[1] R., Auer, Ray class fields of global function fields with many rational places, Acta Arith. 95, 97–122, 2000.
[2] C.S., Ding, H., Niederreiter, and C.P., Xing, Some new codes from al-gebraic curves, IEEE Trans. Inform. Theory 46, No. 7, 2638–2642, 2000.
[3] N.D., Elkies, Excellent nonlinear codes from modular curves, in STOC'01: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, Hersonissos, Crete, 200–208, 2001.
[4] R., Fuhrmann, A., Garcia, and F., Torres, On maximal curves, J. Number Theory 67, 29–51, 1997.
[5] A., Garcia and H., Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladuţ bound, Invert. Math. 121, 211–222, 1995.
[6] A., Garcia, H., Stichtenoth and C.P., Xing, On subfields of the Hermitian function field, Compositio Math. 120, 137–170, 2000.
[7] G., van der Geer and M., van der Vlugt, Tables of curves with many points, Math. Comp. 69, 797–810, 2000.
[8] V.D., Goppa, Codes on algebraic curves, Soviet Math. Dokl. 24, 170–172, 1981.
[9] V.D., Goppa, Algebraic-geometric codes, Izv. Akad. Nauk. SSSR Ser. Mat. 46, 762–781, 1982.
[10] V.D., Goppa, Geometry and Codes, Kluwer, Dordrecht, 1988.
[11] D., Hachenberger, H., Niederreiter and C.P., Xing, Function-field codes, Appl. Algebra Engrg. Comm. Comput. 19, 201–211, 2008.
[12] J.P., Hansen and H., Stichtenoth, Group codes on certain algebraic curves with many rational points, AAECC 1, 67–77, 1990.
[13] D.R., Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189, 77–91, 1974.
[14] J.W.P., Hirschfeld, G., Korchmáros, and F., Torres, Algebraic Curves over a Finite Field, Princeton Series in Applied Mathematics, Princeton Univ. Press, 2008.
[15] T., Høholdt, J.H., van Lint, and R., Pellikaan, Algebraic Geometry Codes, Handbook in Coding Theory, Vol. 1, Elsevier, Amsterdam, 871–961, 1998.
[16] Y., Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Tokyo 28, 721–724, 1981.
[17] K.H., Leung, S., Ling, and C.P., Xing, New binary linear codes from algebraic curves, IEEE Trans. Inform. Theory 48, 285–287, 2002.
[18] S., Ling and C.P., Xing, Coding Theory: A First Course, Cambridge University Press, Cambridge, 2004.
[19] F.J., MacWilliams and N.J.A., Sloane, The Theory of Error-Correcting Codes, Amsterdam, the Netherlands: North Holland, 1977.
[20] C.J., Moreno, Algebraic Curves over Finite Fields, Cambridge Tracts in Math., Vol. 97, Cambridge University Press, Cambrige, 1991.
[21] H., Niederreiter and C.P., Xing, Towers of global function fields with asymptotically many rational places and an improvement on the Gilbert-Varshamov bound, Math. Nach. 195, 171–186, 1998.
[22] H., Niederreiter and C.P., Xing, Rational Points on Curves over Finite Fields: Theory and Applications, LMS 285, Cambridge, 2001.
[23] H., Niederreiter and C.P., Xing, Algebraic Geometry in Coding Theory and Cryptography, Princeton University Press, 2009.
[24] H., Niederreiter, C.P., Xing, and K.Y., Lam, A new construction of algebraic-geometry codes, Appl. Algebra Engr. Comm. Comput. 9, 373–381, 1999.
[25] R., Pellikaan, B.Z., Shen, and G.J.M., Wee, Which linear codes are algebraic-geometric? IEEE Trans. Inform. Theory 37, 583–602, 1991.
[26] F., Özbudak and H., Stichtenoth, Constructing codes from algebraic curves, IEEE Trans. Inform. Theory 45, 2502–2505, 1999.
[27] H.G., Ruck and H., Stichtenoth, A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math. 457, 185–188, 1994.
[28] J.-P., Serre, Rational Points on Curves over Finite Fields, Lecture Notes, Harvard University, 1985.
[29] H., Stichtenoth and C.P., Xing, Excellent non-linear codes from al-gebraic function fields, IEEE Trans. Inform. Theory 51, 4044–4046, 2005.
[30] H., Stichtenoth, Algebraic Function Fields and Codes, Graduate Texts in Mathematics 254, Springer Verlag, 2009.
[31] M.A., Tsfasman and S.G., Vladuţ, Algebraic-Geometric Codes, Dordrecht, The Netherlands: Kluwer, 1991.
[32] M.A., Tsfasman, S.G., Vladuţ, and D., Nogin, Algebraic Geometric Codes: Basis Notions, American Mathematical Soc., 1990.
[33] M.A., Tsfasman and S.G., Vladuţ, Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound, Math. Nach. 109, 21–28, 1982.
[34] C.P., Xing, Algebraic-geometry codes with aasymptotic parameters better that the Gilbert–Varshamov and the Tsfasman–Vladuţ–Zink bounds, IEEE Trans. Inform. Theory 47, 347–352, 2001.
[35] C.P., Xing, Constructions of codes from residue rings of polynomials, IEEE Trans. Inform. Theory 48, 2995–2997, 2002.
[36] C.P., Xing, Nonlinear codes from algebraic curves improving the Tsfasman-Vladuf-Zink bound, IEEE Trans. Inform. Theory 49, 1653–1657, 2003.
[37] C.P., Xing, Linear codes from narrow ray class groups of algebraic curves, IEEE Trans. Inform. Theory 50, No. 3, 541–543, 2004.
[38] C.P., Xing, Goppa geometric codes achieving the Gilbert-Varshamov bound, IEEE Trans. Inform. Theory 51, 259–264, 2005.
[39] C.P., Xing, Asymptotically good nonlinear codes from algebraic curves, IEEE Trans. Inform. Theory 57, No. 9, 5991–5995, 2011.
[40] C.P., Xing and S., Lin, A class of linear codes with good parameters from algebraic curves, IEEE Trans. Inform. Theory 46, No. 4, 1527–1532, 2000
[41] C.P., Xing, H., Niederreiter, and K.Y., Lam, Constructions of algebraic-geometry codes, IEEE Trans. Inform. Theory 45, No. 4, 1186–1193, 1999.
[42] C.P., Xing, H., Niederreiter, and K.Y., Lam, A construction of algebraic-geometry codes, IEEE Trans. Inform. Theory 45, No. 7, 2498–2501, 1999.
[43] C.P., Xing and S.L., Yeo, New linear codes and algebraic function fields over finite fields, IEEE Trans. Inform. Theory 53, No. 12, 4822–4825, 2007.
[44] C.P., Xing and S.L., Yeo, Construction of global function fields from linear codes and vice versa, Trans. Amer. Math. Soc. 361, 1333–1349, 2009.