 2193–2198.
40 Im, J.H., Fu, W., Wang, H., et al. 2004. Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation, Cancer Res, 64: 8613–8619.
41 Palumbo, J.S., Potter, J.M., Kaplan, L.S., et al. 2002. Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice, Cancer Res, 62: 6966–6972.
42 Palumbo, J.S., Kombrinck, K.W., Drew, A.F., et al. 2000. Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells, Blood, 96: 3302–3309.
43 Nierodzik, M.L., Chen, K., Takeshita, K., et al. 1998. Protease-activated receptor 1 (PAR-1) is required and rate-limiting for thrombin-enhanced experimental pulmonary metastasis, Blood, 92: 3694–3700.
44 Amirkhosravi, A., Meyer, T., Chang, J.Y., et al. 2002. Tissue factor pathway inhibitor reduces experimental lung metastasis of B16 melanoma, Thromb Haemost, 87: 930–936.
45 Jain, R.K. 2005. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy, Science, 307: 58–62.
46 Wyckoff, J.B., Jones, J.G., Condeelis, J.S. and Segall, J.E. 2000. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor, Cancer Res, 60: 2504–2511.
47 Folkman, J. 1992. The role of angiogenesis in tumor growth, Semin.Cancer Biol, 3: 65–71.
48 Blouw, B., Song, H., Tihan, T., et al. 2003. The hypoxic response of tumors is dependent on their microenvironment, Cancer Cell, 4: 133–146.
49 Alby, L. and Auerbach, R. 1984. Differential adhesion of tumor cells to capillary endothelial cells in vitro, Proc Natl Acad Sci USA, 81: 5739–5743.
50 Burdick, M.M., McCaffery, J.M., Kim, Y.S., Bochner, B.S. and Konstantopoulos, K. 2003. Colon carcinoma cell glycolipids, integrins, and other glycoproteins mediate adhesion to HUVECs under flow, Am J Physiol Cell Physiol, 284: C977–C987.
51 Dimitroff, C.J., Lechpammer, M., Long-Woodward, D. and Kutok, J.L. 2004. Rolling of human bone-metastatic prostate tumor cells on human bone marrow endothelium under shear flow is mediated by E-selectin, Cancer Res, 64: 5261–5269.
52 Kannagi, R., Izawa, M., Koike, T., Miyazaki, K. and Kimura, N. 2004. Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis, Cancer Sci, 95: 377–384.
53 Renkonen, R., Mattila, P., Majuri, M.L., et al. 1997. In vitro experimental studies of sialyl Lewis x and sialyl Lewis a on endothelial and carcinoma cells: crucial glycans on selectin ligands, Glycoconj J, 14: 593–600.
54 Witz, I.P. 2006. Tumor-microenvironment interactions: the selectin-selectin ligand axis in tumor-endothelium cross talk, Cancer Treat Res, 130: 125–140.
55 Ito, K., Ye, C.L., Hibi, K., et al. 2001. Paired tumor marker of soluble E-selectin and its ligand sialyl Lewis A in colorectal cancer, J Gastroenterol, 36: 823–829.
56 Glinskii, O.V., Turk, J.R., Pienta, K.J., Huxley, V.H. and Glinsky, V.V. 2004. Evidence of porcine and human endothelium activation by cancer-associated carbohydrates expressed on glycoproteins and tumour cells, J Physiol, 554: 89–99.
57 Okahara, H., Yagita, H., Miyake, K. and Okumura, K. 1994. Involvement of very late activation antigen 4 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) in tumor necrosis factor alpha enhancement of experimental metastasis, Cancer Res, 54: 3233–3236.
58 Langley, R.R., Carlisle, R., Ma, L., et al. 2001. Endothelial expression of vascular cell adhesion molecule-1 correlates with metastatic pattern in spontaneous melanoma, Microcirculation, 8: 335–345.
59 St, C.B., Rago, C., Velculescu, V., et al. 2000. Genes expressed in human tumor endothelium, Science, 289: 1197–1202.
60 Yokoi, K., Thaker, P.H., Yazici, S., et al. 2005. Dual inhibition of epidermal growth factor receptor and vascular endothelial growth factor receptor phosphorylation by AEE788 reduces growth and metastasis of human colon carcinoma in an orthotopic nude mouse model, Cancer Res, 65: 3716–3725.
61 Hirschi, K.K. and D'Amore, P.A. 1996. Pericytes in the microvasculature, Cardiovasc Res, 32: 687–698.
62 Jain, R.K. and Booth, M.F. 2003. What brings pericytes to tumor vessels? J Clin Invest, 112: 1134–1136.
63 Lindahl, P., Hellstrom, M., Kalen, M. and Betsholtz, C. 1998. Endothelial-perivascular cell signaling in vascular development: lessons from knockout mice, Curr Opin Lipidol, 9: 407–411.
64 Wesseling, P., Schlingemann, R.O., Rietveld, F.J., et al. 1995. Early and extensive contribution of pericytes/vascular smooth muscle cells to microvascular proliferation in glioblastoma multiforme: an immuno-light and immuno-electron microscopic study, J Neuropathol Exp Neurol, 54: 304–310.
65 Xian, X., Hakansson, J., Stahlberg, A., et al. 2006. Pericytes limit tumor cell metastasis, J Clin Invest, 116: 642–651.
66 Allt, G. and Lawrenson, J.G. 2001. Pericytes: cell biology and pathology, Cells Tissues Organs, 169: 1–11.
67 Crissman, J.D., Hatfield, J.S., Menter, D.G., Sloane, B. and Honn, K.V. 1988. Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix, Cancer Res, 48: 4065–4072.
68 Kramer, R.H., Gonzalez, R. and Nicolson, G.L. 1980. Metastatic tumor cells adhere preferentially to the extracellular matrix underlying vascular endothelial cells, Int J Cancer, 26: 639–645.
69 Nicolson, G.L., Irimura, T., Nakajima, M. and Estrada, J. 1983. Metastatic cell attachment to and invasion of vascular endothelium and its underlying basal lamina using endothelial cell monolayers, Symp Fundam Cancer Res, 36: 145–167.
70 Baluk, P., Morikawa, S., Haskell, A., Mancuso, M. and McDonald, D.M. 2003. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors, Am J Pathol, 163: 1801–1815.
71 Liotta, L.A. 1986. Tumor invasion and metastases – role of the extracellular matrix: Rhoads Memorial Award lecture, Cancer Res, 46: 1–7.
72 Crissman, J.D., Hatfield, J.S., Menter, D.G., Sloane, B. and Honn, K.V. 1988. Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix, Cancer Res, 48: 4065–4072.
73 Yahalom, J., Eldor, A., Biran, S., Fuks, Z. and Vlodavsky, I. 1985. Platelet-tumor cell interaction with the subendothelial extracellular matrix: relationship to cancer metastasis, Radiother Oncol, 3: 211–225.
74 Hicklin, D.J. and Ellis, L.M. 2005. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis, J Clin Oncol, 23: 1011–1027.
75 Spannuth, W.A., Sood, A.K. and Coleman, R.L. 2008. Angiogenesis as a strategic target for ovarian cancer therapy, Nat Clin Pract Oncol, 5: 194–204.
76 Folkman, J. 2007. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov, 6: 273–286.
77 Folkman, J. 2006. Angiogenesis, Annu Rev Med, 57: 1–18.
78 Jain, R.K. and Booth, M.F. 2003. What brings pericytes to tumor vessels? J Clin Invest, 112: 1134–1136.
79 Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. and Hanahan, D. 2003. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors, J Clin Invest, 111: 1287–1295.
80 Lee, D.Y., Park, K., Kim, S.K., et al. 2008. Antimetastatic effect of an orally active heparin derivative on experimentally induced metastasis, Clin Cancer Res, 14: 2841–2849.
81 Presta, M., Leali, D., Stabile, H., et al. 2003. Heparin derivatives as angiogenesis inhibitors, Curr Pharm Des, 9: 553–566.
82 Pisano, C., Aulicino, C., Vesci, L., et al. 2005. Undersulfated, low-molecular-weight glycol-split heparin as an antiangiogenic VEGF antagonist, Glycobiology, 15: 1C–6C.
83 Fuster, M.M. and Esko, J.D. 2005. The sweet and sour of cancer: glycans as novel therapeutic targets, Nat Rev Cancer, 5: 526–542.
84 Kobayashi, K., Matsumoto, S., Morishima, T., Kawabe, T. and Okamoto, T. 2000. Cimetidine inhibits cancer cell adhesion to endothelial cells and prevents metastasis by blocking E-selectin expression, Cancer Res, 60: 3978–3984.
85 Eaton, D. and Hawkins, R.E. 2002. Cimetidine in colorectal cancer: are the effects immunological or adhesion-mediated? Br J Cancer, 86: 159–160.
86 Gomes, N., Vassy, J., Lebos, C., et al. 2004. Breast adenocarcinoma cell adhesion to the vascular subendothelium in whole blood and under flow conditions: effects of alphavbeta3 and alphaIIbbeta3 antagonists, Clin Exp Metastasis, 21: 553–561.
87 Steeg, P.S. and Theodorescu, D. 2008. Metastasis: a therapeutic target for cancer, Nat Clin Pract Oncol, 5: 206–219.