Skip to main content Accessibility help
×
Home
  • Print publication year: 2007
  • Online publication date: December 2009

2 - Processing of structural nanocrystalline materials

Summary

Introduction

Structural nanomaterials are finding applications in bulk materials, films, coatings, and composites. Applications vary from wear-resistance coatings to load-bearing structures. Nanophase or nanocrystalline materials are also being used in electronics, refractory, biological, and catalytic applications. Progress in a wide range of structural applications for nanomaterials crucially depends on the development of new fabrication and processing technologies, along with a fundamental understanding of the relationship between the structure and properties of the feedstock powders and consolidated parts. Among the most important issues discussed here are experimental data, and theoretical and computer models concerning mechanical properties in nanostructured materials, which, in general, are different from the conventional coarse-grained counterparts. The competition between conventional and unusual deformation modes is believed to cause the unique mechanical properties of nanomaterials, serving as a basis for their structural applications. Fabrication of nanomaterials with bimodal (nano- and sub-micro-particles) composites, that exhibit both very high strength and reasonable ductility, represents a promising strategy in the synthesis of nanomaterials with enhanced properties for various structural applications. High strain rate and low-temperature superplasticity of some nanocrystalline materials are the subjects of growing fundamental research efforts motivated by a range of new applications of these super strong and super plastic materials in net shaping technologies.

Structural materials and composites containing at least one phase that is less than 100 nm are often termed as structural nanomaterials/composites (Roy et al., 1986).

Related content

Powered by UNSILO
References
Adamson, A. W. (1969). J. Colloid Interface Sci., 29, 744.
Akashi, K. (1985). Pure & Appl. Chem., 57, 1197.
Aliotta, F., Arcoleo, V., Buccoleri, S., Manna, G., and Liveri, V. T. (1995). Thermochim. Acta, 265, 15.
Ando, M., Suto, S., Suzuki, T., Tsuchida, T., Nakayama, C., Miura, N., and Yamazoe, N. (1994). J. Mater. Chem., 4, 631.
Arcoleo, V., and Liveri, V. T. (1996). Chem. Phys. Lett., 258, 223.
Arcoleo, V., Goffredi, M., Liveri, V. T., and Longo, A. (1998). Mater. Sci. Eng., C6, 7.
Atzmon, M., Verhoeven, J. D., Gibson, E. D., and Johnson, W. L. (1984) Appl. Phys. Lett., 45, 1052.
Bandyopadhyaya, R., Kumar, R., Gandhi, K. S., and Ramkrishna, D. (1997). Langmuir, 13, 3610.
Barin, I. (1993). Thermochemical Data of Pure Substances. Weinnheim: VCH – Verlag.
Barnett, S. A. (1993). In Physics of Thin Films Vol. 17: Mechanic and Dielectric Properties, ed. Francombe, M. H., and Vossen, J. L.Boston: Academic Press, p. 2.
Barnett, S., and Madan, A. (1999). Phys. World, 11, 45.
Barnett, S. A., Madan, A., Kim, I., and Martin, K. (2003). MRS Bulletin, 28, 169.
Basumallick, A., Biswas, K., Mukherjee, S., and Das, G. C. (1997). Mater. Letters, 30, 363.
Battezzati, L., Pappalepore, P., Durbiano, F., and Gallino, I. (1999). Acta Mater., 47, 1901.
Behrisch, R. (ed.) (1981). Sputtering by Particle Bombardment I.Berlin: Springer-Verlag.
Behrisch, R. (ed.) (1983). Sputtering by Particle Bombardment II. Berlin: Springer-Verlag.
Behrisch, R., and Wittmark, K. (eds.) (1991). Sputtering by Particle Bombardment III. Berlin: Springer-Verlag.
Belyakov, A., Sakai, T., Miura, H., and Kaibyshev, R. (2000). Phil. Mag. Lett., 80, 711.
Benavides, S., Li, Y., and Murr, L. E. (2000). In Ultrafine Grained Materials, ed. Misra, R. S., Semiatin, S. L., Suryanarayana, C., Thadhani, N. N., and Lowe, T. C.Warrendale, PA: TMS, pp. 155–163.
Benjamin, J. S. (1970). Metall. Trans., 1, 2943.
Berkovich, Y., and Garti, N. (1997). Colloids and Surfaces A: Physicochem. Eng. Aspects, 128, 91.
Beygelzimer, Y., Orlov, D., and Varyukhin, V. (2002) In Ultrafine Grained Materials II, ed. Zhu, Y. T., Langdon, T. G., Misra, R. S., Semiatin, S. L., Saran, M. J., and Lowe, T. C.Warrendale, PA: TMS, p. 297.
Boakye, E., Radovic, L. R., and Osseo-Asare, K. (1994). J. Colloid Interface Sci., 163, 120.
Bockris, J. O. M., and Razumney, G. A. (1967). Fundamental Aspects of Electrocrystallization. NY: Plenum Press, p. 27.
Bönnemann, H., Brijoux, W., and Joussen, T. (1990). Angew. Chem. Int. Ed. Engl., 29, 273.
Bönnemann, H., Brijoux, W., Brinkmann, R., et al. (1994). J. Mol. Catal., 86, 129.
Boutonnet, M., Kizling, J., Stenius, P., and Maire, G. (1982). Colloids Surfaces, 5, 209.
Brinker, C. J., and Scherer, G. W. (1990). Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing. San Diego: Academic Press Inc.
Brunell, I., Prochazka, J., and Veprek, S. (2005). Unpublished results.
Buhro, W. E., Haber, J. A., Waller, B. E., and Trentler, T. J. (1995). Am. Chem. Soc. Symp., 210, 20.
Cao, X., Koltypin, Y., Kataby, G., Prozorov, R., and Gedanken, A. (1995). J. Mater. Res., 10, 2952.
Carnaham, N. F., and Starling, K. E. (1969). J. Chem. Phys., 51, 635.
Carvalho, S., Rebouta, L., Ribeiro, E., Vaz, F., Denannot, M. F., Pacaud, J., Riviere, J. P., Paumier, F., Gaboriaud, R. J., and Alves, E. (2004). Surf. Sci. Technol., 177–178, 369.
Chapman, B. (1980). Glow Discharge Processes. New York: John Wiley & Sons.
Chase, M. W., Davies, C. A., Downey, J. R., Frurip, D. J., McDonald, R. A., and Syverud, A. N. (1985). J. Phys. Chem. Data, 14 (Supplement No. 1).
Chatelon, J. P., Terrier, C., and Roger, J. A. (1997). J. Sol–Gel Sci. Technol., 10, 55.
Chatterjee, A., and Chakrabarty, D. (1992). J. Mat. Sci., 27, 4115.
Chen, D. J., and Mayo, M. J. (1993). NanoStructured Materials, 2, 469.
Chew, C. H., Gan, L. M., and Shah, J. D. O. (1990). Disp. Sci. Tech., 11, 593.
Cho, Y. S., and Koch, C. C. (1991). Mater. Sci. Eng., A, 141, 139.
Choi, S. R., Park, I.-W., Kim, A. H., and Kim, K. H. (2004). Thin Solid Films, 447–448, 371.
Chu, X., and Barnett, S. A. (1995). J. Appl. Phys., 77, 4403.
Curtins, H. (1995). Surf. Coat. Technol., 76–77, 632.
Curtins, H. (2004). European Patent EP 1 392 879 B1.
Danielson, I., and Lindman, B. (1981). Colloids Surfaces, 3, 391.
Davis, R. M., and Koch, C. C. (1987). Scripta Metall., 21, 305.
Di Meglio, J. M., Dvolaitzky, M., and Taupin, C. (1989). In Progress in Microemulsions, ed. Martellucci, S., and Chester, A. N.New York: Plenum Press, p. 263.
Dinda, G. P., Rosner, H., and Wilde, G. (2005). Scripta Mater., 52, 577.
Diserens, M., Patscheider, J., and Lévy, F. (1998). Surf. Coat. Technol., 108–109, 241.
Diserens, M., Patscheider, J., and Lévy, F. (1999). Surf. Coat. Technol., 120–121, 158.
Eckert, J., Holzer, J. C., Krill, C. E., and Johnson, W. L. (1992). J. Mater. Res., 7, 1751.
Erb, U., Aust, K. T. and Palumbo, G. (2002). In Nanostructured Materials: Processing, Properties, and Applications, ed. Koch, C. C.Norwich, NY: William Andrew Publishing, p. 179.
Fang, J., Stokes, K. L., Wiemann, J., and Zhou, W. (2000). Mater. Lett., 42, 113.
Fang, J., Stokes, K. L., Wiemann, J. A., Zhou, W. L., Dai, J., Chen, F., and O'Connor, C. J. (2001). Mater. Sci. Eng., B83, 254.
Fecht, H. J. (2002). In Nanostructured Materials, Processing, Properties, and Applications, ed. Koch, C. C., Norwich, NY: William Andrew Publishing, p. 73.
Fecht, H. J., Hellstern, E., Fu, Z., and Johnson, W. L. (1990). Metall. Trans. A, 21A, 2333.
Fegely, B. Jr., White, P., and Bowen, H. K. (1985). J. Am. Ceram. Soc. Bull., 64, 1115.
Fletcher, P. D. I., and Horsup, D. I., (1992). J. Chem. Soc. Faraday Trans., 88, 865.
Fletcher, P. D. I., Howe, A. M., and Robinson, B. H. (1987). J. Chem. Soc. Faraday Trans., 83, 185.
Freim, J., McKittrick, J., Katz, J., and Sickafus, K., (1994). NanoStructured Mater., 4, 371–385.
Galatsis, K., Li, Y. X., Wlodarski, W., Conini, E., Faglia, G., and Sberveglieri, G. (2001). Sensors and Actuators B, 77, 472.
Ghosh, A. K., and Huang, W. (2000). In Ultrafine Grained Materials, ed. Misra, R. S., Semiatin, S. L., Suryanarayana, C., Thadhani, N. N., and Lowe, T. C.Warrendale, PA: TMS, p. 173.
Girshick, S. L., Heberlein, J. V. R., McMurry, P. H., Geberich, W. W., Irdonoglou, D. I., Rao, N. P., Godwani, A., Tymiak, N., Di Fonzo, F., Fan, M. H., and Neumann, D. (2002). In Innovative Processing of Thin Films and Nanocrystalline Powders, ed. Choy, K. L.London: Imperial College Press, p. 165.
Gleiter, H. (1989). Progress in Materials Science, 33, 233.
Gonsalves, K. E., and Rangarajan, S. P. (1997). In Chemistry and Physics of Nanostructures and Related Non-Equilibrium Material, ed. Ma, E., Fultz, B., Shull, R., Morall, J., and Nash, P., p. 149. TMS Meeting, Orlando, Fl.
Granqvist, C. G., and Buhrman, R. A. (1976). J. Appl. Phys., 47, 2200.
Groza, J. R. (1999). NanoStructured Materials, 12, 987.
Groza, J. R. (2002). In Nanostructured Materials, Processing, Properties, and Applications, ed. Koch, C. C.Norwich, NY: William Andrew Publishing, p. 115.
Groza, J. R., and Dowding, R. J. (1996). NanoStructured Materials, 7, 749.
Hafiz, J., Wang, X., Mukherjee, R., Mook, W., Perrey, C. R., Deneen, J., Herberlein, J. V. R., McMurry, P. H., Gerberich, W. W., Carter, C. B., and Girshick, S. L. (2005). Surf. Coat. Technol., 188–189, 364.
Harris, A. M., Schaffer, G. B., and Page, N. W. (1993). In 2nd Inter. Conf. Mech. Alloying for Structural Applications, ed. Barbadillo, J. J., Froes, F. H., and Schwarz, R., ASM Materials Park, OH, p. 15.
He, J., and Lavernia, E. J. (2001). J. Mater. Res., 16, 2724.
Heberlein, J. (2002). Pure & Appl. Chem., 74, 327.
Hirai, T., and Hayashi, S. (1982). J. Mater. Sci., 17, 1320.
Hirai, T., and Hayashi, S. (1983). J. Mater. Sci., 18, 2401.
Hirai, T., Sato, H., and Komasawa, I. (1993). Ind. Eng. Chem. Res, 32, 3014.
Hoar, T. P., and Schulman, J. H. (1943). Nature, 152, 102.
Holleck, H. (1986). J. Vac. Sci. Technol., A 4, 2661.
Holubar, P., Jilek, M., and Sima, M. (2000). Surf. Coat. Technol., 133–134, 145.
Hou, M. J., Kim, M., and Shah, D. O. (1988). J. Colloid Interface Sci., 123, 398.
Hu, X., Han, Z., Li, G., and Gu, M. (2002). J. Vac. Sci. Technol., A 20, 1921.
Huang, Y. J., Zhu, Y. T., Jiang, H., and Lowe, T. C. (2001). Acta Mater., 49, 1497.
Ingelsten, H. H., Bagwe, R., Palmqvist, A., Skoglundh, M., Svonberg, C., Holmberg, K., and Shah, D. O. (2001). J. Colloid Interface Sci., 241, 104.
Jean, J. H., and Ring, T. A. (1986). J. Am. Ceram. Soc. Bull., 65, 1574.
Jean, J. H., and Ring, T. A. (1988). Colloids and Surfaces, 29, 273.
Jilek, M., Cselle, T., Holubar, P., Morstein, M., Veprek-Heijman, M. G. J., and Veprek, S. (2004). Plasma Chem. Plasma Process, 24, 493.
Kayser, F., and Cohen, M. (1952). Metal. Progr., 61, 79.
Kegel, W. K., Theo, J., Overbeek, G., and Lekkerkerker, N. W. (1999). In Handbook of Microemulsion Science and Technology, ed. Kumar, P ., and Mittal, K. L., New York: Marcel Dekker, p. 13.
Kim, S. H., Kim, J. K., and Kim, K. H. (2002). Thin Solid Films, 420–421, 360.
Kingery, W. D., Bowen, H. K., and Uhlmann, D. R. (1976). Introduction to Ceramics, 2nd edition. New York: Wiley, p. 486.
Klassen, T., Oehring, M., and Bormann, R. (1994). J. Mater. Res., 9, 47.
Koch, C. C. (1991). In Materials Science and Technology, ed. Cahn, R. W., Haasen, P., and Kramer, E. J., vol. 15. Weinheim: VCH, p. 193.
Koch, C. C. (1993). NanoStructured Mater., 2, 109.
Koch, C. C., Smith, A. P., Bai, C., Spontak, R. J., and Balik, C. M. (2000). Mater. Sci. Forum, 343–346, 49.
Korth, G. E., and Williamson, R. L. (1995). Metall. Mater. Trans., 26A, 2571.
Kubo, R. (1962). J. Phys. Soc. Japan, 17, 975.
Lalauze, R., Visconte, E., Montanaro, L., and Pijolat, L. (1993). Sensors and Actuators, B13, 241.
Lambeth, D. N., Velu, E. M. T., Bellesis, G. H., Lee, L. L., and Laughlin, D. E. (1996). J. Appl. Physics, 79, 4496.
Lee, E.-A., and Kim, K. H. (2002). Thin Solid Films, 420–421, 371.
Lewis, D., Rayne, R. J., Bender, B. A., Kurihara, L. K., Chow, G. M., Flijlet, A., Kincaid, A., and Bruce, R. (1997). NanoStructured Mater., 9, 97.
Li, H., and Ebrahimi, F. (2003). Mater. Sci. Engr., A, 347, 93.
Li, S. H., Shi, Y. L., and Peng, H. R. (1992). Plasma Chem. Plasma Process, 12, 287.
Li, Y. X., Ghantasala, M. K., Galatsis, K., and Wlodarski, W. (1999). In Proceedings of SPIE – The International Society for Optical Engineering, 3892, 364.
Licciulli, A., and Mazzarelli, S., (2001). J. Sol–Gel Sci. Technol., 21, 195.
Livage, J., Henry, M., and Sanchez, C. (1988). In Progress in Solid State Chemistry, 18, 259.
Lopez, T., Gomez, R., Noverao, O., Solis, A. R., Mora, E. S., Castillo, S., Poulain, E., and Magaden, J. M. (1993). J. Catalysis, 141, 114.
López-Quintela, M. A., and Rivas, J. (1993). J. Colloid Interface Sci., 158, 446.
Luton, M. J., Jayanth, C. S., Disko, M. M., Matras, S., and Vallone, J. (1989). Mat. Res. Soc. Symp. Proc., 132, 79.
Mahanty, J., and Ninham, B. W. (1976). Dispersion Forces. New York: Academic Press.
Mates, T. E., and. Ring, T. A. (1987). Colloids and Surfaces, 24, 299.
Mayo, M. J. (1996). Int. Mater. Rev., 41, 85.
Meldrum, A., Boatner, L. A., and White, C. W. (2001). Nuclear Instruments Methods Phys. Res., B, 178, 7.
Meng, W. J., Zhang, X. D., Shi, B., Tittsworth, R. C., Rehn, L. E., and Baldo, P. M. (2002). J. Mater. Res., 17, 2628.
Misra, R. S., Mukherjee, A. M., and Yamazaki, K. (1996). J. Mater. Res., 11, 1144.
Münz, W.-D. (2003). MRS Bulletin, 28, 173.
Münz, W.-D., Lewis, D. B., Hovsepian, P. Eh., Schönjahn, C., Ehiasarian, A., and Smith, I. J. (2001). Surf. Eng., 17, 15.
Musil, J., Vyskocil, J., and Kadlec, S. (1993). In Physics of Thin Films, Vol. 17, Mechanic and Dielectric Properties, ed. Francombe, M. H., and Vossen, J. L.Boston: Academic Press, p. 80.
Musil, J. (2000). Surf. Coat. Technol., 125, 322.
Myung, H. S., Lee, H. M., Shaginyan, L. R., and Han, J. G. (2003). Surf. Coat. Technol., 163–164, 591.
Nagy, J. B. (1999). In Handbook of Microemulsion Science and Technology, ed. Kumar, P., and Mittal, K. L.New York: Marcel Dekker, p. 499.
Nagpal, V., Davis, R., and Riffle, J. (1992). In Polymeric Materials Science and Engineering, vol. 67. Washington DC: ACS, Books and Journal Division, p. 235.
Natarajan, U., Handique, K., Mehra, A., Bellare, J. R., and Khilar, K. C. (1996). Langmuir, 12, 2670.
Neilson, F. (1982). Manufacturing Chemist, 53, 38.
Niihara, K. (1991). J. Ceram. Soc. Japan, 99, 974.
Connor, O' C. J., Seip, C. T., Carpenter, E. E., Li, S., and John, V. T. (1999). NanoStructured Mater., 12, 65.
Oleszak, D., and Shingu, P. H. (1996). J. Appl. Phys., 79, 2975.
Osseo-Asare, K. (1999). In Handbook of Microemulsion Science and Technology, ed. Kumar, P., and Mittal, K. L.New York: Marcel Dekker, p. 549.
Özkar, S., Ozin, G. A., and Prokopowicz, R. A. (1992). Chem. Mater., 4, 1380.
Papp, S., and Dékány, I. (2001). Colloid Polymer Sci., 279, 449.
Park, J.-J. and Shin, D. H. (2002). In Ultrafine Grained Materials II, ed. Zhu, Y. T., Langdon, T. G., Misra, R. S., Semiatin, S. L., Saran, M. J., and Lowe, T. C.Warrendale, PA: TMS, p. 253.
Pathak, D. K. (1995). Ph.D. Thesis, North Carolina State University.
Patil, S., Kuiry, S. C., Seal, S., and Vanfleet, R. (2002). J. Nanoparticles Res., 4, 433.
Patscheider, J., Li, S. Z., and Veprek, S. (1996). Plasma Chem. Plasma Process., 16, 341.
Patscheider, J., Zehnder, T, and Diserens, M. (2001). Surf. Coat. Technol., 146–147, 201.
Pavlov, V. A. (1985). Phys. Met. Metall., 59, 1.
Perez, R. J., Huang, B., and Lavernia, E. J. (1996). NanoStructured Mater., 7, 565.
Pfender, E. (1985). Pure & Appl. Chem., 57, 1179.
Pierre, A. C. (1991). Ceramic Bull., 70, 1281.
Pillai, V., and Shah, D. O. (1996). J. Mag. Magn. Mater., 163, 243.
Pillai, V., Kumar, P., Multani, M. S., and Shah, D. O. (1993). Colloids and Surfaces A: Physicochemical Eng. Aspects, 80, 69.
Porta, F., Prati, L., Rossi, M., and Scarý, G. (2002). Colloids and Surfaces A: Physicochem. Eng. Aspects, 211, 43.
Prince, L. M. (1977). In Microemulsions Theory and Practice, ed. Prince, L. M.New York: Academic Press.
Prochazka, J., Karvankova, P., Veprek-Heijman, M. G. J., and Veprek, S. (2004). Mater. Sci. Eng., A, 384, 102.
Puippe, J. Cl. (1986). In Theory and Practice of Pulse Plating, ed. Puippe, J. Cl., and Leaman, F.Orlando, FL: AESF, p. 1.
Qi, L., Ma, J., and Shen, J. (1997). J. Colloid Interface Sci., 186, 498.
Qiu, S., Dong, J., and Chen, G. (1999). J. Colloid Interface Sci., 216, 230.
Rack, H. J., and Cohen, M. (1970). Mater. Sci. and Eng., 6, 320.
Rao, C. N. R. (1993). Mat. Sci. Eng., B, 18, 1.
Real, M. W. (1986). Proc. Br. Ceram. Soc., 38, 59.
Riedel, R., Kleebe, H. J., Schonfelder, H., and Aldinger, F. (1995). Nature, 374, 526.
Risbud, S. H., Shan, C.-H., and Mukherjee, A. K. (1995). J. Mater. Res., 10, 237.
Rivas, J., Lopez-Quintela, M. A., Lopez, J. A., Liz, L., and Duro, R. J. (1993). IEEE Trans. Magnetics, 29, 2655.
Rogl, P., and Schuster, J. C. (1992). Phase Diagrams of Ternary Boron Nitride and Silicon Nitride Systems. Materials Park, Ohio: ASM The Materials Society.
Roy, R., Roy, R. A., and Roy, D. M. (1986). Mater. Letters, 4, 323.
Roy, S., Das, D., Chakrabarty, D., and Agarwal, D. C. (1993). J. Appl. Physics, 74, 4746.
Ruckenstein, E. (1989). In Progress in Microemulsions, ed. Martellucci, S., and Chester, A. N.New York: Plenum Press, p. 3.
Ruckenstein, E. (1999). In Handbook of Microemulsion Science and Technology, ed. Kumar, P., and Mittal, K. L.New York: Marcel Dekker, p. 45.
Ruckenstein, E., and Chi, J. C. (1975). J. Chem. Soc. Faraday Trans. II, 71, 1690.
Saito, H., and Shinoda, K. (1970). J. Colloid Interface Sci., 32, 647.
Saito, Y., Utsunomiya, H., Tsuji, N. and Sakai, T. (1999). Acta Mater., 47, 579.
Sanders, P. G., Youngdahl, C. J., and Weertman, J. R. (1997). Mater. Sci. Eng. A, 234–236, 77.
Sayce, I. G. (1975). Pure & Appl. Chem., 48, 215.
Segal, V. M., Reznikov, V. I., Drobyshevkij, A. E., and Kopylov, V. I. (1981). Metally, 1, 115.
Sekino, T., Nakajima, T., and Niihara, K. (1996). Mater. Letters, 29, 165.
Shaw, W. J. D. (1998). Mater. Sci. Forum, 269–272, 19.
Shen, T. D., and Koch, C. C. (1995). Mater. Sci. Forum, 179–181, 17.
Shen, T. D., and Koch, C. C. (1996). Acta Mater., 44, 753.
Shingu, P. H., Ishihara, K. N., Uenishi, K., Kuyama, J., Huang, B., and Nasu, S. (1990). In Solid State Powder Processing, ed. Clauer, A. H., and Barbadillo, J. J.Warrendale, PA: TMS, p. 21.
Shukla, S., Seal., S., and Mishra, S. (2002). J. Sol–Gel Sci. Technol., 23, 151.
Shukla S. V., and Seal, S. (2004). In Encyclopedia of Nanoscience and Nanotechnology, vol. 10, ed. Nalwa, H. S.San Diego, CA: Academic Press, p. 27.
Siegel, R. W. (1991). In Materials Science and Technology, ed. Cahn, R. W., Haasen, P., and Kramer, E. J., vol. 15. Weinheim: VCH, p. 583.
Siegel, R. W., and Eastman, J. A. (1989). Mater. Res. Soc. Symp. Proc., 209, 3.
Skandan, G., Hahn, H., Kear, B. H., Reddy, M., and Cannon, W. R. (1994). Mater. Letters, 20, 305.
Skandan, G. (1995). NanoStructured Mater., 5, 111.
Smith, A. P., Ade, H., Balik, C. M., Koch, C. C., Smith, S. D., and Spontak, R. J. (2000). Macromolecules, 33, 2595.
Solans, C., Pons, R., and Kunieda, H. (1997). In Industrial Applications of Microemulsions, ed. Solans, C., and Kunieda, H.New York: Marcel Dekker Inc.
Sternitzke, M. (1997). J. Euro. Ceramic Society, 17, 1061.
Suryanarayana, C. (2001). Progress in Mater. Sci., 46, 1.
Suryanarayana, C. (2004). Mechanical Alloying and Milling. New York: Marcel Dekker, Inc.
Tan, G. L., and Wu, X. (1998). Thin Solid Films, 330, 59.
Tao, N. R., Sui, M. L., Lu, J., and Lu, K. (1999). NanoStructured Mater., 11, 433.
Tholen, A. R. (1979). Acta Metall., 27, 1765.
Thompson, A. W. (1977). Metall. Trans. A, 8A, 833.
Thornton, J. A., and Greene, J. E. (1994). In Handbook of Deposition Technologies for Films and Coatings, 2nd edition, ed. Bunshah, R. F.Park Ridge: Noyes Publ., p. 249.
Tojo, C., Blanco, M. C., and López-Quintela, M. A. (1997). Langmuir, 13, 4527.
Tojo, C., Blanco, M. C., and López-Quintela, M. A. (1998). J. Non-Crystalline Solids, 235, 688.
Traversa, E. (1995). J. Intelligent Materials Systems and Structures, 6, 860.
Trudeau, M. L., Schultz, R., Zaluski, L., Hosatte, S., Ryan, D. H., Doner, C. B., Tessier, P., Strom-Olsen, J. O., and Neste, A. (1992). Mater. Sci. Forum, 88–90, 537.
Ueji, R., Tsuji, N., Minamino, Y., Koizumi, Y., and Saito, Y. (2002). In Ultrafine Grained Materials II, ed. Zhu, Y. T., Langdon, T. G., Misra, R. S., Semiatin, S. L., Saran, M. J., and Lowe, T. C.Warrendale, PA: TMS, pp. 399–408.
Uyeda, R. (1991). Progress in Mater. Sci., 35, 1–96.
Valiahmetov, O. R., Galeyev, R. M., and Salishchev, G. A. (1990). Fiz. Metall. Metalloved, 10, 204.
Valiev, R. Z., Islamgaliev, R. K., and Alexandrov, I. V. (2000). Prog. Mater. Sci., 45, 103.
Vaz, F., Rebouta, L., Ramos, S., Silva, da M. F., and Soares, J. C. (1998). Surf. Coat. Technol., 108–109, 236.
Vaz, F., Rebouta, L., Almeida, B., Goudeau, P., Pacaud, J., Riviere, J. P., and Bessa e Sousa, J. (1999). Surf. Coat. Technol., 120–121, 166.
Vaz, F., Rebouta, L., Goudeau, P., Pacaud, J., Garem, H., Riviere, J. P., Cavaleiro, A., and Alves, E. (2000). Surf. Coat. Technol., 133–134, 307.
Vaz, F., Rebouta, L., Goudeau, Ph., Giraadeau, T., Pacaud, J., Riviere, J. P., and Traverse, A. (2001). Surf. Coat. Technol., 146–147, 274.
Vaz, F., Carvalho, S., Rebouta, L., Silva, M. Z., Paúl, A., and Schneider, D. (2002). Surf. Coat. Technol., 408, 160.
Veprek, S. (1972). J. Crystal Growth, 17, 101.
Veprek, S. (1980). In Current Topics in Materials Science, Vol. 4, ed. Kaldis, E . Amsterdam: North-Holland, p. 151.
Veprek, S. (1982). Pure & Appl. Chem., 54, 1197.
Veprek, S. (1983). Thin Solid Films, 130, 135.
Veprek, S. (1999). J. Vac. Sci. Technol., A 17, 2401.
Veprek, S., and Reiprich, S. (1995). Thin Solid Films, 268, 64.
Veprek, S., Brendel, C., and Schäfer, H. (1971). J. Crystal Growth, 9, 266.
Veprek, S., Niederhofer, A., Moto, K., Bolon, T., Männling, H.-D., Nesladek, P., Dollinger, G., and Bergmaier, A. (2000). Surf. Coat. Technol., 133–134, 152.
Veprek, S., Männling, H.-D., Niederhofer, A., Ma, D., and Mukherjee, S. (2004). J. Vac. Sci. Technol., B 22, L5.
Veprek, S., Veprek-Heijman, G. M. J., Karvankova, P., and Prochazka, J. (2005a). Thin Solid Films, 476, 1.
Veprek, S., Karvankova, P., and Veprek-Heijman, M. G. J., (2005b). J. Vac. Sci. Technol., B 23, L 17.
Veprek, S., Männling, H.-D., Karvankova, P., and Prochazka, J. (2006). Surf. Coat. Technol., 200 (12–13), 3876.
Voevodin, A. A., Schneider, J. M., Rebholz, C., and Matthews, A. (1996a). Tribology Int., 29, 559.
Voevodin, A. A., Capano, M. A., Safriet, A. J., Donley, M. S., and Zabinski, J. S. (1996b). Appl. Phys. Lett., 69, 188.
Voevodin., A. A., and Zabinski, J. S. (2000). Thin Solid Films, 370, 223.
Wagner, C. (1976). Colloid Polym. Sci., 254, 400.
Wagner, J. J., and Veprek, S. (1982). Plasma Chem. Plasma Process., 2, 95.
Wang, J. P., Han, D., Luo, H. L., Lu, Q. X., and Sun, Y. W. (1995). Appl. Phys., A, 61, 407.
Wang, Y., Chen, M., Zhou, F., and Ma, E. (2002). Nature, 419, 912.
Whittenberger, J. D., Arzt, E., and Luton, M. J. (1990). J. Mater. Res., 5, 271.
Wu, Z., Benfield, R. E., Guo, L., Li, H., Yang, Q., Grandjean, D., Li, Q., and Zhu, H. (2001). J. Phys. Condens. Matter, 13, 5269.
Yamada, K., and Koch, C. C. (1993). J. Mater. Res., 8, 1317.
Youssef, K. M. (2003). Ph.D. thesis, North Carolina State University.
Zeng, D., and Hampden-Smith, M. J. (1993). Chem. Mater., 5, 681.
Zhang, R. F., and Veprek, S. (2006). Mater. Sci. Eng. A, 424, (1–2), 128.
Zhang, X., and Koch, C. C. (2000). In Ultrafine Grained Materials, ed. Mishra, R. S., Semiatin, S. L., Suryanarayana, C., Thadhani, N. N., and Lowe, T. C.Warrendale, PA: TMS, p. 289.
Zhang, X., Wang, H., Scattergood, R. O., Narayan, J., and Koch, C. C. (2002a). Acta Mater., 50, 3995.
Zhang, X., Wang, H., Scattergood, R. O., Narayan, J., Koch, C. C., Sergueeva, A. V., and Mukherjee, A. K. (2002b). Acta Mater., 50, 4823.
Zhang, X., Wang, H., Scattergood, R. O., Narayan, J., and Koch, C. C. (2003). Mater. Sci. Eng. A, A, 344, 175.
Zhitomirsky, I., Petric, A., and Niewczas, M. (2002). JOM-J. of the Minerals Metals & Materials Soc., 54, 31.
Zhu, W., Deng, J., Tan, O. K., and Chen, X. (2002). Key Engineering Materials, 214–215, 183.