Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-28T19:22:02.756Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  22 March 2018

Stefano Boccaletti
Affiliation:
Consiglio Nazionale delle Ricerche (CNR), Rome
Alexander N. Pisarchik
Affiliation:
Technical University of Madrid
Charo I. del Genio
Affiliation:
University of Warwick
Andreas Amann
Affiliation:
University College Cork
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Synchronization
From Coupled Systems to Complex Networks
, pp. 237 - 251
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarbanel, H. D. I., Rulkov, N. F., and Sushchik, M. M. 1996. Generalized synchronization of chaos: The auxiliary system approach. Phys. Rev. E, 53(5), 4528–4535.CrossRefGoogle ScholarPubMed
Abrams, D. M. and Strogatz, S. H. 2004. Chimera states for coupled oscillators. Phys. Rev. Lett., 93, 174102.CrossRefGoogle ScholarPubMed
Abrams, D. M. and Strogatz, S. H. 2006. Chimera states in a ring of nonlocally coupled oscillators. Int. J. Bif. Chaos, 16, 21–37.CrossRefGoogle Scholar
Abrams, D. M., Mirollo, R., Strogatz, S. H., and Wiley, D. A. 2008. Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett., 101, 084103.CrossRefGoogle ScholarPubMed
Acebrón, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F., and Spigler, R. 2005. Th. Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 77, 137–185.CrossRefGoogle Scholar
Adler, R. 1946. A study of locking phenomena in oscillators. Proceedings of the I.R.E. and Waves and Electrons, 34, 351–357.Google Scholar
Afraimovich, V. S., Verichev, N. N., and Rabinovich, M. I. 1986. Stochastic synchronization of oscillation in dissipative systems. Radiophys. Quant. Electron., 29, 795–803.CrossRefGoogle Scholar
Aizawa, Y. 1976. Synergetic approach to the phenomena of mode-locking in nonlinear systems. Progr. Theor. Phys., 56, 703–716.CrossRefGoogle Scholar
Albert, R. and Barabási, A.-L. 2002. Statistical mechanics of complex networks. Rev. Mod. Phys., 74, 47–97.CrossRefGoogle Scholar
Alexander, J. C., Yorke, J. A., You, Z., and Kan, I. 1992. Riddled basins. Int. J. Bif. Chaos, 2, 795–813.CrossRefGoogle Scholar
Amann, A. and Hooton, E. W. 2013. An odd-number limitation of extended time-delayed feedback control in autonomous systems. Phil. Trans. R. Soc. A, 371, 20120463.CrossRefGoogle ScholarPubMed
Amann, A., Schöll, E., and Just, W. 2007. Some basic remarks on eigenmode expansions of time-delaydynamics. Physica A, 373, 191–202.CrossRefGoogle Scholar
Amit, D. J. 1995. The Hebbian paradigm reintegrated: Local reverberations as internal representations. Behav. Brain Sci., 18, 617–657.CrossRefGoogle Scholar
Andronov, A. A. and Witt, A. A. 1930. Towards mathematical theory of capture. Arch. Electrotechnik (Berlin), 24, 99–110.Google Scholar
Anishchenko, V. S., Vadivasova, T. E., Kopeikin, A. S., Kurths, J., and Strelkova, G. I. 2001. Effect of noise on the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors. Phys. Rev. Lett., 87, 054101.CrossRefGoogle Scholar
Arecchi, F. T., Meucci, R., Puccioni, G., and Tredicce, J. 1982. Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser. Phys. Rev. Lett., 49, 1217–1220.CrossRefGoogle Scholar
Arecchi, F. T., Meucci, R., Allaria, E., Di Garbo, A., and Tsimring, L. S. 2002. Delayed self-synchronization in homoclinic chaos. Phys. Rev. E, 65, 046237.CrossRefGoogle ScholarPubMed
Argyris, A., Syvridis, D., Larger, L. et al. 2005. Chaos-based communications at high bit rates using commercial fibre-optic links. Phys. Rev. Lett., 438(7066), 343–346.Google ScholarPubMed
Arnéodo, A., Coullet, P., and Tresser, C. 1981. A possible new mechanism for the onset of turbulence. Phys. Lett. A, 81, 197–201.CrossRefGoogle Scholar
Arnold, V. I. 1974. Mathematical Methods of Classical Mechanics. Berlin: Springer-Verlag.Google Scholar
Aronson, D. G., Ermentrout, G. B., and Kopell, N. 1990. Amplitude response of coupled oscillators. Physica D, 41(3), 403–449.CrossRefGoogle Scholar
Ashwin, P. 2003. Synchronization from chaos. Nature, 422, 384–385.CrossRefGoogle ScholarPubMed
Ashwin, P. and Burylko, O. 2015. Weak chimeras in minimal networks of coupled phase oscillators. Chaos, 25(1), 013106.CrossRefGoogle ScholarPubMed
Astakhov, V., Shabunin, A., Uhm, W., and Kim, S. 2001. Multistability formation and synchronization loss in coupled Hénon maps: Two sides of the single bifurcational mechanism. Phys. Rev. E, 63, 056212.CrossRefGoogle ScholarPubMed
Atteneave, F. 1971. Multistability in perception. Scientific American, 225, 63–71.Google Scholar
Baker, G. L. and Gollub, J. P. 1996. Chaotic Dynamics: An Introduction. Second edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Baptista, M. S. 1998. Cryptography with chaos. Phys. Lett. A, 240, 50–54.CrossRefGoogle Scholar
Bar-Eli, K. 1985. On the stability of coupled chemical oscillators. Physica D, 14, 242–252.CrossRefGoogle Scholar
Barabási, A.-L. and Albert, R. 1999. Emergence of scaling in random networks. Science, 286, 509–512.Google ScholarPubMed
Barahona, M. and Pecora, L. M. 2002. Synchronization in small-world systems. Phys. Rev. Lett., 89, 054101.CrossRefGoogle ScholarPubMed
Basa, E. (ed.) 1990. Chaos in Brain Function. Springer Series in Brain Dynamics. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Bassler, K. E., del Genio, C. I., Erdös, P., Miklós, I., and Toroczkai, Z. 2015. Exact sampling of graphs with prescribed degree correlations. New J. Phys., 17, 083052.CrossRefGoogle Scholar
Bellomo, N., Bianca, C., and Delitala, M. 2009. Complexity analysis and mathematical tools towards the modelling of living systems. Phys. Life Revs., 6, 144–175.Google ScholarPubMed
Belykh, I., de Lange, E., and Hasler, M. 2005. Synchronization of bursting neurons: What matters in the network topology. Phys. Rev. Lett., 94, 188101.CrossRefGoogle ScholarPubMed
Bennet, M., Schatz, M. F., Rockwood, H., and K., Wiesenfeld. 2002. Huygens' clocks. Proc. R. Soc. Lond. A, 458, 563–579.Google Scholar
Bertram, M., Beta, C., Pollmann, M. et al. 2003. Pattern formation on the edge of chaos. Experiments with CO oxidation on a Pt(110) surface under global delayed feedback. Phys. Rev. E, 67, 036208.CrossRefGoogle ScholarPubMed
Bhattacharya, J. and Petsche, H. 2001. Enhanced phase synchrony in the electroencephalograph γ band for musicians while listening to music. Phys. Rev. E, 64, 012902.CrossRefGoogle ScholarPubMed
Bi, G. Q. and Poo, M. M. 1998. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci., 18, 10464.Google ScholarPubMed
Bi, H., Hu, X., Boccaletti, S. et al. 2016. Coexistence of quantized, time dependent, clusters in globally coupled oscillators. Phys. Rev. Lett., 117, 204101.CrossRefGoogle ScholarPubMed
Blasius, B., and Stone, L. 2000. Chaos and phase synchronization in ecological systems. Int. J. Bif. Chaos, 10, 2361–2380.CrossRefGoogle Scholar
Blasius, B., Huppert, A., and Stone, L. 1999. Complex dynamics and phase synchronization in spatially extended ecological systems. Nature, 399, 354–359.CrossRefGoogle ScholarPubMed
Bob, P. 2007. Chaos, brain and divided consciousness. Acta Univ. Carol. Med. Monogr., 153, 9–80.Google ScholarPubMed
Boccaletti, S. 2008. The Synchronized Dynamics of Complex Systems. Ámsterdam: Elsevier.CrossRefGoogle Scholar
Boccaletti, S., Pecora, L. M., and Pelaez, A. 2001. Unifying framework for synchronization of coupled dynamical systems. Phys. Rev. E, 63, 066219.CrossRefGoogle ScholarPubMed
Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., and Zhou, C. S. 2002. The synchronization of chaotic systems. Phys. Rep., 366, 1–101.CrossRefGoogle Scholar
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwanga, D.-U. 2006a. Complex networks: Structure and dynamics. Phys. Rep., 424, 175–308.CrossRefGoogle Scholar
Boccaletti, S., Hwang, D.-U., Chavez, M. et al. 2006b. Synchronization in dynamical networks: Evolution along commutative graphs. Phys. Rev. E, 74, 016102.CrossRefGoogle Scholar
Boccaletti, S., Bianconi, G., Criado, R. et al. 2014. The structure and dynamics of multilayer networks. Phys. Rep., 544, 1–122.CrossRefGoogle Scholar
Boccaletti, S., Almendral, J. A., Guan, S. et al. 2016. Explosive transitions in complex networks' structure and dynamics: percolation and synchronization. Phys. Rep., 660, 1–94.CrossRefGoogle Scholar
Bragard, J., Vidal, G., Mancini, H., Mendoza, C., and Boccaletti, S. 2007. Chaos suppression through asymmetric coupling. Chaos, 17, 043107.CrossRefGoogle ScholarPubMed
Brown, R. and Rulkov, N. F. 1997a. Designing a coupling that guarantees synchronization between identical chaotic systems. Phys. Rev. Lett., 78, 4189–4192.CrossRefGoogle Scholar
Brown, R. and Rulkov, N. F. 1997b. Synchronization of chaotic systems: Transverse stability of trajectories in invariant manifolds. Chaos, 7(3), 395–413.CrossRefGoogle Scholar
Brown, R., Rulkov, N. F., and Tracy, E. R. 1994. Modeling and synchronizing chaotic systems from time-series data. Phys. Rev. E, 49, 3784–3800.CrossRefGoogle ScholarPubMed
Brun, E., Derighetti, B.,Meier, D., Holzner, R., and Ravani,M. 1985. Observation of order and chaos in a nuclear spin-flip laser. J. Opt. Soc. Am. B, 2, 156–167.CrossRefGoogle Scholar
Bruno, L., Tosin, A., Tricerri, P., and Venuti, F. 2011. Non-local first-order modelling of crowd dynamics: A multidimensional framework with applications. Appl. Math. Mod., 35(1), 426–445.CrossRefGoogle Scholar
Buldú, J. M., Heil, T., Fisher, I., Torrent, M. C., and García-Ojaivo, J. 2006. Episodic synchronization via dynamic injection. Phys. Rev. Lett., 96, 024102.CrossRefGoogle ScholarPubMed
Buzsáki, G. (ed.) 2006. Rhythms of the Brain. New York: Oxford University Press.CrossRefGoogle Scholar
Buzsáki, G. and Chrobak, J. J. 1995. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol., 5(4), 504–510.CrossRefGoogle ScholarPubMed
Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., and Bonabeau, E. 2001. Self-Organization in Biological Systems. Princeton, NJ: Princeton University Press.Google Scholar
Canavier, C., Baxter, D., Clark, J., and Byrne, J. 1993. Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity. J. Neurophysiol., 69, 2252–2257.CrossRefGoogle Scholar
Cao, H. and Sanjuan, M. A. F. 2009. A mechanism for elliptic-like bursting and synchronization of bursts in a map-based neuron network. Cogn. Process., 10, S23.CrossRefGoogle Scholar
Carroll, T. L. 2001. Noise-resistant chaotic synchronization. Phys. Rev. E, 64, 015201.CrossRefGoogle ScholarPubMed
Castellano, C., Fortunato, S., and Loreto, V. 2009. Statistical physics of social dynamics. Rev. Mod. Phys., 81, 591–646.CrossRefGoogle Scholar
Chavez, M., Hwang, D.-U., Amann, A., Hentschel, H. G. E., and Boccaletti, S. 2005. Synchronization is enhanced in weighted complex networks. Phys. Rev. Lett., 94, 218701.CrossRefGoogle ScholarPubMed
Chen, J. Y., Wong, K. W., Zheng, H. Y., and Shuai, J. W. 2001. Intermittent phase synchronization of coupled spatiotemporal chaotic systems. Phys. Rev. E, 64, 016212.CrossRefGoogle ScholarPubMed
Chialvo, D. R. 1995. Generic excitable dynamics on a two-dimensional map. Chaos, Solitons and Fractals, 5(3), 461–479.CrossRefGoogle Scholar
Chiba, H. 2015. A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model. Erg. Th. Dyn. Sys., 35, 762–834.CrossRefGoogle Scholar
Chiba, H. and Pazó, D. 2009. Stability of an N/2-dimensional invariant torus in th: Kuramoto model at small coupling. Physica D, 238, 1068–1081.CrossRefGoogle Scholar
Chizhevsky, V. N., Corbalán, R., and Pisarchik, A. N. 1997. Attractor splitting induced by resonant perturbations. Phys. Rev. E, 56, 1580–1584.CrossRefGoogle Scholar
Cohen, R. and Havlin, S. 2003. Scale-free networks are ultrasmall. Phys. Rev. Lett., 90, 058701.CrossRefGoogle ScholarPubMed
Copelli, M., Tragtenberg, M. H. R., and Kinouchi, O. 2004. Stability diagrams for bursting neurons modeled by three-variable maps. Physica A, 342, 263–269.CrossRefGoogle Scholar
Corron, N. J., Blakely, J. N., and Pethel, S. D. 2005. Lag and anticipating synchronization without time-delay coupling. Chaos, 15, 023110.CrossRefGoogle ScholarPubMed
Coscia, V. and Canavesio, C. 2008. First-order macroscopic modelling of human crowd dynamics. Math. Models and Methods Appl. Sciences, 18(supp01), 1217–1247.CrossRefGoogle Scholar
Cramer, A. O. J., Waldorp, L. J., van der Maas, H. L. J., et al. 2010. Comorbidity: A network perspective. Behav. Brain Sci., 33(2–3), 137–150.CrossRefGoogle ScholarPubMed
Crank, J. 1980. The Mathematics of Diffusion. Oxford: Oxford University Press.Google Scholar
Crutchfield, J. P. and Kaneko, K. 1988. Are attractors relevant to turbulence? Phys. Rev. Lett., 60, 2715–2718.CrossRefGoogle Scholar
Csicsvari, J., Hirase, H., Mamiya, A., and Buzsáki, G. 2000. Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events. Neuron, 28, 585–594.CrossRefGoogle ScholarPubMed
Cuomo, K. M. and Oppenheim, A. V. 1993. Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett., 71, 65–68.CrossRefGoogle ScholarPubMed
Doedel, E. J., Champneys, A. R., Fairgrieve, T. et al. 2007. AUTO-07P: Continuation and bifurcation software for ordinary differential equations. Tech. rept. Concordi. University Montreal, Canada.Google Scholar
Dostalkova, I. and Spinka, M. 2010. When to go with the crowd: Modelling synchronization of all-or-nothing activity transitions in grouped animals. J. Theor. Biol., 263(4), 437–448.CrossRefGoogle ScholarPubMed
Eckmann, J.-P. 1981. Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys., 53, 643–654.CrossRefGoogle Scholar
Ekert, A. K. 1991. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett., 67, 661–663.CrossRefGoogle ScholarPubMed
Elson, R. C., Selverston, A. I., Huerta, R., Rulkov, N. F., Rabinovich, M. I., and Abarbanel, H. D. I. 1998. Synchronous behavior of two coupled biological neurons. Phys. Rev. Lett., 81(25), 5692–5695.CrossRefGoogle Scholar
Elson, R. C., Selverston, A. I., Abarbanel, H. D. I., and Rabinovich, M. 2002. Inhibitory synchronization of bursting in biological neurons: Dependence on synaptic time constant. J. Neurophysiol., 88(10.1152/jn.00784.2001), 1166–1176.CrossRefGoogle ScholarPubMed
Ermentrout, G. B. and Kopell, N. 1990. Oscillator death in systems of coupled neural oscillators. SIAM J. Appl. Math., 50, 125–146.CrossRefGoogle Scholar
Ermentrout, G. B., Glass, L., and Oldeman, B. E. 2012. The shape of phase-resetting curves in oscillators with a saddle node on an invariant circle bifurcation. Neural Comput., 24, 3111–3125.CrossRefGoogle ScholarPubMed
Fiedler, B., Flunkert, V., Georgi, M., Hövel, P., and Schöll, E. 2007. Refuting the odd number limitation of time-delayed feedback control. Phys. Rev. Lett., 98, 114101.CrossRefGoogle ScholarPubMed
Fiedler, M. 1972. Bounds for eigenvalues of doubly stochastic matrices. Linear Algebra Appl., 5, 299–310.CrossRefGoogle Scholar
Fiedler, M. 1973. Algebraic connectivity of graphs. Czech. Math. J., 23, 298–305.Google Scholar
Fisher, R. S., van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P., and Engel. J. 2005. Epileptic seizures and epilepsy: Definitions proposed by the Internationa. League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46(4), 470–472.Google Scholar
Foss, J., Longtin, A., Mensour, B., and Milton, J. 1996. Multistability and delayed recurrent loops. Phys. Rev. Lett., 76, 708–711.CrossRefGoogle ScholarPubMed
Franke, J. E. and Selgrade, J. F. 1976. Abstract ω-limit sets, chain recurrent sets, and basic sets for flows. Proceedings of the American Mathematical Society, 60(1), 309–316.Google Scholar
Franovic, I. and Miljkovic, V. 2010. Power law behavior related to mutual synchronization of chemically coupled map neurons. Eur. Phys. J. B, 76, 613–624.CrossRefGoogle Scholar
Freud, S. 1922. Group Psychology and the Analysis of the Ego. New York: Boni and Liveright.CrossRefGoogle Scholar
Fridrich, J. 1998. Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bif. Chaos, 8(6), 1259–1284.CrossRefGoogle Scholar
Fuchs, A. 2013. Nonlinear Dynamics in Complex Systems. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Fujisaka, H. and Yamada, T. 1983. Stability theory of synchronized motion in coupledoscillator system. Prog. Theor. Phys., 69, 32–47.CrossRefGoogle Scholar
Fujisaka, H., Kamifukumoto, H., and M., Inoue. 1983. Intermittency associated with the breakdown of the chaos symmetry. Prog. Theor. Phys., 69, 333–337.CrossRefGoogle Scholar
Gabor, D. 1946. Theory of communication. Proc. IEE London, 93, 429–457.Google Scholar
García-López, J. H. R., Jaimes-Reátegui, R., Pisarchik, A. N. et al. 2005. Novel communication scheme based on chaotic Rössler circuits. J. Phys.: Conf. Ser., 23, 175–184.Google Scholar
García-López, J. H., Jaimes-Reátegui, R., Chiu-Zarate, R. et al. 2008. Secure computer communication based on chaotic Rössler oscillators. Open Electrical and Electronic Engineering Journal, 2, 41–44.CrossRefGoogle Scholar
García-Vellisca, M. A., Pisarchik, A. N., and Jaimes-Reátegui, R. 2016. Experimental evidence of deterministic coherence resonance in coupled chaotic oscillators with frequency mismatch. Phys. Rev. E, 94, 012218.CrossRefGoogle ScholarPubMed
Gauthier, D. J. and Bienfang, J. C. 1996. Intermittent loss of synchronization in coupled chaotic oscillators: Toward a new criterion for high-quality synchronization. Phys. Rev. Lett., 77, 1751–1754.CrossRefGoogle Scholar
del Genio, C. I., Gómez-Gardeñes, J., Bonamassa, I., and Boccaletti, S. 2016. Synchronization in networks with multiple interaction layers. Sci. Adv., 2(11), e1601679.CrossRefGoogle ScholarPubMed
del Genio, C. I., Gross, T., and Bassler, K. E. 2011. All scale-free networks are sparse. Phys. Rev. Lett., 107, 178701.CrossRefGoogle ScholarPubMed
del Genio, C. I., Kim, H., Toroczkai, Z., and Bassler, K. E. 2010. Efficient and exact sampling of simple graphs with given arbitrary degree sequence. PLoS One, 5, e10012.CrossRefGoogle ScholarPubMed
del Genio, C. I., Romance, M., Criado, R., and Boccaletti, S. 2015. Synchronization in dynamical networks with unconstrained structure switching. Phys. Rev. E, 92, 062819.CrossRefGoogle ScholarPubMed
Gladwell, M. 2000. The Tipping Point: How Little Things Can Make a Big Difference. Boston: Little, Brown and Company.Google Scholar
Goel, P. and Ermentrout, B. 2002. Synchrony, stability, and firing patterns in pulse-coupled oscillators. Physica D, 163, 191–216.CrossRefGoogle Scholar
Gómez-Gardeñes, J., Gómez, S., Arenas, A., and Moreno, Y. 2011. Explosive synchronization transitions in scale-free networks. Phys. Rev. Lett., 106, 128701.CrossRefGoogle ScholarPubMed
Gong, P., Nikolaev, A. R., and van Leeuwen, C. 2007. Intermittent dynamics underlying the intrinsic fluctuations of the collective synchronization patterns in electrocortical activity. Phys. Rev. E, 76, 011904.CrossRefGoogle ScholarPubMed
González-Miranda, J. M. 2004. Synchronization and Control of Chaos: An Introduction for Scientists and Enginners. London: Imperial College Press.CrossRefGoogle Scholar
Grebogi, C., Ott, E., and Yorke, J. A. 1983. Fractal basin boundaries, long-lived chaotic transients, and unstable–unstable pair bifurcation. Phys. Rev. Lett., 50(13), 935–938.CrossRefGoogle Scholar
Grebogi, C., Ott, E., and Yorke, J. A. 1988. Unstable periodic orbits and the dimensions of multifractal chaotic attractors. Phys. Rev. A, 37, 1711–1724.CrossRefGoogle ScholarPubMed
Guan, S., Lai, C. H., and Wei, G.W. 2005. Bistable chaos without symmetry in generalized synchronization. Phys. Rev. E, 71, 036209.CrossRefGoogle ScholarPubMed
Guan, S., Lai, Y.-C., Lai, C.-H., et al. 2006. Understanding synchronization induced by “common noise.” Phys. Lett. A, 353, 30–33.CrossRefGoogle Scholar
Guckenheimer, J. and Holmes, P. 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer-Verlag.CrossRefGoogle Scholar
Güemez, J. and Matías, M. A. 1995. Modified method for synchronizing and cascading chaotic systems. Phys. Rev. E, 52, R2145–R2148.CrossRefGoogle ScholarPubMed
Guevara, M. R., Shrier, A., and Glass, L. 1986. Phase resetting of spontaneously beating embryonic ventricular heart cell aggregates. Am. J. Physiol. Heart Circ. Physiol., 251. H1298–H1305.CrossRefGoogle ScholarPubMed
Gutiérrez, R., Amann, A., Assenza, S. et al. 2011. Emerging meso- and macroscales from synchronization of adaptive networks. Phys. Rev. Lett., 107, 234103.CrossRefGoogle ScholarPubMed
Habutsu, T., Nishio, Y., Sasase, I., and Mori, S. 1991. Advances in Cryptology – EuroCrypt–91. Vol. 0547. Berlin: Springer-Verlag. 127–140.Google Scholar
Hagerstrom, A. M., Murphy, T. E., Roy, R., et al. 2012. Experimental observation of chimeras in coupled-map lattices. Nat. Phys., 8, 658–661.CrossRefGoogle Scholar
Hansel, D., Mato, G., and Meunier, C. 1993. Phase dynamics for weakly coupled Hodgkin. Huxley neurons. Europhys. Lett., 23(5), 367–372.CrossRefGoogle Scholar
Hansel, D., Mato, G., and Meunier, C. 1995. Synchrony in excitatory neural networks. Neural Comput., 7, 307–337.CrossRefGoogle ScholarPubMed
Hayes, S., Grebogi, C., Ott, E., and Mark, A. 1993. Communicating with chaos. Phys. Rev. Lett., 70, 3031–3034.CrossRefGoogle ScholarPubMed
He, R., and Vaidya, P. G. 1992. Analysis and synthesis of synchronous periodic and chaotic systems. Phys. Rev. A, 46, 7387–7392.CrossRefGoogle ScholarPubMed
Heagy, J. F., Platt, N., and Hammel, S. M. 1994. Characterization of on-off intermittency. Phys. Rev. E, 49, 1140–1150.CrossRefGoogle ScholarPubMed
Hebb, D. O. 1949. The Organization of Behavior. New York: Wiley.Google Scholar
Hernandez, R. V., Reategui, R. J., Lopez, J. H. G., and Pisarchik, A. 2008. System and Method for Highly Safe Communication using Chaotic Signals.
Hertz, J., Krogh, A., and Palmer, R. 1991. Introduction to the Theory of Neural Computation. New York: Addison-Wesley.Google Scholar
Hindmarsh, J. L. and Rose, R. M. 1984. A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B, 221(1222), 87–102.CrossRefGoogle ScholarPubMed
Hodgkin, A. L. and Huxley, A. F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117, 500–544.CrossRefGoogle ScholarPubMed
Holme, P. and Saramäki, J. 2012. Temporal networks. Phys. Rep., 519, 97–125.CrossRefGoogle Scholar
Hooton, E. W. and Amann, A. 2012. Analytical limitation for time-delayed feedback control in autonomous systems. Phys. Rev. Lett., 109, 154101.CrossRefGoogle ScholarPubMed
Hramov, A. E. and Koronovskii, A. A. 2005. Generalized synchronization: A modified system approach. Phys. Rev. E, 71, 067201.CrossRefGoogle ScholarPubMed
Hramov, A. E., Koronovskii, A. A., Kurovskaya, M. K., and Boccaletti, S. 2006. Ring intermittency in coupled chaotic oscillators at the boundary of phase synchronization. Phys. Rev. Lett., 97, 114101.CrossRefGoogle ScholarPubMed
Hramov, A. E., Koronovskii, A. A., Kurovskaya, M. K., Ovchinnikov, A., and Boccaletti, S. 2007. Length distribution of laminar phases for type-I intermittency in the presence of noise. Phys. Rev. E, 76(2), 026206.CrossRefGoogle ScholarPubMed
Hramov, A. E., Koronovskii, A. A., Kurovskaya, M. K., and Moskalenko, O. I. 2011. Type. I intermittency with noise versus eyelet intermittency. Phys. Lett. A, 375, 1646–1652.CrossRefGoogle Scholar
Hu, X., Boccaletti, S., Huang, W., et al. 2014. Exact solution for first-order synchronization transition in a generalized Kuramoto model. Sci. Rep., 4, 7262.CrossRefGoogle Scholar
Huerta-Cuellar, G., Pisarchik, A. N., and Barmenkov, Yu. O. 2008. Experimental characterization of hopping dynamics in a multistable fiber laser. Phys. Rev. E, 78, 035202(R).CrossRefGoogle Scholar
Huygens, C. 1913. Die Pendeluhr: Horologium Oscillatorium. Leipzig: Engelmann.Google Scholar
Islam, M., Islam, B., Islam, N., and Mazumder, H. P. 2013. Construction of bidirectionally coupled systems using generalized synchronization method. Differential Geometry – Dynamical Systems, 15, 54–61.Google Scholar
Ivanchenko, M. V., Osipov, G. V., Shalfeev, V. D., and Kurths, J. 2004. Phase synchronization of chaotic intermittent oscillations. Phys. Rev. Lett., 92, 134101.CrossRefGoogle ScholarPubMed
Ivanchenko, M. V., Nowotny, T., Selverston, A. I., and Rabinovich, M. I. 2008. Pacemaker and network mechanisms of rhythm generation: Cooperation and competition. J. Theor. Biol., 253, 452–461.CrossRefGoogle ScholarPubMed
Izhikevich, E. M. 2007. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. Cambridge, MA: MIT Press.Google Scholar
Izhikevich, E. M., and Hoppensteadt, F. 2004. Classification of bursting mappings. Int. J. Bif. Chaos, 14(11), 3847–3854.CrossRefGoogle Scholar
Jirsa, V. K., Friedrich, R., Haken, H., and Kelso, J. A. S. 1994. A theoretical model of phase transitions in the human brain. Biol. Cybernetics, 71, 27–35.CrossRefGoogle ScholarPubMed
Josic, K. and Mar, D. J. 2001. Phase synchronization of chaotic systems with small phase diffusion. Phys. Rev. E, 64, 056234.CrossRefGoogle ScholarPubMed
Kanakidis, K., Argyris, A., and Syvridis, D. 2003. Performance characterization of highbit- rate optical chaotic communication systems in a back to back configuration. J. Lightwave Technol., 21(3), 750–758.CrossRefGoogle Scholar
Kandel, E. R., Schwartz, J. H., and Jessell, T. M. (eds). 2000. Principles of Neural Science. New York: McGraw-Hill.Google Scholar
Kaneko, K. 1986. Lyapunov analysis and information flow in coupled map lattices. Physica D, 23, 436–447.CrossRefGoogle Scholar
Kaneko, K. 1990. Clustering, coding, switching, hierarchical ordering, and control in network of chaotic elements. Physica D, 41, 137–172.CrossRefGoogle Scholar
Kaneko, K. 2015. From globally coupled maps to complex-systems biology. Chaos, 25(9), 097608.CrossRefGoogle ScholarPubMed
Karnatak, R., Ramaswamy, R., and Prasad, A. 2007. Amplitude death in the absence of time delays in identical coupled oscillators. Phys. Rev. E, 76, 035201(R).CrossRefGoogle ScholarPubMed
Katz, B. and Miledi, R. 1965. The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc. R. Soc. Lond. B, 161(985), 483–495.CrossRefGoogle ScholarPubMed
Kazantsev, V. and Tyukin, I. 2012. Adaptive and phase selective spike timing dependent plasticity in synaptically coupled neuronal oscillators. PLoS One, 7, e30411.CrossRefGoogle ScholarPubMed
Kazantsev, V. B., Nekorkin, V. I., Binczak, S., Jacquir, S., and Bilbault, J. M. 2005. Spiking dynamics of interacting oscillatory neurons. Chaos, 15, 23103.CrossRefGoogle ScholarPubMed
Khan, M. A. and Poria, S. 2012. Generalized synchronization of bidirectionally coupled chaotic systems. Int. J. Appl. Math. Res., 1, 303–312.Google Scholar
Kim, D. and Kahng, B. 2007. Spectral densities of scale-free networks. Chaos, 17, 026115.CrossRefGoogle ScholarPubMed
Kim, H., del Genio, C. I., Bassler, K. E., and Toroczkai, Z. 2011. Constructing and sampling directed graphs with given degree sequences. New J. Phys., 14, 023012.CrossRefGoogle Scholar
Kim, S., Park, S. H., and Ryu, C. S. 1997. Multistability in coupled oscillator systems with time delay. Phys. Rev. Lett., 79, 2911–2914.CrossRefGoogle Scholar
Kinouchi, O. and Tragtenberg, M. H. R. 1996. Modeling neurons by simple maps. Int. J. Bif. Chaos, 6, 2343–2360.CrossRefGoogle Scholar
Kiss, I. Z., Kazsu, Z., and Gáspár, V. 2006. Tracking unstable steady states and periodic orbits of oscillatory and chaotic electrochemical systems using delayed feedback control. Chaos, 16, 033109.CrossRefGoogle ScholarPubMed
Kittel, A., Pyragas, K., and Richter, R. 1994. Prerecorded history of a system as an experimental tool to control chaos. Phys. Rev. E, 50(1), 262–270.CrossRefGoogle ScholarPubMed
Kitzbichler, M. G., Smith, M. L., Christensen, S. R., and Bullmore, E. 2009. Broadband criticality of human brain network synchronization. PLoS Comput. Biol., 5(3), e1000314.CrossRefGoogle ScholarPubMed
Kocarev, L. and Parlitz, U. 1995. General approach for chaotic synchronization with applications to communication. Phys. Rev. Lett., 74, 5028–5031.CrossRefGoogle ScholarPubMed
Kocarev, L. and Parlitz, U. 1996. Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett., 76(11), 1816–1819.CrossRefGoogle ScholarPubMed
Kopp, R. E., Shwom, R., Wagner, G., and Yuan, J. 2016. Tipping elements and climateeconomic shocks: Pathways toward integrated assessments. Earth's Future, 4, 346– 372.CrossRefGoogle Scholar
Koseska, A., Volkov, E., and Kurths, J. 2009. Detuning-dependent dominance of oscillation death in globally coupled synthetic genetic oscillators. Europhys. Lett., 85, 28002.CrossRefGoogle Scholar
Koseska, A., Ullner, E., Volkov, E., Kurths, J., and García-Ojalvo, J. 2010a. Cooperative differentiation through clustering in multicellular populations. J. Theor. Biol., 263, 189–202.CrossRefGoogle Scholar
Koseska, A., Volkov, E., and Kurths, J. 2010b. Parameter mismatches and oscillation death in coupled oscillators. Chaos, 20, 023132.CrossRefGoogle Scholar
Koseska, A., Volkov, E., and Kurths, J. 2013a. Oscillation quenching mechanisms: Amplitude vs. oscillation death. Phys. Rep., 531, 173–200.CrossRefGoogle Scholar
Koseska, A., Volkov, E., and Kurths, J. 2013b. Transition from amplitude to oscillation death via Turing bifurcation. Phys. Rev. Lett., 111, 024103.CrossRefGoogle Scholar
Krapivsky, P. L., Redner, S., and Leyvraz, F. 2000. Connectivity of growing random networks. Phys. Rev. Lett., 85, 4629–4632.CrossRefGoogle ScholarPubMed
Kraut, S., Feudel, U., and Grebogi, C. 1999. On the strength of attractors in a highdimensional system. Phys. Rev. E, 59, 5253–5260.Google Scholar
Kruse, P. and Stadler, M. 1995. Ambiguity in Mind and Nature: Multistable Cognitive Phenomena. Berlin: Springer.CrossRefGoogle Scholar
Kuntsevich, B. F. and Pisarchik, A. N. 2001. Synchronization effects in a dual-wavelength class-B laser with modulated losses. Phys. Rev. E, 64, 046221.CrossRefGoogle Scholar
Kuramoto, Y. 1975. Self-entrainment of a population of coupled non-linear oscillators. Pages 420–422 of: Araki, H. (ed.), Lecture Notes in Physics, International Symposium on Mathematical Problems in Theoretical Physics, vol. 39. New York: Springer-Verlag.Google Scholar
Kuramoto, Y. 1984. Chemical Oscillations, Waves, and Turbulence. Heidelberg: Springer.CrossRefGoogle Scholar
Kuramoto, Y. and Battogtokh, D. 2002. Coexistence of Coherence and Incoherence i. Nonlocally Coupled Phase Oscillators. Nonl. Phenom. Compl. Syst., 5, 380–385.Google Scholar
Kuva, S. M., Lima, G. F., Kinouchi, O., Tragtenberg, M. H. R., and Roque-da Silva, A. C. 2001. A minimal model for excitable and bursting elements. Neurocomputing, 38–40, 255–261.Google Scholar
Kye, W. H. and Kim, C. M. 2000. Characteristic relations of type-I intermittency in the presence of noise. Phys. Rev. E, 62, 6304–6307.CrossRefGoogle ScholarPubMed
Laing, C. R. and Longtin, A. 2002. A two-variable model of somatic-dendritic interactions in a bursting neuron. Bull. Math. Biol., 64, 829–860.CrossRefGoogle Scholar
Lang, X., Lu, Q., and Kurths, J. 2010. Phase synchronization in noise-driven bursting neurons. Phys. Rev. E, 82, 021909.CrossRefGoogle ScholarPubMed
Larger, L., Penkovsky, B., and Maistrenko, Y. 2013. Virtual chimera states for delayedfeedback systems. Phys. Rev. Lett., 111(5), 054103.CrossRefGoogle ScholarPubMed
LeBon, G. 1896. The Crowd: A Study of the Popular Mind. New York: Macmillan & Co.Google Scholar
Lee, K. J., Kwak, Y., and Lim, T. K. 1998. Phase jumps near a phase synchronization transition in systems of two coupled chaotic oscillators. Phys. Rev. Lett., 81, 321–324.CrossRefGoogle Scholar
Liu, W., Xia, J., Qian, X., and Yang, J. 2006. Antiphase synchronization in coupled chaotic oscillators. Phys. Rev. E, 73, 057203.CrossRefGoogle ScholarPubMed
Llinás, R. R. (ed.). 2002. I of the Vortex: From Neurons to Self. London: MIT Press.Google Scholar
Lorenz, E. N. 1963. Deterministic non-periodic flow. Journal of the Atmospheric Sciences, 20, 130–141.2.0.CO;2>CrossRefGoogle Scholar
Luo, A. C. J. 2013. Dynamical System Synchronization. New York: Springer.CrossRefGoogle Scholar
MacKay, R. S., and Tresser, C. 1986. Transition to topological chaos for circle maps. Physica D, 19, 5–72.CrossRefGoogle Scholar
Maistrenko, Y., Popovych, O., Burylko, O., and Tass, P. A. 2004. Mechanism of desynchronization in the finite-dimensional Kuramoto model. Phys. Rev. Lett., 93, 084102.CrossRefGoogle ScholarPubMed
Maistrenko, Yu. L., Popovych, O. V., and Tass, P. A. 2005. Chaotic attractor in th: Kuramoto model. Int. J. Bif. Chaos, 15(11), 3457–3466.CrossRefGoogle Scholar
Makarenko, V. and Llinás, R. 1998. Experimentally determined chaotic phase synchronization in a neuronal system. Proc. Natl. Acad. Sci. USA, 95(26), 15747–15752.CrossRefGoogle Scholar
Mardia, K. V. 1972. Probability and Mathematical Statistics: Statistics of Directional Data. London: Academic Press.Google Scholar
Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. 1997. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275(5297), 213–215.CrossRefGoogle ScholarPubMed
Martens, E. A., Thutupalli, S., Fourriere, A., and Hallatschek, O. 2013. Chimera states in mechanical oscillator networks. Proceedings of the National Academy of Sciences, 110(26), 10563–10567.CrossRefGoogle ScholarPubMed
Martínez-Zérega, B. E. and Pisarchik, A. N. 2012. Stochastic control of attractor preference in multistable systems. Commun. Nonlinear Sci. Numer. Simulat., 17, 4023–4028.CrossRefGoogle Scholar
Matias, F. S., Carelli, P. V., Mirasso, C., and Copelli, R. M. 2011. Anticipated synchronization in a biologically plausible model of neuronal motifs. Phys. Rev. E, 84, 021922.CrossRefGoogle Scholar
Matias, F. S., Gollo, L. L., Carelli, P. V. Copelli, M., and Mirasso, C. R. 2013. Anticipated synchronization in neuronal motifs. BMC Neuroscience, 14(Suppl 1), P275.CrossRefGoogle Scholar
Matthews, P. C. and Strogatz, S. H. 1990. Phase diagram for the collective behavior of limit-cycle oscillators. Phys. Rev. Lett., 65, 1701–1704.CrossRefGoogle ScholarPubMed
Matthews, R. 1989. On the derivation of a chaotic encryption algorithm. Cryptologia, XIII, 29–42.Google Scholar
Maurer, J. and Libchaber, A. 1980. Effect of the Prandtl number on the onset of turbulence in liquid-He-4. J. Phys. Lett. (Paris), 41, L515–L518.CrossRefGoogle Scholar
Mayol, C., Mirasso, C. R., and Toral, R. 2012. Anticipated synchronization and the predictprevent control method in the FitzHugh–Nagumo model system. Phys. Rev. E, 85, 056216.CrossRefGoogle ScholarPubMed
McPhail, C. 1991. The Myth of the Madding Crowd. New York: Aldine de Gruyter.Google Scholar
Mirasso, C. R., Colet, P., and Garcia Fernandez, P. 1996. Synchronization of chaotic semiconductor lasers: Application to encoded communications. IEEE Photon. Tech. Lett., 8, 299–301.CrossRefGoogle Scholar
Mirollo, R. E. and Strogatz, S. H. 1990. Amplitude death in an array of limit-cycle oscillators. J. Stat. Phys., 60, 245–262.CrossRefGoogle Scholar
Mischaikow, K., Smith, H., and Thieme, H. R. 1995. Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions. Transactions of the American Mathematical Society, 347(5), 1669–1685.CrossRefGoogle Scholar
Mohar, B. 1991. Eigenvalues, diameter, and mean distance in graphs. Graph. Combinator., 7, 53–64.CrossRefGoogle Scholar
Monasson, R. 1999. Diffusion, localization and dispersion relations on “small-world” lattices. Eur. Phys. J. B, 12, 555–567.CrossRefGoogle Scholar
Motter, A. E., Zhou, C. S., and Kurths, J. 2005. Enhancing complex-network synchronization. Eur. Phys. Lett., 69, 334–340.CrossRefGoogle Scholar
Moussaïd, M., Helbing, D., Garnier, S. et al. 2009. Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proc. R. Soc. Lond. B, 276, 2755–2762.CrossRefGoogle ScholarPubMed
Murali, K. and Lakshmanan, M. 1998. Secure communication using a compound signal from generalized synchronizable chaotic systems. Phys. Lett. A, 241, 303–310.CrossRefGoogle Scholar
Nayfeh, A. and Mook, D. 1979. Nonlinear Oscillations. New York: Wiley-Interscience.Google Scholar
Nelson, P. 2003. Biological Physics: Energy, Information, Life. New York: Freeman, W. H.Google Scholar
Netoff, T. I., Acker, C. D., Bettencourt, J. C., and White, J. A. 2005. Beyond two-cell networks: experimental measurement of neuronal responses to multiple synaptic inputs. J. Comput. Neurosci., 18, 287–295.CrossRefGoogle ScholarPubMed
Newhouse, S., Palis, J., and Takens, F. 1983. Bifurcations and stability of families of diffeomorphisms. Publications Mathématiques de l'IHES, 57, 5–72.Google Scholar
Newman, M. E. J. 2003. The structure and function of complex networks. SIAM Rev., 45, 167–256.CrossRefGoogle Scholar
Newman, M. E. J., Strogatz, S. H., and J., Watts D. 2001. Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E, 64, 026118.CrossRefGoogle ScholarPubMed
Otnes, R. K. and Enochson, L. 1972. Digital Time Series Analysis. New York: John Wiley and Sons.Google Scholar
Ott, E. 2002. Chaos in Dynamical Systems. Second edn. New York: Cambridge University Press.CrossRefGoogle Scholar
Ott, E., Grebogi, C., and Yorke, J. A. 1990. Controlling chaos. Phys. Rev. Lett., 64, 1196–1199.CrossRefGoogle ScholarPubMed
Panaggio, M. J. and Abrams, D. M. 2015. Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity, 28(3), R67–R87.CrossRefGoogle Scholar
Parlitz, U., Kocarev, L., Stojanovski, T., and Preckel, H. 1996a. Encoding messages using chaotic synchronization. Phys. Rev. E, 53, 4351–4361.CrossRefGoogle Scholar
Parlitz, U., Junge, L., Lauterborn, W., and Kocarev, L. 1996b. Experimental observation of phase synchronization. Phys. Rev. E, 54, 2115–2117.CrossRefGoogle Scholar
Pastur, L., Boccaletti, S., and Ramazza, P. L. 2004. Detecting local synchronization in coupled chaotic systems. Phys. Rev. E, 69, 036201.CrossRefGoogle ScholarPubMed
Pecora, L. M. and Carroll, T. L. 1990. Synchronization in chaotic systems. Phys. Rev. Lett., 64, 821–824.CrossRefGoogle ScholarPubMed
Pecora, L. M. and Carroll, T. L. 1991. Driving systems with chaotic signals. Phys. Rev. A, 44, 2374–2383.CrossRefGoogle ScholarPubMed
Pecora, L. M. and Carroll, T. L. 1998. Master stability functions for synchronized coupled systems. Phys. Rev. Lett., 80, 2109–2112.CrossRefGoogle Scholar
Pickett, J. P. et al. 2011. American Heritage Dictionary of the English Language. Fifth edn. Tokyo: Houghton Mifflin Company.Google Scholar
Pikovsky, A. and Rosenblum, M. 2008. Partially integrable dynamics of hierarchical populations of coupled oscillators. Phys. Rev. Lett., 101, 264103.CrossRefGoogle ScholarPubMed
Pikovsky, A., Rosenblum, M., and Kurths, J. 2001. Synchronization: A Universal Concept in Nonlinear Science. New York: Cambridge University Press.CrossRefGoogle Scholar
Pikovsky, A. S. 1981. A dynamical model for periodic and chaotic oscillations in th. Belousov-Zhabotinsky reaction. Phys. Lett. A, 85(1), 13–16.CrossRefGoogle Scholar
Pikovsky, A. S., Osipov, G. V., Rosenblum, M. G., Zaks, M., and Kurths, J. 1997. Attractorrepeller collision and eyelet intermittency at the transition to phase synchronization. Phys. Rev. Lett., 79, 47–50.CrossRefGoogle Scholar
Pisarchik, A. N. (ed). 2008. Recent Achievements in Laser Dynamics: Control and Synchronization. Kerala: Research Singpost.Google Scholar
Pisarchik, A. N. and Barmenkov, Yu. O. 2005. Locking of self-oscillation frequency by pump modulation in an erbium-doped fiber laser. Opt. Commun., 254, 128–137.CrossRefGoogle Scholar
Pisarchik, A. N. and Corbalán, R. 1999. Parametric nonfeedback resonance in period doubling systems. Phys. Rev. E, 59, 1669–1674.CrossRefGoogle Scholar
Pisarchik, A. N. and Feudel, U. 2014. Control of multistability. Phys. Rep., 540, 167–218.CrossRefGoogle Scholar
Pisarchik, A. N. and Jaimes-Reátegui, R. 2005a. Homoclinic orbits in a piecewise linea Rössler circuit. J. Phys.: Conf. Ser., 23, 122–127.Google Scholar
Pisarchik, A. N. and Jaimes-Reátegui, R. 2005b. Intermittent lag synchronization in a nonautonomous system of coupled oscillators. Phys. Lett. A, 338, 141–149.CrossRefGoogle Scholar
Pisarchik, A. N. and Jaimes-Reátegui, R. 2009. Control of basins of attractors in a multistable fiber laser. Phys. Lett. A, 374, 228–234.CrossRefGoogle Scholar
Pisarchik, A. N. and Jaimes-Reátegui, R. 2015. Deterministic coherence resonance in coupled chaotic oscillators with frequency mismatch. Phys. Rev. E, 92, 050901.CrossRefGoogle ScholarPubMed
Pisarchik, A. N. and Ruiz-Oliveras, F. R. 2010. Optical chaotic communication using generalized and complete synchronization. IEEE J. Quantum Electron., 46(3), 299a– 299f.CrossRefGoogle Scholar
Pisarchik, A. N. and Ruiz-Oliveras, F. R. 2015. Synchronization of delayed-feedback semiconductor lasers and its application in secure communication. Pages 129–155 of. González-Aguilar, H., and Ugalde, E. (eds.), Nonlinear Dynamics New Directions: Models and Applications. Nonlinear Systems and Complexity, vol. 12. Switzerland: Springer.Google Scholar
Pisarchik, A. N., Jaimes-Reátegui, R., Villalobos-Salazar, J. R., García-Lopez, J. H., an. Boccaletti, S. 2006. Synchronization of chaotic systems with coexisting attractors. Phys. Rev. Lett., 96, 244102.CrossRefGoogle ScholarPubMed
Pisarchik, A. N., Jaimes-Reátegui, R., and García-Lopez, J. H. 2008a. Synchronization of coupled bistable chaotic systems: Experimental study. Phil. Trans. Roy. Soc., Ser. A, 366, 459–473.CrossRefGoogle Scholar
Pisarchik, A. N., Jaimes-Reátegui, R., and García-Lopez, J. H. 2008b. Synchronization of multistable systems. Int. J. Bif. Chaos, 18, 1801–1819.CrossRefGoogle Scholar
Pisarchik, A. N., Jaimes-Reátegui, R., Sevilla-Escoboza, R., and Boccaletti, S. 2009. Experimental approach to the study of complex networks synchronization using a single oscillator. Phys. Rev. E, 79, 055202(R).CrossRefGoogle Scholar
Pisarchik, A. N., Jaimes-Reátegui, R., Sevilla-Escoboza, R., Huerta-Cuillar, G., and Taki. M. 2011. Rogue waves in a multistable fiber laser. Phys. Rev. Lett., 107, 274101.CrossRefGoogle Scholar
Pisarchik, A. N., Jaimes-Reátegui, R., Sevilla-Escoboza, R., and Huerta-Cuellar, G. 2012a. Multistate intermittency and extreme pulses in a fiber laser. Phys. Rev. E, 86, 056219.CrossRefGoogle Scholar
Pisarchik, A. N., Jaimes-Reátegui, R., Sevilla-Escoboza, J. R., Ruiz-Oliveras, F. R., and García-López, J. H. 2012b. Two-channel opto-electronic chaotic communication system. Journal of Franklin Institut, 349, 3194–3202.Google Scholar
Pisarchik, A. N., Bashkirtseva, I., and Ryashko, L. 2017. Chaos can imply periodicity in coupled oscillators. Europhys. Lett., 117, 40005.CrossRefGoogle Scholar
Platt, E. A., Spiegel, E. A., and Tresser, C. 1993. On-off intermittency: A mechanism for bursting. Phys. Rev. Lett., 70(3), 279–282.CrossRefGoogle ScholarPubMed
Pomeau, Y., and Manneville, P. 1980. Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys., 74(2), 189–197.CrossRefGoogle Scholar
Popovych, O. V., Maistrenko, Y. L., and Tass, P. A. 2005. Phase chaos in coupled oscillators. Phys. Rev. E, 71, 065201.CrossRefGoogle ScholarPubMed
Poria, S. 2007. The linear generalized chaos synchronization and predictability. Int. J. of Appl. Mech. Eng., 12, 879–885.Google Scholar
Postnov, D. E., Vadivasova, T. E., Sosnovtseva, O. V., Balanov, A. G., and Anishchenko. V. S. 1999. Role of multistability in the transition to chaotic phase synchronization. Chaos, 9, 227–232.CrossRefGoogle ScholarPubMed
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 2007. Numerical Recipes: The Art of Scientific Computing. Third edn. Cambridge: Cambridg University Press.Google Scholar
Prigogine, I. and Stengers, I. 1965. Modulation, Noise, and Spectral Analysis. New York: McGraw-Hill.Google Scholar
Pyragas, K. 1992. Continuous control of chaos by self-controlling feedback. Phys. Lett. A, 170, 421–428.CrossRefGoogle Scholar
Pyragas, K. 1993. Predictable chaos in slightly perturbed unpredictable chaotic systems. Phys. Lett. A, 181, 203–210.CrossRefGoogle Scholar
Pyragas, K. 1996. Weak and strong synchronization of chaos. Phys. Rev. E, 54(5), R4508–R4511.CrossRefGoogle Scholar
Pyragas, K. 1997. Conditional Lyapunov exponents from time series. Phys. Rev. E, 56, 5183–5186.CrossRefGoogle Scholar
Pyragas, K. and Novicenko, V. 2013. Time-delayed feedback control design beyond the odd-number limitation. Phy. Rev. E, 88, 012903.CrossRefGoogle ScholarPubMed
Pyragas, K. and Tamaševicius, A. 1993. Experimental control of chaos by delayed selfcontrolling feedback. Phy. Lett. A, 180(1), 99–102.CrossRefGoogle Scholar
Pyragiené, T. and Pyragas, K. 2013. Anticipating spike synchronization in nonidentical chaotic neurons. Nonlinear Dynamics, 74, 297–306.CrossRefGoogle Scholar
Quian Quiroga, R., Arnhold, J., and Grassberger, P. 2000. Learning driver-response relationships from synchronization patterns. Phys. Rev. E, 61(5), 5142–5148.Google Scholar
Quian Quiroga, R., Kraskov, A., Kreuz, T., and Grassberger, P. 2002. Performance of different synchronization measures in real data: A case study on electroencephalographic signals. Phys. Rev. E, 65(5), 041903.CrossRefGoogle ScholarPubMed
Rabinovich, M. I. and Abarbanel, H. D. I. 1999. The role of chaos in neural systems. Neuroscience, 87(1), 5–14.Google Scholar
Rabinovich, M. I. and Trubetskov, D. I. 1989. Introduction to the Theory of Oscillations and Waves. Amsterdam: Kluwer.CrossRefGoogle Scholar
Ramana Reddy, D.V., Sen, A., and Johnston, G. L. 1998. Time delay induced death in coupled limit cycle oscillators. Phys. Rev. Lett., 80, 5109–5112.CrossRefGoogle Scholar
Rex, C. S., Colgin, L. L., Jia, Y. et al. 2009. Origins of an intrinsic hippocampal EEG pattern. PLoS One, 4(11), e7761.CrossRefGoogle ScholarPubMed
Rodrigues, F. A., Peron, T. K. D., Ji, P., and Kurths, J. 2016. The Kuramoto model in complex networks. Phys. Rep., 610, 1–98.CrossRefGoogle Scholar
Rosa, E., Ott, E., and Hess, M. H. 1998. Transition to phase synchronization of chaos. Phys. Rev. Lett., 80, 1642–1645.CrossRefGoogle Scholar
Rosenblum, M. G., Pikovsky, A. S., and Kurths, J. 1996. Phase synchronization of chaotic oscillators. Phys. Rev. Lett., 76, 1804–1897.CrossRefGoogle ScholarPubMed
Rosenblum, M. G., Pikovsky, A. S., and Kurths, J. 1997. From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett., 78, 4193–4196.CrossRefGoogle Scholar
Rössler, O. E. 1976. An equation for continuous chaos. Phys. Lett. A, 57, 397–398.CrossRefGoogle Scholar
Rössler, O. E. 1977. Chaos in abstract kinetics 2 prototypes. Bull. Math. Biol., 39, 275–289.CrossRefGoogle Scholar
Roy, P. K., Chakraborty, S., and Dana, S. K. 2003. Experimental observation on the effect of coupling on different synchronization phenomena in coupled nonidentical Chua's oscillators. Chaos, 13, 342–355.CrossRefGoogle Scholar
Ruiz-Oliveras, F. R. and Pisarchik, A. N. 2006. Phase-locking phenomenon in a semiconductor laser with external cavities. Opt. Express, 14, 12859–12867.CrossRefGoogle Scholar
Ruiz-Oliveras, F. R. and Pisarchik, A. N. 2009. Synchronization of semiconductor lasers with coexisting attractors. Phys. Rev. E, 79, 016202.CrossRefGoogle ScholarPubMed
Rulkov, N. F. 2001. Regularization of synchronized chaotic bursts. Phys. Rev. Lett., 86, 183–186.CrossRefGoogle ScholarPubMed
Rulkov, N. F. 2002. Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E, 65, 041922.CrossRefGoogle ScholarPubMed
Rulkov, N. F., Sushchik, M. M., Tsimring, L. S., and Abarbanel, H. D. I. 1995. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E, 51, 980–994.CrossRefGoogle ScholarPubMed
Rulkov, N. F., Timofeev, I., and Bazhenov, M. 2004. Oscillations in large-scale cortical networks: map-based model. J. Comput. Neurosci., 17, 203–223.CrossRefGoogle ScholarPubMed
Sakaguchi, H. and Kuramoto, Y. 1986. A soluble active rotater model showing phase transitions via mutual entertainment. Progr. Theor. Phys., 76(3), 576–581.CrossRefGoogle Scholar
Sausedo-Solorio, J. M. and Pisarchik, A. N. 2011. Dynamics of unidirectionally couple Hénon maps. Phys. Lett. A, 375, 3677–3681.CrossRefGoogle Scholar
Saxena, G., Prasad, A., and Ramaswamy, R. 2012. Amplitude death: The emergence of stationarity in coupled nonlinear systems. Phys. Rep., 521, 205–230.CrossRefGoogle Scholar
Schäfer, C., Rosenblum, M. G., Kurths, J., and Abel, H. H. 1998. Heartbeat synchronized with ventilation. Nature, 392, 239–240.CrossRefGoogle ScholarPubMed
Schikora, S., Hövel, P., Wünsche, H. -J., Schöll, E., and Henneberger, F. 2006. All-optical noninvasive control of unstable steady states in a semiconductor laser. Phys. Rev. Lett., 97, 213902.CrossRefGoogle Scholar
Schöll, E. and Schuster, H. G. 2008. Handbook of Chaos Control. Second edn. City: Wiley-VCH.Google Scholar
Schuster, H. G. and Just, W. 2005. Deterministic Chaos: An Introduction. Fourth edn. City: Wiley-VCH.CrossRefGoogle Scholar
Sevilla-Escoboza, R., Buldú, J. M., Pisarchik, A. N., Boccaletti, S., and Gutiérrez, R. 2015. Synchronization of intermittent behavior in ensembles of multistable dynamical systems. Phys. Rev. E, 91, 039202.CrossRefGoogle ScholarPubMed
Seydel, R. 1988. From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis. New York: Elsevier.Google Scholar
Shannon, C. E. 1949. Communication theory of secrecy systems. Bell Syst. Tech. J., 28, 656–715.CrossRefGoogle Scholar
Shen-Orr, S. S., Milo, R., Mangan, S., and Alon, U. 2002. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet., 31, 64–68.CrossRefGoogle ScholarPubMed
Shilnikov, A. and Rulkov, N. F. 2004. Subthreshold oscillations in a map-based neuron model. Phys. Lett. A, 328, 177–184.CrossRefGoogle Scholar
Shilnikov, A., Gordon, R., and Belykh, I. 2008. Polyrhythmic synchronization in bursting networking motifs. Chaos, 18, 037120.CrossRefGoogle ScholarPubMed
Shilnikov, A. L. and Rulkov, N. F. 2003. Origin of chaos in a two-dimensional map modeling spiking-bursting neural activity. Int. J. Bif. Chaos, 13, 3325–3340.CrossRefGoogle Scholar
Shilnikov, L. P. 1965. A case of the existence of a countable number of periodic motions. Sov. Math. Doklady, 6, 163–166.Google Scholar
Shima, S. and Kuramoto, Y. 2004. Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators. Phys. Rev. E, 69, 036213.CrossRefGoogle ScholarPubMed
Shore, K. A., Spencer, P. S., and Pierce, I. 2008. Synchronization of chaotic semiconductor lasers. Pages 79–104 of: Pisarchik, A. N. (ed.), Recent Advances in Laser Dynamics: Control and Synchronization. Kerala: Research Singpost.Google Scholar
Sieber, J., Gonzalez-Buelga, A., Neild, S. A., Wagg, D. J., and Krauskopf, B. 2008. Experimental continuation of periodic orbits through a fold. Phys. Rev. Lett., 100, 244101.CrossRefGoogle ScholarPubMed
Simonov, A. Yu., Gordleeva, S. Yu., Pisarchik, A. N., and Kazantsev, V. B. 2013. Synchronization with an arbitrary phase shift in a pair of synaptically coupled neural oscillators. J. Exper. Theor. Phys. Lett., 98(10), 632–637.Google Scholar
Strogatz, S. H. 2003. Sync: The Emerging Science of Spontaneous Order. New York: Hyperion Press.Google Scholar
Strogatz, S. H. 2015. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Second edn. Boulder, CO: Westview Press.Google Scholar
Strogatz, S. H., and Mirollo, R. E. 1991. Stability of incoherence in a population of coupled oscillators. J. Stat. Phys., 63, 613–635.CrossRefGoogle Scholar
Sun, X., Lu, Q., Kurths, J., and Wang, Q. 2009. Spatiotemporal coherence resonance in a map lattice. Int. J. Bif. Chaos, 19(2), 737–743.CrossRefGoogle Scholar
Takens, F. 1981. Detecting strange attractors in turbulence. Pages 366–381 of: Rand, D. A. and Yong, L.-S. (eds.), Lecture Notes in Mathematics, vol. 898. New York: Springer-Verlag.Google Scholar
Tass, P., Rosenblum, M. G., Weule, J., Kurths, J. et al. 1998. Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phys. Rev. Lett., 81, 3291– 3294.CrossRefGoogle Scholar
Terry, J. R. and Van Wiggeren, G. D. 2001. Chaotic communication using generalized synchronization. Chaos, Solitons and Fractals, 12, 145–152.CrossRefGoogle Scholar
Thompson, J. M. T. and Stewart, H. B. 1986. Nonlinear Dynamics and Chaos. Chichester: Wiley.Google Scholar
Tinsley, M. R., Nkomo, S., and Showalter, K. 2012. Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat. Phys., 8(9), 662–665.CrossRefGoogle Scholar
Turing, A. M. 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B, 237, 37–72.CrossRefGoogle Scholar
Turner, R. H. and Killia, L. M. 1993. Collective Behavior. Englewood Cliffs, NJ: Prentic-Hall.Google Scholar
Uhm, W., Astakhov, V., Akopov, A., and Kim, S. 2003. Multistability formation and loss of chaos synchronization in coupled period-doubling systems. Int. J. Mod. Phys. B, 17, 4013–4022.CrossRefGoogle Scholar
Valverde, S. and Solé, R. V. 2005. Network motifs in computational graphs: A case study in software architecture. Phys. Rev. E, 72, 026107.CrossRefGoogle ScholarPubMed
Van der Pol, B. and Van der Mark, J. 1927. Frequency demultiplication. Nature, 120, 363– 364.CrossRefGoogle Scholar
Verhults, F. 1990. Nonlinear Differential Equations and Dynamical Systems. Berlin: Springer.Google Scholar
Voss, H. U. 2000. Anticipating chaotic synchronization. Phys. Rev. E, 61, 5115–5119.CrossRefGoogle ScholarPubMed
Voss, H. U. 2001. Dynamic long-term anticipation of chaotic states. Phys. Rev. Lett., 87, 014102.CrossRefGoogle ScholarPubMed
de Vries, G. 2001. Bursting as an emergent phenomenon in coupled chaotic maps. Phys. Rev. E, 64, 051914.CrossRefGoogle ScholarPubMed
Wallenstein, G. V., Scott Kelso, J. A., and Bressler, S. L. 1995. Phase transitions in spatiotemporal patterns of brain activity and behavior. Physica D, 84, 626–634.CrossRefGoogle Scholar
Wang, H., Lu, Q. and Wang, Q. 2008. Bursting and synchronization transition in the coupled modified ML neurons. Commun. Nonlinear Sci. Numer. Simulat., 13(8), 1668–1675.CrossRefGoogle Scholar
Warren, R. M. (ed). 1999. Auditory Perception: A New Analysis and Synthesis. Cambridge: Cambridge University Press.Google Scholar
Watts, D. J. and Strogatz, S. H. 1998. Collective dynamics of “small-world” networks. Nature, 393, 440–442.CrossRefGoogle ScholarPubMed
Willems, J. L. 1970. Stability Theory of Dynamical Systems. New York: Wiley.Google Scholar
Winfree, A. T. 1984. The prehistory of the Belousov–Zhabotinsky oscillator. J. Chem. Educ, 61(8), 661–663.CrossRefGoogle Scholar
Wolfrum, M. and Omel'chenko, O. E. 2011. Chimera states are chaotic transients. Phys. Rev. E, 84, 015201.CrossRefGoogle ScholarPubMed
Yamaguchi, Y. and Shimizu, H. 1984. Theory of self-synchronization in the presence of native frequency distribution and external noises. Physica D, 11(1), 212–226.CrossRefGoogle Scholar
Yamasue, K., Kobayashi, K., Yamada, H., Matsushige, K., and Hikihara, T. 2009. Controlling chaos in dynamic-mode atomic force microscope. Phys. Lett. A, 373, 3140–3144.CrossRefGoogle Scholar
Yanchuk, S. and Kapitaniak, T. 2003. Chaos-hyperchaos transition in coupled Rössler systems. Phys. Lett. A, 290, 139–144.Google Scholar
Yeldesbay, A., Pikovsky, A., and Rosenblum, M. 2014. Chimeralike states in an ensemble of globally coupled oscillators. Phys. Rev. Lett., 112, 144103.CrossRefGoogle Scholar
Yu, L., Ott, E., and Chen, Q. 1990. Transition to chaos for random dynamical systems. Phys. Rev. Lett., 65, 2935–2938.CrossRefGoogle ScholarPubMed
Zakharova, A., Kapeller, M., and Schöll, E. 2014. Chimera death: Symmetry breaking in dynamical networks. Phys. Rev. Lett., 112, 154101.CrossRefGoogle ScholarPubMed
Zhan, M., Hu, G., He, D. H., and Ma, W. Q. 2001. Phase locking in on-off intermittency. Phys. Rev. E, 64, 066203.CrossRefGoogle ScholarPubMed
Zou, W., Senthilkumar, D. V., Koseska, A., and Kurths, J. 2013. Generalizing the transition from amplitude to oscillation death in coupled oscillators. Phys. Rev. E, 88, 050901(R).CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×