Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2007
  • Online publication date: December 2009

3 - Stability of structural nanocrystalline materials – grain growth

Summary

Introduction

Knowledge of the thermal stability of nanocrystalline materials is important for both technological and scientific reasons. From a technological point of view, the thermal stability is important for consolidation of nanocrystalline particulates without coarsening the microstructure. That is, many methods, as described in Chapter 2, for synthesis of nanocrystalline materials result in particulate products which must be consolidated into bulk form. Since most consolidation processes involve both heat and pressure, the thermal stability of the nanoscale microstructure is always at risk. The goal of particulate consolidation is to attain essentially 100% theoretical density and good particulate bonding while preventing or minimizing grain growth of the nanocrystalline grains.

Understanding the scientific nature of stability, grain growth of nanocrystalline microstructures is a criterion for allowing strategies for minimizing grain growth to be developed. A basic scientific question with regard to nanocrystalline materials is whether their behavior involves “new physics” or is simply the expected grain-size-dependent behavior extrapolated to nanocrystalline grain sizes. Thermal stability is an important phenomenon to be addressed in this regard. The thermal stability in a broader sense involves not only the stability of the grain structure, that is the microstructure, but also the stability of the structure of the grain boundaries in nanocrystalline materials. A number of investigations on the thermal stability of nanocrystalline materials have been conducted. Grain growth in nanocrystalline materials has been reviewed by Suryanarayana (1995), Weissmuller (1996), and Malow and Koch (1996a,b).

References
Abe, Y. R., and Johnson, W. L. (1992). Mater. Sci. Forum, 88–90, 513.
Abe, Y. R., Holzer, J. C., and Johnson, W. L. (1992). Mater. Res. Soc. Symp. Proc., 238, 721.
Atkinson, H. V. (1988). Acta Metall., 36, 469.
Bansal, C., Gao, Z., and Fultz, B. (1995). NanoStructured Mater., 5, 327.
Barnett, S. A., Madan, A., Kim, I., and Martin, K. (2003). MRS Bulletin, 28, 169.
Bertaut, E. F. (1950). Acta Crystallogr., 3, 14; ibid., 5, 117.
Binder, K. (1991). In Materials Science and Technology, Vol. 5, Phase Transformations in Materials, chapter 7, ed. Cahn, R. W., Haasen, P., and Kramer, E. J. p. 405.
Birringer, R. (1989). Mater. Sci. Engr. A, A117, 33.
Boylan, K., Ostrander, D., Erb, U., Palumbo, G., and Aust, K. T. (1991). Scripta Metall. Mater., 25, 2711.
Burke, J. E., and Turnbull, D. (1952). Progr. Metal Phys., 3, 220.
Burkert, N., Grüne, R., Schmalzried, H., and Rahman, S. (1992). Ber. Bunsenges. Phys. Chem., 96, 1603.
Cahn, J. W. (1967). Trans. Metall. Soc. of AIME, 242, 166.
Cahn, J. W. (1999). Scand. J. Metallurgy, 20, 9.
Cahn, J. W., and Hillard, J. E. (1958). J. Chem. Phys., 28, 258.
Campbell, J. H., and Fauchet, M. (1986). Solid State Comm., 58, 739.
Chang, H., Altstetter, C. J., and Averback, R. S. (1992). J. Mater. Res., 7, 2962.
Chase, M. W., Davies, C. A., Downey, J. R., Frurip, D. J., McDonald, R. A., and Syverud, A. N. (1985). JANAF Thermochemical Tables, 3rd edition, J. Phys. Chem. Data, 14 (Supplement No. 1).
Chen, I. W. (1987). Acta Metall., 35, 1723.
Chen, L. C., and Spaepen, F. (1988). Nature, 336, 366.
Chen, L. C., and Spaepen, F. (1991). J. Appl. Phys., 69, 679.
Chen, L. C., and Spaepen, F. (1992). NanoStructured Mater., 1, 59.
Czubayko, U., Sursaeva, V. G., Gottstein, G., and Shvindlerman, L. S. (1998). Acta Mater., 46, 5863.
Delhez, R., de Keijser, Th. H., and Mittemeijer, E. J. (1980). In Accuracy in Powder Diffraction, NBS Special Publication No. 567, ed. Block, S. and Hubbard, C. R.Washington, D.C.: NBS, p. 213.
Doherty, R. D. (1975). Metall. Trans., A 6, 588.
Eckert, J., Holzer, J. C., Krill, C. E. III., and Johnson, W. L. (1992). J. Mater. Res., 7, 1751.
El-Sh erik, A. M., Boylan, D., Erb, U., Palumbo, G., and Aust, K. T. (1992). Mater. Res. Soc. Symp. Proc., 238, 727.
Enzo, S., Fagherazzi, G., Benedetti, A., and Polizzi, S. (1988). J. Appl. Phys., 21, 536.
Estrin, Y., Gottstein, G., Rabkin, E., and Shvindlerman, L. S. (2000). Scripta Mater., 43, 141.
Farber, B., Cadel, E., Menand, A., Schmitz, G., and Kirchheim, R. (2000). Acta Mater., 48, 789.
Feltham, P. (1957). Acta Metall., 5, 97.
Galina, A. V., Fradkov, V. Y., and Shvindlerman, L. S. (1987). Phys. Met. Metall., 63, 1220.
Gao, Z., and Fultz, B. (1993). NanoStructured Mater., 2, 231.
Gao, Z., and Fultz, B. (1994). NanoStructured Mater., 4, 939.
Gertsman, V. Y., and Birringer, R. (1994). Scripta Metall. Mater., 30, 577.
Gottstein, G., King, A. H., and Shvindlerman, L. S. (2000). Acta Mater., 48, 397.
Guinier, A. (1963). X-ray Diffraction, San Francisco: W. H. Freeman and Co., p. 121.
Günth er, B., Kumpmann, A., and Kunze, H.-D. (1992). Scripta Metall. Mater., 27, 833.
Gutkin, M. Yu., and Ovid'ko, I. A. (2004). Plastic Deformation in Nanocrystalline Materials. Berlin, Heidelberg, New York: Springer.
Gutkin, M. Yu., Ovid'ko, I. A., and Skiba, N. V. (2003). Acta Mater., 51, 4059.
Hammer, P., Steiner, A., Villa, R., Baker, M., Gibson, P. N., and Haupt, J. (1994). Surf. Coat. Technol., 68–69, 194.
Haslam, A. J., Moldovan, D., Yamakov, V., Wolf, D., Phillpot, S. R., and Gleiter, H. (2003). Acta Mater., 51, 2097.
Harris, K. E., Singh, V. V., and King, A. H. (1998). Acta Mater., 46, 2623.
Hillert, M. (1965). Acta Metall., 13, 227.
Hofler, H. J., and Averback, R. S. (1990). Scripta Metall. Mater., 24, 2401.
Hondros, E. D., and Seah, M. P. (1983). In Physical Metallurgy, 3rd edition, ed. Cahn, R. W., and Haasen, P.Netherlands: Elsevier Sci. Pub. BV, p. 856.
Hu, H., and Rath, B. B. (1970). Metall. Trans., 1, 3181.
Humphreys, F. J., and Hatherly, M. (1996). Recrystallization and Related Annealing Phenomena, chapter 9. Tarrytown, NY: Elsevier Science Inc., p. 281.
Hunderi, O., and Ryum, N. (1980). J. Mater. Sci., 5, 1104.
Iqbal, Z., and Veprek, S. (1982). J. Phys. C: Solid St. Phys., 15, 377.
Iqbal, Z., Veprek, S., Webb, A. P., and Cappezuto, P. (1981). Sol. State Commun., 37, 993.
Jin, M., Minor, A. M., Stach, E. A., and Morris, J. W. Jr (2004). Acta Mater., 52, 5381.
Karvankova, P., Männling, H.-D., Eggs, C., and Veprek, S. (2001). Surf. Coat. Technol., 146–147, 280.
Karvankova, P., Veprek-Heijman, M. G. J., Zawrah, M. F., and Veprek, S. (2004). Surf. Coat. Technol., 467, 133.
Karvankova, P., Veprek-Heijman, M. G. J., Azinovic, D., and Veprek, S. (2006). Surf. Coat. Technol., 200, 2978.
Kirchheim, R. (2002). Acta Mater., 50, 413.
Kissinger, H. E. (1957). Anal. Chem., 29, 1702.
Klement, U., Erb, U., El-Sherik, A. M., and Aust, K. T. (1995). Mater. Sci. Eng. A, A203, 177.
Klug, H. P., and Alexander, L. E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edition, chapter 9. New York: Wiley.
Knauth, P., Charai, A., and Gas, P. (1993). Scripta Metall. Mater., 28, 325.
Krill, C. E., and Birringer, R. (1998). Phil. Mag. A, 77, 621.
Krill, C. E., and Birringer, R. (2001). In Recrystallization and Grain Growth, ed. Gottstein, G., and Molodov, A. D.Berlin: Springer-Verlag, p. 205.
Krill, C. E., Helfen, L., Michels, D., et al. (2001). Phys. Rev. Lett., 86, 842.
Kurtz, S. K., and Carpay, F. M. A. (1980). J. Appl. Phys., 51, 5725.
Li, J. C. M. (1962). J. Appl. Phys., 33, 2958.
Li, S. Z., Fang, Q. F., Liu, Q., Li, Z. S., Gao, J., Nesladek, P., Prochazka, J., Veprek-Heijman, M. G. J., and Veprek, S. (2005). Composites Science and Technology, 65, 735.
Liu, F., and Kirchheim, R. (2004). Scripta Mater., 51, 521.
Liu, K. W., and Mucklich, F. (2001). Acta Mater., 49, 395.
Louat, N. P. (1974). Acta Metall., 22, 721.
Lu, K. (1993). NanoStructured Mater., 2, 643.
Malow, T. R., and Koch, C. C. (1996a). In Synthesis and Processing of Nanocrystalline Powder, ed. Bourell, D. L.Warrendale, PA: TMS, pp. 33–44.
Malow, T. R., and Koch, C. C. (1996b). Mater. Sci. Forum, 225–227, 595.
Männl ing, H.-D., Patil, D. S., Moto, K., Jilek, M., and Veprek, S. (2001). Surf. Coat. Technol., 146–147, 263.
Mayrhofer, P. H., Hörling, A., Karlsson, L., et al. (2003). Appl. Phys. Lett., 83, 2049.
Melendres, C. A., Narayanasamy, A., Maroni, V. A., and Siegel, R. W. (1989). J. Mater. Res., 4, 1246.
Michels, A., Krill, C. E., Ehrhardt, H., Birringer, R., and Wu, D. T. (1999). Acta Mater., 47, 2143.
Moldovan, D., Wolf, D., and Phillpot, S. R. (2001). Acta Mater., 49, 3521.
Moral, J. E., and Ashby, M. F. (1974). Acta Metall., 22, 567.
Mukherjee, A. K. (2002). Mater. Sci. Eng., A 322, 1.
Mullins, W. W. (1956). J. Appl. Phys., 27, 900.
Mullins, W. W. (1998). Acta Mater., 46, 6219.
Murayama, M., Howe, J. M., Hidaka, H., and Takaki, S. (2002). Science, 295, 2433.
Nichols, C. S., Mansuri, C. M., Townsend, S. J., and Smith, D. A. (1993). Acta Metall. Mater., 41, 1861.
Niederhofer, A., Nesladek, P., Männling, H.-D., Moto, K., Veprek, S., and Jilek, M. (1999). Surf. Coat. Technol., 120–121, 173.
Obraztsova, E. D. (1994). In Nanophase Materials, ed. Hadjipanayis, G. C., and Siegel, R. W.Dordrecht, Netherlands: Kluwer Academic Publishing, p. 438.
Okuda, S., Kobiyama, M., Inami, T., and Takamura, S. (2001). Scr. Mater., 44, 2009.
Ossadnik, Ch., Veprek, S., and Gregora, I. (1999). Thin Solid Films, 337, 148.
Ovid'ko, I.. (2002). Science, 295, 2386.
Ovid'ko, I. A. (2005). Int. Mater. Rev., 50, 65.
Ovid'ko, I. A., Pande, C. S., and Masumura, R. A. (2006). In Handbook on Nanomaterials, ed. Gogotsi, Y. G.Florida: CRC, p. 531.
Pande, C. S. (1987). Acta Metall., 35, 2671.
Pande, C. S., and Dantsker, E. (1990). Acta Metall., 38, 945.
Pande, C. S., and Dantsker, E. (1991). Acta Metall., 39, 1359.
Pande, C. S., and Dantsker, E. (1994). Acta Metall. Mater., 42, 2899.
Pande, C. S., and Masumura, R. A. (2003). In Nanostructures: Synthesis, Functional Properties and Applications, ed. Tsakalakos, T., Ovid'ko, I. A., and Vasudevan, A. K., Dordrecht: Kluwer, p. 169.
Pande, C. S., and Rajagopal, A. K. (2001). Acta Mater., 49, 1805.
Pande, C. S., Masumura, R. A., and Marsh, S. P. (2001). Phil. Mag., A 81, 1229.
Perez, R. J., Jiang, H. G., Dogan, C. P., and Lavernia, E. J. (1998). Metall. Mater. Trans. A, 29A, 2469.
Porter, D. A., and Easterling, K. E. (2001). Phase Transformations in Metals and Alloys. Cheltenham, UK:Nelson Thomas Ltd, p. 291.
Prochazka, J., Karvankova, P., Veprek-Heijman, M. G. J., and Veprek, S. (2004). Mater. Sci. Eng., A 384, 102.
Rabkin, E. (1999). Interface Sci., 7, 297.
Rhines, F. N., and Craig, K. R. (1974). Metall. Trans., A 5, 413.
Richter, H., Wang, Z. P., and Ley, L. (1981). Solid State Commun., 39, 625.
Rogl, P., and Schuster, J. C. (1992). Phase Diagrams of Ternary Boron Nitride and Silicon Nitride Systems. Materials Park, Ohio: ASM The Materials Society.
Sarott, F.-A., Iqbal, Z., and Veprek, S. (1982). Solid State Commun., 42, 465.
Sattler, K., Raina, G., Ge, M., Venkatiswaran, N., Xhie, J., Liao, Y. X., and Siegel, R. W. (1994). J. Appl. Phys., 76, 546.
Shan, Zh., Stach, E. A., Wiezorek, J. M. K., Knapp, J. A., Follstaedt, D. M., and Mao, S. X. (2004). Science, 305, 654.
Shaw, L., Luo, H., Villegas, J., and Miracle, D. (2003). Acta Mater., 51, 2647.
Shen, T. D., Koch, C. C., McCormick, T. L., Nemanich, R. J., Huang, J. Y., and Huang, J. G. (1995). J. Mater. Res., 10, 139.
Smith, C. S. (1948). Transactions AIME, 175, 15.
Smith, C. S. (1953). Acta Metall., 1, 295.
Smith, C. S. (1964). Metall. Rev., 9, 1.
Soer, W. A., Hosson, J. T. M., Minor, A. M., Morris, J. W. Jr, and Stach, E. A. (2004). Acta Mater., 52, 5783.
Suryanarayana, C. (1995). Intl. Mater. Rev., 40, 41.
Sutton, A. P., and Balluffi, R. W. (1996). Grain Boundaries in Crystalline Materials. Oxford: Oxford Science Publications.
Terwilliger, C. D., and Chiang, Y. M. (1995). Acta Mater., 43, 319.
Ungar, T., and Borbely, A. (1996). Appl. Phys. Lett., 69, 3173.
Ungar, T., Ott, S., Sanders, P. G., Borbely, A., and Weertman, J. R. (1998). Acta Mater., 46, 3693.
Upmanyu, M., Srolovitz, D. J., Shvindlerman, L. S., and Gottstein, G. (1998). Interface Sci., 6, 287.
Upmanyu, M., Srolovitz, D. J., Shvindlerman, L. S., and Gottstein, G. (2002). Acta Mater., 50, 1405.
Vandermeer, R. A., and Hu, H. (1994). Acta Metall. Mater., 42, 3071.
Veprek, S. (1999). J. Vac. Sci. Technol., A 17, 2401.
Veprek, S., and Reiprich, S. (1995). Thin Solid Films, 268, 64.
Veprek, S., Sarott, F.-A., and Iqbal, Z. (1987). Phys. Rev., B 36, 3344.
Veprek, S., Reiprich, S., and Li, S. H. (1995). Appl. Phys. Lett., 66, 2640.
Veprek, S., Haussmann, M., and Reiprich, S. (1996). J. Vac. Sci. Technol., A 14, 46.
Veprek, S., Nesladek, P., Niederhofer, A., Glatz, F., Jilek, M., and Sima, M. (1998). Surf. Coat. Technol., 108–109, 138.
Veprek, S., Männling, H.-D., Jilek, M., and Holubar., P. (2004a). Mater. Sci. Eng., A 366, 202.
Vep rek, S., Männling, H.-D., Niederhofer, A., Ma, D., and Mukherjee, S. (2004b). J. Vac. Sci. Technol., B 22, L5.
Veprek, S., Veprek-Heijman, G. M. J., Karvankova, P., and Prochazka, J. (2005a). Thin Solid Films, 476, 1.
Veprek, S., Männling, H.-D., Karvankova, P., and Prochazka, J. (2006). Surf. Coat. Technol., 200, 3876.
Verhoeven, J. D. (1986). Scanning electron microscopy. In Metals Handbook, 9th edition, Vol. 10. Metals Park, OH: ASM, p. 490.
Wagner, R., and Kampmann, R. (1991). In Materials Science and Technology, Vol. 5, Phase Transformations in Materials, chapter 4, ed. Cahn, R. W., Haasen, P., and Kramer, E. J., p. 213.
Wang, N., Wang, Z., Aust, K. T., and Erb, U. (1997). Acta Mater., 45, 1655.
Warren, B. E. (1990). X-ray Diffraction. New York: Dover Publication Inc., p. 262.
Weissmuller, J. (1993). NanoStructured Mater., 3, 261.
Weissmuller, J. (1994). J. Mater. Res., 9, 4.
Weissmuller, J. (1996). In Synthesis and Processing of Nanocrystalline Powder, ed. Bourell, D. L.Warrendale, PA: TMS, p. 3.
Weissmuller, J., Krauss, W., Haubold, T., Birringer, R., and Gleiter, H. (1992). NanoStructured Mater., 1, 439.
Williamson, G. K., and Hall, W. H. (1953). Acta Metall., 1, 22.
Wurschum, R., Brossmann, U., and Schaefer, H.-E. (2002). In Nanostructured Materials: Processing, Properties, and Applications, ed. Koch, C. C.Norwich, NY: William Andrew Pub., p. 267.
Youssef, K. M. (2003). Synthesis, structure, and properties of nanocrystalline zinc by pulsed-current electrodeposition. Ph.D. Thesis, North Carolina State University, p. 166.
Zarzycki, J. (1991). Glasses and the Vitreous State. Cambridge: Cambridge University Press, p. 161.
Zhang, R. F., and Liu, B. X. (2003). J. Mater. Res., 18, 1499.
Zhang, R. F., and Veprek, S. (2006). Mater. Sci. Eng., A424, 128.