Skip to main content Accessibility help
×
Home
  • Print publication year: 2015
  • Online publication date: April 2015

Chapter 7 - Genomic instability and carcinogenesis

from Part 3 - Events responsible for aberrant genetic and epigenetic codes in cancer

Related content

Powered by UNSILO

References

1. Flemming W. 1882. Zell-substanz, Kern und Zelltheilung. Leipzig: Verlag von F.C.W. Vogel
2. Hansemann D. 1890. Ueber asymmetrische Zelltheilung in Epithelkrebsen und deren biologische Bedeutung. Virchows Archiv 119: 299–326.
3. Hardy PA, Zacharias H. 2005. Reappraisal of the Hansemann–Boveri hypothesis on the origin of tumors. Cell Biol Int 29:983–92.
4. Boveri T. 1904. Ergebnisse uber die Konstitution der chromatischen Substanz des Zellkerns. Jena: Verlag von Gustav Fischer.
5. Vogelstein B, Kinzler KW. 2004. Cancer genes and the pathways they control. Nat Med 10:789–99.
6. Tjio JH, Levan A. 1956. The chromosome number of man. Hereditas 42: 1–6.
7. Caspersson T, Zech L, Johansson C. 1970. Differential binding of alkylating fluorochromes in human chromosomes. Exp Cell Res 60: 315–19.
8. Schweizer D, Ambros P, Andrle M. 1978. Modification of DAPI banding on human chromosomes by prestaining with a DNA-binding oligopeptide antibiotic, distamycin A. Exp Cell Res 111: 327–32.
9. Mitelman F, Johansson B, Mertens F. 2008 Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman.
10. Bauman JG, Wiegant J, Borst P, van Duijn P. 1980. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochrome labelled RNA. Exp Cell Res 128: 485–90.
11. Loeb LA, Springgate CF, Battula N. 1974. Errors in DNA replication as a basis of malignant changes. Cancer Res 34:2311–21.
12. Sanger F, Coulson AR. 1975. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94: 441–8.
13. Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–7.
14. Reddy EP, Reynolds RK, Santos E, Barbacid M. 1982. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300: 149–52.
15. Kallioniemi A, Kallioniemi OP, Sudar D, et al. 1992. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258: 818–21.
16. Pinkel D, Segraves R, Sudar D, et al. 1998. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207–11.
17. Wang TL, Maierhofer C, Speicher MR, et al. 2002. Digital karyotyping. Proc Natl Acad Sci USA 99: 16156–61.
18. Imoto H, Hirotsune S, Muramatsu M, et al. 1994. Direct determination of NotI cleavage sites in the genomic DNA of adult mouse kidney and human trophoblast using whole-range restriction landmark genomic scanning. DNA Res 1: 239–43.
19. Aston C, Mishra B, Schwartz DC. 1999. Optical mapping and its potential for large-scale sequencing projects. Trends Biotechnol 17: 297–302.
20. Lisitsyn N, Wigler M. 1993. Cloning the differences between two complex genomes. Science 259: 946–51.
21. Wadman M. 2008. James Watson's genome sequenced at high speed. Nature 452: 788.
22. Wang J, Wang W, Li R, et al. 2008. The diploid genome sequence of an Asian individual. Nature 456: 60–5.
23. Wheeler DA, Srinivasan M, Egholm M, et al. 2008. The complete genome of an individual by massively parallel DNA sequencing. Nature 452: 872–6.
24. Sjoblom T, Jones S, Wood LD, et al. 2006. The consensus coding sequences of human breast and colorectal cancers. Science 314: 268–74.
25. Chng WJ. 2007. Limits to the Human Cancer Genome Project? Science 315: 762; author reply 4–5.
26. Strauss BS. 2007. Limits to the Human Cancer Genome Project? Science 315: 762–4; author reply 4–5.
27. Greenman C, Stephens P, Smith R, et al. 2007. Patterns of somatic mutation in human cancer genomes. Nature 446: 153–8.
28. Cancer Genome Atlas Research Network. 2008. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–8.
29. Parsons DW, Jones S, Zhang X, et al. 2008. An integrated genomic analysis of human glioblastoma multiforme. Science 321: 1807–12.
30. Jones S, Zhang X, Parsons DW, et al. 2008. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321: 1801–6.
31. Wood LD, Parsons DW, Jones S, et al. 2007. The genomic landscapes of human breast and colorectal cancers. Science 318: 1108–13.
32. Xu X, Wagner KU, Larson D, et al. 1999. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 22: 37–43.
33. Mitelman F, Mertens F, Johansson B. 1997. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nat Genet 15 Spec No: 417–74.
34. Yunis JJ. 1983. The chromosomal basis of human neoplasia. Science 221: 227–36.
35. Mitelman F, Johansson B, Mertens F. 2007. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7: 233–45.
36. Storchova Z, Kuffer C. 2008. The consequences of tetraploidy and aneuploidy. J Cell Sci 121: 3859–66.
37. Redon R, Ishikawa S, Fitch KR, et al. 2006. Global variation in copy number in the human genome. Nature 444: 444–54.
38. Iafrate AJ, Feuk L, Rivera MN, et al. 2004. Detection of large-scale variation in the human genome. Nat Genet 36: 949–51.
39. Korbel JO, Urban AE, Affourtit JP, et al. 2007. Paired-end mapping reveals extensive structural variation in the human genome. Science 318: 420–6.
40. Campbell PJ, Stephens PJ, Pleasance ED, et al. 2008. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 40:722–9.
41. Tomlins SA, Rhodes DR, Perner S, et al. 2005. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310: 644–8.
42. Soda M, Choi YL, Enomoto M, et al. 2007. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448: 561–6.
43. Tomlins SA, Laxman B, Dhanasekaran SM, et al. 2007. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448: 595–9.
44. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. 1987. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–82.
45. Slamon DJ, Godolphin W, Jones LA, et al. 1989. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–12.
46. Hudis CA. 2007. Trastuzumab: mechanism of action and use in clinical practice. N Engl J Med 357: 39–51.
47. Loeb LA. 1991. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51: 3075–9.
48. Loeb LA, Loeb KR, Anderson JP. 2003. Multiple mutations and cancer. Proc Natl Acad Sci USA 100: 776–81.
49. Lengauer C, Kinzler KW, Vogelstein B. 1998. Genetic instabilities in human cancers. Nature 396: 643–9.
50. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. 1993. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–61.
51. Fishel R, Lescoe MK, Rao MR, et al. 1993. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75: 1027–38.
52. Hanks S, Coleman K, Reid S, et al. 2004. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 36: 1159–61.
53. Lengauer C, Kinzler KW, Vogelstein B. 1997. Genetic instability in colorectal cancers. Nature 386: 623–7.
54. Shih IM, Zhou W, Goodman SN, et al. 2001. Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res 61: 818–22.
55. Vilar E, Scaltriti M, Balmana J, et al. 2008. Microsatellite instability due to hMLH1 deficiency is associated with increased cytotoxicity to irinotecan in human colorectal cancer cell lines. Br J Cancer 99: 1607–12.
56. Ikediobi ON, Davies H, Bignell G, et al. 2006. Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther 5: 2606–12.
57. Watson P, Vasen HF, Mecklin JP, et al. 2008. The risk of extra-colonic, extra-endometrial cancer in the Lynch syndrome. Int J Cancer 123: 444–9.
58. Rajagopalan H, Nowak MA, Vogelstein B, Lengauer C. 2003. The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer 3: 695–701.
59. Yoon DS, Wersto RP, Zhou W, et al. 2002. Variable levels of chromosomal instability and mitotic spindle checkpoint defects in breast cancer. Am J Pathol 161: 391–7.
60. Albertson DG, Collins C, McCormick F, Gray JW. 2003. Chromosome aberrations in solid tumors. Nat Genet 34: 369–76.
61. Waldman FM, DeVries S, Chew KL, et al. 2000. Chromosomal alterations in ductal carcinomas in situ and their in situ recurrences. J Natl Cancer Inst 92: 313–20.
62. Lingle WL, Barrett SL, Negron VC, et al. 2002. Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 99: 1978–83.
63. Rajagopalan H, Jallepalli PV, Rago C, et al. 2004. Inactivation of hCDC4 can cause chromosomal instability. Nature 428: 77–81.
64. Shin HJ, Baek KH, Jeon AH, et al. 2003. Dual roles of human BubR1, a mitotic checkpoint kinase, in the monitoring of chromosomal instability. Cancer Cell 4: 483–97.
65. Williams BR, Prabhu VR, Hunter KE, et al. 2008. Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322: 703–9.
66. Fearon ER, Vogelstein B. 1990. A genetic model for colorectal tumorigenesis. Cell 61: 759–67.
67. Vogelstein B, Kinzler KW. 1993. The multistep nature of cancer. Trends Genet 9: 138–41.
68. Li L, McCormack AA, Nicholson JM, et al. 2009. Cancer-causing karyotypes: chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function. Cancer Genet Cytogenet 188: 1–25.
69. Weaver BA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW. 2007. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11: 25–36.
70. Ganem NJ, Storchova Z, Pellman D. 2007. Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17: 157–62.
71. Fujiwara T, Bandi M, Nitta M, et al. 2005. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437: 1043–7.
72. Mayer VW, Aguilera A. 1990. High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutat Res 231: 177–86.
73. Storchova Z, Pellman D. 2004. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 5: 45–54.
74. Andreassen PR, Lohez OD, Lacroix FB, Margolis RL. 2001. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol Biol Cell 12:1315–28.
75. Wong C, Stearns T. 2005. Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC Cell Biol 6: 6.
76. Hackett JA, Feldser DM, Greider CW. 2001. Telomere dysfunction increases mutation rate and genomic instability. Cell 106:275–86.
77. Myung K, Chen C, Kolodner RD. 2001. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411: 1073–6.
78. O'Hagan RC, Chang S, Maser RS, et al. 2002. Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell 2: 149–55.
79. Counter CM, Hirte HW, Bacchetti S, Harley CB. 1994. Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci USA 91: 2900–4.
80. Farazi PA, Glickman J, Horner J, Depinho RA. 2006. Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression. Cancer Res 66: 4766–73.
81. Nigg EA. 2002. Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2: 815–25.
82. Kleylein-Sohn J, Westendorf J, Le Clech M, et al. 2007. Plk4-induced centriole biogenesis in human cells. Dev Cell 13: 190–202.
83. Foulds L. 1958. The natural history of cancer. J Chronic Dis 8: 2–37.
84. Knudson AG, Jr. 1971. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68: 820–3.
85. Barrett MT, Sanchez CA, Prevo LJ, et al. 1999. Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Genet 22: 106–9.
86. Hahn WC, Counter CM, Lundberg AS, et al. 1999. Creation of human tumour cells with defined genetic elements. Nature 400: 464–8.
87. Land H, Parada LF, Weinberg RA. 1983. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–602.
88. Boehm JS, Hession MT, Bulmer SE, Hahn WC. 2005. Transformation of human and murine fibroblasts without viral oncoproteins. Mol Cell Biol 25: 6464–74.
89. Nowell PC. 1976. The clonal evolution of tumor cell populations. Science 194: 23–8.
90. Hahn WC, Weinberg RA. 2002. Rules for making human tumor cells. N Engl J Med 347:1593–603.
91. Michel LS, Liberal V, Chatterjee A, et al. 2001. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409: 355–9.
92. Li Y, Benezra R. 1996. Identification of a human mitotic checkpoint gene: hsMAD2. Science 274: 246–8.
93. Jallepalli PV, Waizenegger IC, Bunz F, et al. 2001. Securin is required for chromosomal stability in human cells. Cell 105: 445–57.