Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-08T06:50:25.740Z Has data issue: false hasContentIssue false

6 - Diffusion in special environments

Published online by Cambridge University Press:  06 July 2010

Grazyna Antczak
Affiliation:
University of Wrocław, Poland; Leibniz Universität Hannover, Germany
Gert Ehrlich
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Single adatom diffusion on a variety of one- and two-dimensional surfaces has now been surveyed. However, events occurring at plane edges and other types of defects play an important role in affecting diffusion over the entire surface. There are also a huge number of indirect indications that impurities influence atom movement as well as other processes. The amount of direct information available for this field is not large, but we will examine it to gain at least some insight into such phenomena.

Near impurities

Some effort has been made to uncover the way in which atomic diffusion is affected by impurities in the substrate. A start was made by Cowan and Tsong in 1977, who explored the effect of rhenium atoms dissolved in tungsten on the surface diffusion of tungsten atoms on the (110) plane. This surface was prepared from W-3% Re alloy, and so had a number of rhenium substitutional atoms on the (110) plane. Tungsten atoms were then deposited on the surface, and the spatial distribution of places visited by atoms during their thermal movements was measured and compared with that for tungsten moving on the clean W(110), as shown in Fig. 6.1. Tungsten adatoms diffusing over a W-3% Re(110) surface were found to spend more time at a few sites on the surface, which the authors associated as most likely being next to interstitial rhenium atoms embedded in the surface.

Type
Chapter
Information
Surface Diffusion
Metals, Metal Atoms, and Clusters
, pp. 423 - 516
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cowan, P. L., Tsong, T. T., Direct observation of adatom-substitutional atom interaction on dilute metal alloy surfaces, Surf. Sci. 67 (1977) 158–179.CrossRefGoogle Scholar
Kellogg, G. L., Direct observation of substitutional-atom trapping on a metal surface, Phys. Rev. Lett. 72 (1994) 1662–1665.CrossRefGoogle ScholarPubMed
Ayrault, G., Ehrlich, G., Surface self-diffusion on an fcc crystal: An atomic view, J. Chem. Phys. 60 (1974) 281–294.CrossRefGoogle Scholar
Hernán, O. S., Parga, A. L. Vázquez, Gallego, J. M., Miranda, R., Self-surfactant effect on Fe/Au(100): Place exchange plus Au self-diffusion, Surf. Sci. 415 (1998) 106–121.CrossRefGoogle Scholar
Casanova, R., Tsong, T. T., Surface diffusion of single W atoms on hydrogen saturated W{123} plane, Surf. Sci. 94 (1980) L179–183.CrossRefGoogle Scholar
Tung, R. T., Graham, W. R., Single atom self-diffusion on nickel surfaces, Surf. Sci. 97 (1980) 73–87.CrossRefGoogle Scholar
Blandin, P., Ballone, P., Diffusion of metal adatom on compact metal surfaces in the presence of defects and impurities, Surf. Sci. 331–333 (1995) 891–895.CrossRefGoogle Scholar
Stumpf, R., H-enhanced mobility and defect formation at surfaces: H on Be(0001), Phys. Rev. B 53 (1996) R4253–4256.CrossRefGoogle Scholar
Kellogg, G. L., Hydrogen promotion of surface self-diffusion on Rh(100) and Rh(311), Phys. Rev. B 55 (1997) 7206–7212.CrossRefGoogle Scholar
Kellogg, G. L., Hydrogen inhibition of exchange diffusion on Pt(100), Phys. Rev. Lett. 79 (1997) 4417–4420.CrossRefGoogle Scholar
Haug, K., Zhang, Z., John, D., Walters, C. F., Zehner, D. M., Plummer, W. E., Effects of hydrogen in Ni(100) submonolayer homoepitaxy, Phys. Rev. B 55 (1997) R10233–10236.CrossRefGoogle Scholar
Haug, K., Jenkins, T., Effects of hydrogen on the three-dimensional epitaxial growth of Ni(100), (110), and (111), J. Phys. Chem. B 104 (2000) 10017–10023.CrossRefGoogle Scholar
Horch, S., Lorensen, H. T., Helveg, S., Laegsgaard, E., Stensgaard, I., Jacobsen, K. W., Nørskov, J. K., Besenbacher, F., Enhancement of surface self-diffusion of platinum atoms by adsorbed hydrogen, Nature 398 (1999) 134–136.CrossRefGoogle Scholar
Prévot, G., Guesmi, H., Croset, B., Ordered growth of nanodots on a pre-structured metallic template Au/N/Cu(001), Surf. Sci. 601 (2007) 2017–2025.CrossRefGoogle Scholar
Swiech, W., Stepped Pt(111), Personal communication, 2008.
Ehrlich, G., Hudda, F. G., Atomic view of surface self-diffusion: Tungsten on tungsten, J. Chem. Phys. 44 (1966) 1039–1049.CrossRefGoogle Scholar
Schwoebel, R. L., Shipsey, E. J., Step motion on crystal surfaces, J. Appl. Phys. 37 (1966) 3682–3686.CrossRefGoogle Scholar
Schwoebel, R. L., Step motion on crystal surfaces. II, J. Appl. Phys. 40 (1969) 614–618.CrossRefGoogle Scholar
Tsong, T. T., Direct observation of interactions between individual atoms on tungsten surfaces, Phys. Rev. B 6 (1972) 417–426.CrossRefGoogle Scholar
Bassett, D. W., Parsley, M. J., Field ion microscopic studies of transition metal adatom diffusion on (110), (211) and (321) tungsten surfaces, J. Phys. D 3 (1970) 707–716.CrossRefGoogle Scholar
Bassett, D. W., Surface atom displacement processes, Surf. Sci. 53 (1975) 74–86.CrossRefGoogle Scholar
Bassett, D. W., Chung, C. K., Tice, D., Field ion microscope studies of atomic displacement processes on metal surfaces, La Vide 176 (1975) 39–43.Google Scholar
Wang, S.-C., Tsong, T. T., Measurement of the barrier height of the reflective W(110) plane boundaries in surface diffusion of single atoms, Surf. Sci. 121 (1982) 85–97.CrossRefGoogle Scholar
Fink, H.-W., Ehrlich, G., Lattice steps and adatom binding on W(211), Surf. Sci. 143 (1984) 125–144.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Atom incorporation at surface clusters: An atomic view, Phys. Rev. Lett. 67 (1991) 2509–2512.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Atom condensation on surface clusters: Adsorption or incorporation? Phys. Rev. Lett. 75 (1995) 2964–2967.CrossRefGoogle ScholarPubMed
Stumpf, R., Scheffler, M., Mechanisms of self-diffusion on flat and stepped Al surfaces, Surf. Sci. 307–309 (1994) 501–506.CrossRefGoogle Scholar
Stumpf, R., Scheffler, M., Theory of self-diffusion at and growth of Al(111), Phys. Rev. Lett. 72 (1994) 254–257.CrossRefGoogle Scholar
Stumpf, R., Scheffler, M., Ab initio calculations of energies and self-diffusion on flat and stepped surfaces of aluminum and their implications on crystal growth, Phys. Rev. B 53 (1996) 4958–4973.CrossRefGoogle Scholar
Bockstedte, M., Liu, S. J., Pankratov, O., Woo, C. H., Huang, H., Diffusion of clusters down (111) aluminum islands, Comput. Mater. Sci. 23 (2002) 85–94.CrossRefGoogle Scholar
Ercolessi, F., Adams, J. B., Interatomic potentials from first-principles calculations: The force-matching method, Europhys. Lett. 26 (1994) 583–588.CrossRefGoogle Scholar
Liu, S. J., Huang, H., Woo, C. H., Schwoebel-Ehrlich barrier: From two to three dimensions, Appl. Phys. Lett. 80 (2002) 3295–3297.CrossRefGoogle Scholar
Zhu, W., Mongeot, F. Buatier, Valbusa, U., Wang, E. G., Zhang, Z., Adatom ascending at step edges and faceting on fcc metal (110) surfaces, Phys. Rev. Lett. 92 (2004) 106102 1–4.CrossRefGoogle ScholarPubMed
Stroscio, J. A., Pierce, D. T., Dragoset, R. A., Homoepitaxial growth of iron and a real space view of reflection-high-energy-electron diffraction, Phys. Rev. Lett. 70 (1993) 3615–3618.CrossRefGoogle Scholar
Smilauer, P., Harris, S., Determination of step-edge barriers to interlayer transport from surface morphology during the initial stages of homoepitaxial growth, Phys. Rev. B 51 (1995) 14798–14801.CrossRefGoogle ScholarPubMed
Amar, J. G., Family, F., Step barrier for interlayer-diffusion in Fe/Fe(100) epitaxial growth, Phys. Rev, B 52 (1995) 13801–13804.CrossRefGoogle ScholarPubMed
Bartelt, M. C., Evans, J. W., Temperature dependence of kinetic roughening during metal (100) homoepitaxy: Kinetic phase transition from “mounding” to smooth growth, Surf. Sci. 423 (1999) 189–207.CrossRefGoogle Scholar
Köhler, U., Jensen, C., Schindler, A. C., Brendel, L., Wolf, D. E., Scanning tunnelling microscopy and Monte Carlo studies of homoepitaxy on Fe(110), Philos. Mag. B 80 (2000) 283–292.CrossRefGoogle Scholar
Liu, C.-L., Adams, J. B., Diffusion mechanisms on Ni surfaces, Surf. Sci. 265 (1992) 262–272.CrossRefGoogle Scholar
Liu, C.-L., Adams, J. B., Diffusion behavior of single adatoms near and at steps during growth of metallic thin films on Ni surfaces, Surf. Sci. 294 (1993) 197–210.CrossRefGoogle Scholar
Stoltze, P., Simulation of surface defects, J. Phys.: Condens. Matter 6 (1994) 9495–9517.Google Scholar
Li, Y., DePristo, A. E., Predicted growth mode for metal homoepitaxy on the fcc(111) surface, Surf. Sci. 351 (1996) 189–199.CrossRefGoogle Scholar
Li, Y., DePristo, A. E., Potential energy barriers for interlayer mass transport in homoepitaxial growth on fcc(111) surfaces: Pt and Ag, Surf. Sci. 319 (1994) 141–148.CrossRefGoogle Scholar
Merikoski, J., Vattulainen, I., Heinonen, J., Ala-Nissila, T., Effect of kinks and concerted diffusion mechanisms on mass transport and growth on stepped metal surfaces, Surf. Sci. 387 (1997) 167–182.CrossRefGoogle Scholar
Markov, I., Surface energetics from the transition from step-flow growth to two-dimensional nucleation in metal homoepitaxy, Phys. Rev. B 56 (1997) 12544–12552.CrossRefGoogle Scholar
Vegt, H. A., Pinxteren, H. M., Lohmeier, M., Vlieg, E., Thornton, J. M. C., Surfactant-induced layer-by-layer growth of Ag on Ag(111), Phys. Rev. Lett. 68 (1992) 3335–3338.CrossRefGoogle Scholar
Wulfhekel, W., Lipkin, N. N., Kliewer, J., Rosenfeld, G., Jorritsma, L. C., Poelsema, B., Comsa, G., Conventional and manipulated growth of Cu/Cu(111), Surf. Sci. 348 (1996) 227–242.CrossRefGoogle Scholar
Icking-Konert, G. S., Giesen, M., Ibach, H., Decay of Cu adatom islands on Cu(111), Surf. Sci. 398 (1998) 37–48.CrossRefGoogle Scholar
Giesen, M., Icking-Konert, G. S., Ibach, H., Interlayer mass transport and quantum confinement of electronic states, Phys. Rev. Lett. 82 (1999) 3101–3104.CrossRefGoogle Scholar
Giesen, M., Ibach, H., Step edge barrier controlled decay of multilayer islands on Cu(111), Surf. Sci. 431 (1999) 109–115.CrossRefGoogle Scholar
Ferrón, J., Gómez, L., Camarero, J., Prieto, J. E., Cros, V., Parga, A. L. Vázquez, Miguel, J. J., Miranda, R., Influence of surfactants on atomic diffusion, Surf. Sci. 459 (2000) 135–148.CrossRefGoogle Scholar
Tománek, D., Mukherjee, S., Bennemann, K. H., Simple theory for the electronic and atomic structure of small clusters, Phys. Rev. B 28 (1983) 665–673.CrossRefGoogle Scholar
Stoltze, P., Nørskov, J. K., Accommodation and diffusion of Cu deposited on flat and stepped Cu(111) surfaces, Phys. Rev. B 48 (1993) 5607–5611.CrossRefGoogle ScholarPubMed
Karimi, M., Tomkowski, T., Vidali, G., Biham, O., Diffusion of Cu on Cu surface, Phys. Rev. B 52 (1995) 5364–5374.CrossRefGoogle Scholar
Breeman, M., Barkema, G. T., Langelaar, M. H., Boerma, D. O., Computer simulation of metal-on-metal epitaxy, Thin Solid Films 272 (1996) 195–207.CrossRefGoogle Scholar
Finnis, M. W., Sinclair, J. E., A simple empirical N-body potential for transition metals, Philos. Mag. A 50 (1984) 45–55.CrossRefGoogle Scholar
Trushin, O. S., Kokko, K., Salo, P. T., Hergert, W., Kotrla, M., Step roughening effect on adatom diffusion, Phys. Rev. B 56 (1997) 12135–12138.CrossRefGoogle Scholar
Giesen, M., Icking-Konert, G. S., Ibach, H., Fast decay of adatom islands and mounds on Cu(111): A new effective channel for interlayer mass transport, Phys. Rev. Lett. 80 (1998) 552–555.CrossRefGoogle Scholar
Morgenstern, K., Rosenfeld, G., Comsa, G., Laegsgaard, E., Besenbacher, F., Comment on “Interlayer mass transport and quantum confinement of electronic states”, Phys. Rev. Lett. 85 (2000) 468.CrossRefGoogle ScholarPubMed
Morgenstern, K., Rosenfeld, G., Comsa, G., Sorensen, M. R., Hammer, B., Laegsgaard, E., Besenbacher, F., Kinetics of fast island decay on Ag(111), Phys. Rev. B 63 (2001) 045412 1–5.CrossRefGoogle Scholar
Larsson, M. I., Kinetic Monte Carlo simulations of adatom island decay on Cu(111), Phys. Rev. B 64 (2001) 115428 1–10.CrossRefGoogle Scholar
Feibelman, P. J., Accelerated mound decay at adjacent kinks on Cu(111), Surf. Sci. 478 (2001) L349–354.CrossRefGoogle Scholar
Huang, H., Woo, C. H., Wei, H. L., Zhang, X. X., Kinetics-limited surface structures at the nanoscale, Appl. Phys. Lett. 82 (2003) 1272–1274.CrossRefGoogle Scholar
Wang, J., Huang, H., Cale, T. S., Diffusion barriers on Cu surfaces and near steps, Modeling Simul. Mater. Sci. Eng. 12 (2004) 1209–1225.CrossRefGoogle Scholar
Smirnov, A. S., Negulyaev, N. N., Niebergall, L., Hergert, W., Saletsky, A. M., Stepanyuk, V. S., Effect of quantum confinement of surface electrons on an atomic motion on nanoislands: Ab initio calculation and Kinetic Monte Carlo simulations, Phys. Rev. B 78 (2008) 041405(R) 1–4.CrossRefGoogle Scholar
Mo, Y., Varga, K., Kaxiras, K., Zhang, Z., Kinetic pathway for the formation of Fe nanowires on stepped Cu(111) surfaces, Phys. Rev. Lett. 94 (2005) 155503 1–4.CrossRefGoogle ScholarPubMed
Ding, H. F., Stepanyuk, V. S., Ignatiev, P. A., Negulyaev, N. N., Niebergall, L., Wasniowska, M., Gao, C. L., Bruno, P., Kirschner, J., Self-organized long-period adatom strings on stepped metal surfaces: Scanning tunneling microscopy, ab initio calculations, and kinetic Monte Carlo simulations, Phys. Rev. B 76 (2007) 033409 1–4.CrossRefGoogle Scholar
Liu, C.-L., Energetics of diffusion processes during nucleation and growth for the Cu/Cu(100) system, Surf. Sci. 316 (1994) 294–302.CrossRefGoogle Scholar
Montalenti, F., Ferrando, R., Jumps and concerted moves in Cu, Ag, and Au(110) adatom self-diffusion, Phys. Rev. B 59 (1999) 5881–5891.CrossRefGoogle Scholar
Yildirim, H., Kara, A., Durukanoglu, S., Rahman, T. S., Calculated pre-exponential factors and energetics for adatom hopping on terraces and steps of Cu(100) and Cu(110), Surf. Sci. 600 (2006) 484–492.CrossRefGoogle Scholar
Máca, F., Kotrla, M., Trushin, O. S., Energy barriers for interlayer diffusion in Pt/Pt(111) and Rh/Rh(111) homoepitaxy: Small islands, Czech. J. Phys. 49 (1999) 1591–1596.CrossRefGoogle Scholar
Máca, F., Kotrla, M., Trushin, O. S., Energy barriers for diffusion on stepped Rh(111) surfaces, Surf. Sci. 454–456 (2000) 579–583.CrossRefGoogle Scholar
Vrijmoeth, J., Vegt, H. A., Meyer, J. A., Vlieg, E., Behm, R. J., Surfactant-induced layer-by-layer growth of Ag on Ag(111): Origin and side effects, Phys. Rev. Lett. 72 (1994) 3843–3846.CrossRefGoogle Scholar
Meyer, J. A., Vrijmoeth, J., Vegt, H. A., Vlieg, E., Behm, R. J., Importance of the additional step-edge barrier in determining film morphology during epitaxial growth, Phys. Rev. B 51 (1995) 14790–14793.CrossRefGoogle ScholarPubMed
Bromann, K., Brune, H., Röder, H., Kern, K., Interlayer mass transport in homoepitaxial and heteroepitaxial metal growth, Phys. Rev. Lett. 75 (1995) 677–680.CrossRefGoogle ScholarPubMed
Elliott, W. C., Miceli, P. F., Tse, T., Stephens, P. W., Temperature and orientation dependence of kinetic roughening during homoepitaxy: A quantitative x-ray-scattering study of Ag, Phys. Rev. B 54 (1996) 17938–17942.CrossRefGoogle ScholarPubMed
Rosenfeld, G., Morgenstern, K., Beckmann, I., Wulfhekel, W., Laegsgaard, E., Besenbacher, F., Comsa, G., Stability of two-dimensional clusters on crystal surfaces: From Ostwald ripening to single-cluster decay, Surf. Sci. 402–404 (1998) 401–408.CrossRefGoogle Scholar
Brune, H., Bromann, K., Röder, H., Kern, K., Jacobsen, J., Stoltze, P., Jacobsen, K., Nørskov, J., Effect of strain on surface diffusion and nucleation, Phys. Rev. B 52 (1995) R14380–14383.CrossRefGoogle ScholarPubMed
Roos, K. R., Bhutani, R., Tringides, M. C., Inter-layer mass transport in a low-coverage, low island-density regime, Surf. Sci. 384 (1997) 62–69.CrossRefGoogle Scholar
Roos, K. R., Tringides, M. C., Determination of interlayer diffusion parameters for Ag/Ag(111), Phys. Rev. Lett. 85 (2000) 1480–1483.CrossRefGoogle Scholar
Krug, J., Comment on “Determination of interlayer diffusion parameters for Ag/Ag(111), Phys. Rev. Lett. 87 (2001) 149601 1.CrossRefGoogle Scholar
Morgenstern, K., Besenbacher, F., Comment on “Determination of interlayer diffusion parameters for Ag/Ag(111), Phys. Rev. Lett. 87 (2001) 149603 1.CrossRefGoogle Scholar
Heinrichs, S., Maass, P., Comment on “Determination of interlayer diffusion parameters for Ag/Ag(111), Phys. Rev. Lett. 87 (2001) 149605 1.CrossRefGoogle Scholar
Chvoj, Z., Ghosh, C., Rahman, T. S., Tringides, M. C., Prefactors for interlayer diffusion on Ag/Ag(111), J. Phys.: Condens. Matter 15 (2003) 5223–5230.Google Scholar
Morgenstern, K., Rosenfeld, G., Laegsgaard, E., Besenbacher, F., Comsa, G., Measurement of energies controlling ripening and annealing on metal surfaces, Phys. Rev. Lett. 80 (1998) 556–559.CrossRefGoogle Scholar
Li, M., Han, Y., Thiel, P. A., Evans, J. W., Formation of complex wedding-cake morphologies during homoepitaxial film growth of Ag on Ag(111): Atomistic, step-dynamics, and continuum modeling, J. Phys.: Condens. Matter 21 (2009) 084216 1–12.Google ScholarPubMed
Vegt, H. A., Vrijmoeth, J., Behm, B. J., Vlieg, E., Sb-enhanced nucleation in the homoepitaxial growth of Ag(111), Phys. Rev. B 57 (1998) 4127–4131.CrossRefGoogle Scholar
Heinrichs, S., Maass, P., Influence of adatom interactions on second-layer nucleation, Phys. Rev. B 66 (2002) 073402 1–4.CrossRefGoogle Scholar
Hong, K.-H., Cha, P.-R, Yoon, J.-K., The effect of lattice strain on the step edge diffusion and morphological development during epitaxial growth, Mater. Sci. Forum 426–432 (2003) 3463–3468.CrossRefGoogle Scholar
Hong, K.-H., Cha, P.-R., Nam, H.-S., Yoon, J.-K., The effect of lattice strain on step edge diffusion, Met. and Mat. Int. 9 (2003) 129–134.CrossRefGoogle Scholar
Cai, J., Ye, Y. Y., Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys, Phys. Rev. B 54 (1996) 8398–8410.CrossRefGoogle ScholarPubMed
Haftel, M. I., Rosen, M., New ballistically and thermally activated exchange processes in the vapor deposition of Au on Ag(111): a molecular dynamics study, Surf. Sci. 407 (1998) 16–26.CrossRefGoogle Scholar
Yu, B. D., Scheffler, M., Ab initio study of step formation and self-diffusion on Ag(100), Phys. Rev. B 55 (1997) 13916–13924.CrossRefGoogle Scholar
Kürpick, U., Rahman, T. S., Diffusion processes relevant to homoepitaxial growth on Ag(100), Phys. Rev. B 57 (1998) 2482–2492.CrossRefGoogle Scholar
Stoldt, C. R., Caspersen, K. J., Bartelt, M. C., Jenks, C. J., Evans, J. W., Thiel, P. A., Using temperature to tune film roughness: Nonintuitive behavior in a simple system, Phys. Rev. Lett. 85 (2000) 800–803.CrossRefGoogle Scholar
Caspersen, K. J., Layson, A. R., Stoldt, C. R., Fournee, V., Thiel, P. A., Evans, J. W., Development and ordering mounds during metal (100) homoepitaxy, Phys. Rev. B 65 (2002) 193407 1–4.CrossRefGoogle Scholar
Hontinfinde, F., Ferrando, R., Levi, A. C., Diffusion processes relevant to the epitaxial growth of Ag on Ag(110), Surf. Sci. 366 (1996) 306–316.CrossRefGoogle Scholar
Fu, T.-Y., Cheng, L.-C., Hwang, Y.-J., Tseng, T. T., Diffusion of Pd adatoms on W surfaces and their interactions with steps, Surf. Sci. 507–510 (2002) 103–107.CrossRefGoogle Scholar
Fu, T. Y., Cheng, L. C., Tsong, T. T., Determination of atomic potential energy for Pd adatom diffusion across W(111) islands and surfaces, J. Vac. Sci. Technol. A 20 (2002) 897–899.CrossRefGoogle Scholar
Goldstein, J. T., Ehrlich, G., Atom and cluster diffusion on Re(0001), Surf. Sci. 443 (1999) 105–115.CrossRefGoogle Scholar
Fu, T.-Y., Wu, H.-T., Tsong, T. T., Energetics of surface atomic processes near a lattice step, Phys. Rev. B 58 (1998) 2340–2346.CrossRefGoogle Scholar
Kellogg, G. L., Field ion microscope studies of single-atom surface diffusion and cluster nucleation on metal surfaces, Surf. Sci. Rep. 21 (1994) 1–88.CrossRefGoogle Scholar
Kyuno, K., Gölzhäuser, A., Ehrlich, G., Growth and the diffusion of platinum atoms and dimers on Pt(111), Surf. Sci. 397 (1998) 191–196.CrossRefGoogle Scholar
Oh, S.-M., Kyuno, K., Wang, S. C., Ehrlich, G., Step-edge versus interior barriers to atom incorporation at lattice steps, Phys. Rev. B 67 (2003) 075413 1–7.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Atom incorporation at edge defects in clusters, Phys. Rev. Lett. 93 (2004) 176101 1–4.CrossRefGoogle ScholarPubMed
Trushin, O. S., Kotrla, M., Máca, F., Energy barriers on stepped Ir/Ir(111) surfaces: A molecular statics calculation, Surf. Sci. 389 (1997) 55–65.CrossRefGoogle Scholar
Kürpick, U., Self-diffusion on stepped Ir(111) surfaces, Phys. Rev. B 69 (2004) 205410 1–6.CrossRefGoogle Scholar
Markov, I., Method for evaluation of the Ehrlich-Schwoebel barrier to interlayer transport in metal homoepitaxy, Phys. Rev. B 54 (1996) 17930–17937.CrossRefGoogle ScholarPubMed
Bott, M., Michely, T., Comsa, G., The homoepitaxial growth of Pt on Pt(111) studied with STM, Surf. Sci. 272 (1992) 161–166.CrossRefGoogle Scholar
Poelsema, B., Becker, A. F., Kunkel, R., Rosenfeld, G., Verheij, L. K., Comsa, G., in: Surface Science: Principles and Applications, Springer Proceedings in Physics Vol. 73, Howe, R. F., Lamb, R. N., Wandelt, K. (eds.), The role of kinetic effects in the growth of Pt on Pt(111), (Springer-Verlag, Berlin, 1993), p. 95–104.CrossRefGoogle Scholar
Kyuno, K., Ehrlich, G., Step-edge barriers on Pt(111): An atomistic view, Phys. Rev. Lett. 81 (1998) 5592–5595.CrossRefGoogle Scholar
Krug, J., Politi, P., Michely, T., Island nucleation in the presence of step-edge barriers: Theory and applications, Phys. Rev. B 61 (2000) 14037–14046.CrossRefGoogle Scholar
Kalff, M., Comsa, G., Michely, T., How sensitive is epitaxial growth to adsorbates? Phys. Rev. Lett. 81 (1998) 1255–1258.CrossRefGoogle Scholar
Tersoff, J., Gon, A. W. Denier, Tromp, R. M., Critical island size for layer-by-layer growth, Phys. Rev. Lett. 72 (1994) 266–269.CrossRefGoogle ScholarPubMed
Lundgren, E., Stanka, B., Leonardelli, G., Schmid, M., Varga, P., Interlayer diffusion of adatoms: A scanning-tunneling microscopy study, Phys. Rev. Lett. 82 (1999) 5068–5071.CrossRefGoogle Scholar
Villarba, M., Jónsson, H., Diffusion mechanisms relevant to metal crystal growth: Pt/Pt(111), Surf. Sci. 317 (1994) 15–36.CrossRefGoogle Scholar
Jónsson, H., Theoretical studies of atomic-scale processes relevant to crystal growth, Annu. Rev. Phys. Chem. 51 (2000) 623–653.CrossRefGoogle ScholarPubMed
Wang, R., Fichthorn, K. A., An investigation of the energetics and dynamics of adatom motion to descending step edges in Pt/Pt(111) homoepitaxy, Surf. Sci. 301 (1994) 253–259.CrossRefGoogle Scholar
Wang, R., Fichthorn, K. A., An investigation of adsorption-induced smoothing mechanisms in Pt/Pt(111) homoepitaxy, Molec. Simul. 11 (1993) 105–120.CrossRefGoogle Scholar
Jacobsen, J., Jacobsen, K. W., Stoltze, P., Nørskov, J. K., Island shape-induced transition from 2D to 3D growth for Pt/Pt(111), Phys. Rev. Lett. 74 (1995) 2295–2298.CrossRefGoogle Scholar
Feibelman, P. J., Interlayer self-diffusion on stepped Pt(111), Phys. Rev. Lett. 81 (1998) 168–171.CrossRefGoogle Scholar
Kresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993) 558–561.CrossRefGoogle ScholarPubMed
Kresse, G., Hafner, J., Ab initio molecular dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49 (1994) 14251–14269.CrossRefGoogle ScholarPubMed
Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave set, Phys. Rev. B 54 (1996) 11169–11186.CrossRefGoogle ScholarPubMed
Gölzhäuser, A., Ehrlich, G., Atom movement and binding on surface clusters: Pt on Pt(111) Clusters, Phys. Rev. Lett. 77 (1996) 1334–1337.CrossRefGoogle ScholarPubMed
Máca, F., Kotrla, M., Trushin, O. S., Energy barriers for diffusion on stepped Pt(111) surface, Vacuum 54 (1999) 113–117.CrossRefGoogle Scholar
Leonardelli, G., Lundgren, E., Schmid, M., Adatom interlayer diffusion on Pt(111): An embedded atom method study, Surf. Sci. 490 (2001) 29–42.CrossRefGoogle Scholar
Li, S.-C., Han, Y., Jia, J.-F., Xue, Q.-K., Liu, F., Determination of the Ehrlich-Schwoebel barrier in epitaxial growth of thin films, Phys. Rev. B 74 (2006) 195428 1–5.CrossRefGoogle Scholar
Kyuno, K., Ehrlich, G., Step-edge barriers: thruths and kinetic consequences, Surf. Sci. 394 (1997) L179–187.CrossRefGoogle Scholar
Oh, S.-M., Kyuno, K., Ehrlich, G., Interior barriers and dimer nucleation on islands, Surf. Sci. 540 (2003) L583–586.CrossRefGoogle Scholar
Stepanyuk, V. S., Negulyaev, N. N., Saletsky, A. M., Hergert, W., Growth of Co nanostructures on Cu(110): Atomistic scale simulations, Phys. Rev. B 78 (2008) 113406 1–4.CrossRefGoogle Scholar
Valkealahti, S., Manninen, M., Diffusion on aluminum-cluster surfaces and the cluster growth, Phys. Rev. B 57 (1998) 15533–15540.CrossRefGoogle Scholar
Baletto, F., Mottet, C., Ferrando, R., Molecular dynamics simulation of surface diffusion and growth on silver and gold clusters, Surf. Sci. 446 (2000) 31–45.CrossRefGoogle Scholar
Liu, S. J., Wang, E. G., Woo, C. H., Huang, H., Three-dimensional Schwoebel-Ehrlich barrier, J. Comp. Aid. Mat. Des. 7 (2001) 195–201.CrossRefGoogle Scholar
Huang, H., Adatom diffusion along and down island steps, J. Comp. Aid. Mat. Des. 9 (2002) 75–80.CrossRefGoogle Scholar
Mishin, Y., Mehl, M. J., Papaconstantopoulos, D. A., Voter, A. F., Kress, J. D., Structural stability and lattice defects in copper: Ab initio, tight binding, and embedded-atom calculations, Phys. Rev. B 63 (2001) 224106 1–16.CrossRefGoogle Scholar
Mongeot, F. Buatier, Zhu, W., Molle, A., Buzio, R., Boragno, C., Valbusa, U., Wang, E. G., Zhuang, Z., Nanocrystal formation and faceting instability in Al(110) homoepitaxy: True upward adatom diffusion at step edges and island corners, Phys. Rev. Lett. 91 (2003) 016102 1–4.Google Scholar
Wang, S. C., Ehrlich, G., Adatom motion to lattice steps: A direct view, Phys. Rev. Lett. 70 (1993) 41–44.CrossRefGoogle ScholarPubMed
Wang, S. C., Ehrlich, G., Atom condensation at lattice steps and clusters, Phys. Rev. Lett. 71 (1993) 4174–4177.CrossRefGoogle ScholarPubMed
Kellogg, G. L., Experimental observation of ballistic atom exchange on metal surfaces, Phys. Rev. Lett. 76 (1996) 98–101.CrossRefGoogle ScholarPubMed
Koh, S. J., Ehrlich, G., Self-assembly of one-dimensional surface structures: Long-range interactions in the growth of Ir and Pd on W(110), Phys. Rev. Lett. 87 (2001) 106103 1–4.CrossRefGoogle Scholar
Stepanyuk, V. S., Baranov, A. N., Tsivlin, D. V., Hergert, W., Bruno, P., Knorr, N., Schneider, M. A., Kern, K., Quantum interference and long-range adsorbate-adsorbate interactions, Phys. Rev. B 68 (2003) 205410 1–5.CrossRefGoogle Scholar
Negulyaev, N. N., Stepanyuk, V. S., Niebergall, L., Bruno, P., Hergert, W., Repp, J., Rieder, K. H., Meyer, G., Direct evidence for the effect of quantum confinement of surface-state electrons on atomic diffusion, Phys. Rev. Lett. 101 (2008) 226601 1–4.CrossRefGoogle ScholarPubMed
Burton, W. K., Cabrera, N., Frank, F. C., The growth of crystals and the equilibrium structure of their surfaces, Phil. Trans. Roy. Soc. A 243 (1951) 299–358.CrossRefGoogle Scholar
Bowkett, K. M., Smith, D. A., Field Ion Microscopy (North-Holland, Amsterdam, 1970), Chapter 5.Google Scholar
Mutaftschief, B., The Atomistic Nature of Crystal Growth (Springer-Verlag, Berlin, 2001), Section 17.3.CrossRefGoogle Scholar
Antczak, G., Jóźwik, P., Atom movement on a dislocated surface, Langmuir 24 (2008) 9970–9973.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×