Skip to main content Accessibility help
×
Home
  • Print publication year: 2007
  • Online publication date: December 2009

5 - Mechanical properties of structural nanocrystalline materials – theory and simulations

Summary

Introduction

The rapidly growing scientific and technological interest in structural nanocrystalline bulk materials and coatings arises from their outstanding mechanical properties opening a range of new applications; see, for example, reviews (Koch et al., 1999; Gleiter, 2000; Gutkin et al., 2001; Mohamed and Li, 2001; Padmanabhan, 2001; Veprek and Argon, 2002; Kumar et al., 2003a; Milligan, 2003; Ovid'ko, 2004; Valiev, 2004; Chokshi and Kottada, 2006; Han et al., 2005; Ovid'ko, 2005a, b; Wolf et al., 2005) and books (Roco et al., 2000; Chow et al., 2000; Farkas et al., 2001; Berndt et al., 2003; Komarneni et al., 2003; Gutkin and Ovid'ko, 2004a). These outstanding mechanical properties are caused by the interface and nanoscale effects associated with structural peculiarities of nanocrystalline materials where the volume fraction of the interfacial phase is extremely high, and grain size d does not exceed 100 nm. For instance, nanocrystalline bulk materials and coatings often exhibit extremely high strength, superhardness and good fatigue resistance desired for numerous applications; see Chapter 4 and the literature (Siegel and Fougere, 1995; Hahn and Padmanabhan, 1995; Koch et al., 1999; Gleiter, 2000; Gutkin et al., 2001; Mohamed and Li, 2001; Niederhofer et al., 2001; Padmanabhan, 2001; Veprek and Argon, 2002; Kumar et al., 2003a; Milligan, 2003; Patscheider, 2003; Valiev, 2004; Chokshi and Kottada, 2006; Han et al., 2005; Ovid'ko, 2005a, b; Wolf et al., 2005). At the same time, in most cases, nanocrystalline materials show low tensile ductility at room temperature, which essentially limits their practical utility.

References
Andrievskii, R. A., Kalinnikov, G. V., Kobelev, N. P., Soifer, Ya.M., and Shtansky, D. V. (1997). Phys. Solid State, 39, 1661.
Andrievskii, R. A. (1998). Nanostructured Materials: Science and Technology. Dordrecht: Kluwer Academic Publishers.
Argon, A. S. (1979). Acta Mater., 27, 47.
Armstrong, R. W., and Head, A. K. (1965). Acta Met., 13, 759.
Asaro, R. J., Krysl, P., and Kad, B. (2003). Phil. Mag. Lett., 83, 733.
Asaro, R. J., and Suresh, S. (2005). Acta Mater., 53, 3369.
Ashby, M. F., Gandhi, C., and Taplin, D. M. R. (1979). Acta Mater., 27, 699.
Astanin, V. V., Sisanbaev, A. V., Pshenichnyuk, A. I., and Kaibyshev, O. A. (1997). Scr. Mater., 36, 117.
Balluffi, R. W., Kwok, T., and Bristowe, P. D. (1981). Scripta Met., 15, 951.
Benoist, P., and Martin, G. (1975). Thin Solid Films, 25, 181.
Berndt, C. C., Fischer, T., Ovid'ko, I. A., Skandan, G., and Tsakalakos, T. (eds.) (2003). Nanomaterials for Structural Applications, Vol. 740, Warrendale: MRS Symp. Proc.
Birringer, R., Gleiter, H., Klein, H. P., and Mazquardt, P. (1984). Phys. Lett., A 102, 365.
Bobylev, S. V., Ovid'ko, I. A., and Sheinerman, A. G. (2001). Phys. Rev., B 64, 224507.
Bobylev, S. V., Gutkin, M.Yu., and Ovid'ko, I. A. (2004). Acta Mater., 52, 3793.
Bokshtein, B. S. (1978). Diffusion in Metals. Moscow: Metallurgiya (in Russian).
Bokstein, B., Ivanov, V., Oreshina, O., Peteline, A., and Peteline, S. (2001). Mater. Sci. Eng., A 302, 151.
Bollmann, W. (1989). Mater. Sci. Eng., A 113, 129.
Bristowe, P. D., Brokman, A., Spaepen, T., and Balluffi, R. W. (1980). Scripta Met., 14, 943.
Brokman, A., Bristowe, P. D., and Balluffi, R. W. (1981). Appl. Phys., 52, 6116.
Carsley, J. E., Ning, J., Milligan, W. W., Hackney, S. A., and Aifantis, E. C. (1995). Nanostruct. Mater., 5, 441.
Caro, A., and Swygenhoven, H. (2001). Phys. Rev., B 63, 134101.
Champion, Y., Langlois, C., Guerin-Mailly, S., Langlois, P., Bonnentier, J.-L., and Hytch, M. (2003). Science, 300, 310.
Chen, M., Ma, E., Hemker, K. J., Sheng, H., Wang, Y., and Cheng, X. (2003). Science, 300, 1275.
Cheng, S., Spencer, J. A., and Milligan, W. W. (2003). Acta Mater., 51, 4505.
Chokshi, A. H., and Kottada, R. S. (2006). Transactions of the Indian Institute of Metals. (in press).
Chokshi, A. H., Rosen, A., Karch, J., and Gleiter, H. (1989). Scr. Metall., 23, 1679.
Chou, Y. T. (1967). J. Appl. Phys., 38, 2080.
Chow, G.-M., Ovid'ko, I. A., and Tsakalakos, T. (eds.), (2000). Nanostructured Films and Coatings, NATO Science Series. Dordrecht: Kluwer.
Clarke, D. R. (1987). J. Amer. Ceram. Soc., 70, 15.
Coble, R. L. (1963). J. Appl. Phys., 34, 1679.
Cocks, A. C. F., and Ashby, M. F. (1982). Progr. Mater. Sci., 27, 189.
Conrad, H. (2003). Mater. Sci. Eng. A, 341, 216.
Conrad, H., and Narayan, J. (2000). Scr. Mater., 42, 1025.
Das, J., Loeser, W., Kuehn, U., Eckert, J., Roy, S. K., and Schultz, L. (2003). Appl. Phys. Lett., 82, 4690.
Ebrahimi, F., Zhai, Q., and Kong, D. (1998). Scr. Mater., 39, 315.
Evans, A. G., and Hirth, J. P. (1992). Scr. Metall. Mater., 26, 1675.
Farkas, D., Kung, H., Mayo, M., Swygenhoven, H., and Weertman, J. (2001). Structure and Mechanical Properties of Nanophase Materials – Theory and Computer Simulations vs. Experiment. Warrendale: MRS.
Farkas, D., Swygenhoven, H., and Derlet, P. M. (2002). Phys. Rev., B 66, 060101 (R).
Fedorov, A. A., Gutkin, M.Yu., and Ovid'ko, I. A. (2002). Scr. Mater., 47, 51.
Fedorov, A. A., Gutkin, M.Yu., and Ovid'ko, I. A. (2003). Acta Mater., 51, 887.
Fischer, J. C. (1951). J. Appl. Phys., 22, 74.
Frozeth, A. G., Derlet, P. M., and Swygenhoven, H. (2004a). Acta Mater., 52, 5863.
Frozeth, A. G., Derlet, P. M., and Swygenhoven, H. (2004b). Acta Mater., 52, 2259.
Gan, Y., and Zhou, B. (2001). Scr. Mater., 45, 625.
Gandhi, C., and Ashby, M. F. (1979). Acta Mater., 27, 1565.
Girifalco, L. A., and Welch, D. O. (1967). Point Defects and Diffusion in Strained Metals. Gordon and Breach.
Gleiter, H. (1989). Progr. Mater. Sci., 33, 223.
Gleiter, H. (1995). Nanostruct. Mater., 6, 3.
Gleiter, H. (2000). Acta Mater., 48, 1.
Gottstein, G., King, A. H., and Shvindlerman, L. S. (2000). Acta Mater., 48, 397.
Gryaznov, V. G., Kaprelov, A. M., and Romanov, A. E. (1989). Scr. Metall., 23, 1443.
Gryaznov, V. G., Polonsky, I. A., Romanov, A. E., and Trusov, L. I. (1991). Phys. Rev., B 44, 42.
Gryaznov, V. G., and Trusov, L. I. (1993). Progr. Mater. Sci., 37, 289.
Gryaznov, V. G., Gutkin, M.Yu., Romanov, A. E., and Trusov, L. I. (1993). J. Mater. Sci., 28, 4359.
Gutkin, M.Yu., and Ovid'ko, I. A. (1993). Nanostruct. Mater., 2, 631.
Gutkin, M.Yu., and Ovid'ko, I. A. (1994). Phil. Mag., A 70, 561.
Gutkin, M.Yu., and Ovid'ko, I. A. (2001). Phys. Rev., B 63, 064515.
Gutkin, M.Yu., and Ovid'ko, I. A. (2004a). Plastic Deformation in Nanocrystalline Materials. Berlin, New York: Springer.
Gutkin, M.Yu., and Ovid'ko, I. A. (2004b). Phil. Mag. Lett., 84, 655.
Gutkin, M.Yu., and Ovid'ko, I. A. (2005). Appl. Phys. Lett., 87, 251916.
Gutkin, M.Yu., and Ovid'ko, I. A. (2006). Phil. Mag., 86, 1483.
Gutkin, M.Yu., Ovid'ko, I. A., and Pande, C. S. (2001). Rev. Adv. Mater. Sci., 2, 80.
Gutkin, M.Yu., Kolesnikova, A. L., Ovid'ko, I. A., and Skiba, N. V. (2002). Phil. Mag. Lett., 82, 651.
Gutkin, M.Yu., Ovid'ko, I. A., and Skiba, N. V. (2003a). Acta Mater., 51, 4059.
Gutkin, M.Yu., Ovid'ko, I. A., and Skiba, N. V. (2003b). Mater. Sci. Eng., A 339, 73.
Gutkin, M.Yu., Ovid'ko, I. A., and Skiba, N. V. (2003c). J. Phys., D 36, L47.
Gutkin, M.Yu., Ovid'ko, I. A., and Pande, C. S. (2004a). Phil. Mag., 84, 847.
Gutkin, M.Yu., Ovid'ko, I. A., and Skiba, N. V. (2004b). Acta Mater., 52, 1711.
Gutkin, M.Yu., Ovid'ko, I. A., and Skiba, N. V. (2005a). J. Phys., D 38, 3921.
Gutkin, M.Yu., Ovid'ko, I. A., and Skiba, N. V. (2005b). Rev. Adv. Mater. Sci., 10, 483.
Hahn, H., and Padmanabhan, K. A. (1995). Nanostruct. Mater., 6, 191.
Hahn, H., and Padmanabhan, K. A. (1997). Phil. Mag., B 76, 559.
Hahn, H., Mondal, P., and Padmanabhan, K. A. (1997). Nanostruct. Mater., 9, 603.
Han, B. Q., Lavernia, E., and Mohamed, F. A. (2005). Rev. Adv. Mater. Sci., 9, 1.
Harris, K. E., Singh, V. V., and King, A. H. (1998). Acta Mater., 46, 2623.
Harrison, G. (1961). Trans. Faraday Soc., 57, 1191.
Hart, E. W. (1967). Acta Mater., 15, 351.
Haslam, A. J., Moldovan, D., Yamakov, V., Wolf, D., Phillpot, S. R., and Gleiter, H. (2003). Acta Mater., 51, 2097.
Hasnaoui, A., Derlet, P. M., and Swygenhoven, H. (2004). Acta Mater., 52, 2251.
He, J. H., and Lavernia, E. J. (2001). J. Mater. Res., 16, 2724.
He, G., Eckert, J., Loeser, W., and Schultz, L. (2003). Nature Mater., 2, 33.
He, G., Hagiwara, M., Eckert, J., and Loeser, W. (2004). Phil. Mag. Lett., 84, 365.
Hirth, J. P., and Lothe, J. (1982). Theory of Dislocations. NewYork: McGraw-Hill Publ. Co.
Hoefler, H. J., Hahn, H., and Averback, S. (1993). Defect and Diffusion Forum, 68, 99.
Horvath, J., Birringer, R., and Gleiter, H. (1987). Solid State Comm., 62, 391.
Hugo, R. C., Kung, H., Weertman, J. R., Mitra, R., Knapp, J. A., and Follstaedt, D. M. (2003). Acta Mater., 51, 1937.
Indenbom, V. I. (1961). Sov. Phys. Sol. State 3, 1506.
Islamgaliev, R. K., Valiev, R. Z., Mishra, R. S., and Mukherjee, A. K. (2001). Mater. Sci. Eng., A 304–306, 206.
Jia, D., Ramesh, K. T., and Ma, E. (2003). Acta Mater., 51, 3495.
Jin, M., Minor, A. M., Stach, E. A., and Morris, J. W. Jr (2004). Acta Mater., 52, 5381.
Karimpoor, A. A., Erb, U., Aust, K. T., and Palumbo, G. (2003). Scr. Mater., 49, 651.
Ke, M., Milligan, W. W., Hackney, S. A., Carsley, J. E., and Aifantis, E. C. (1995). Nanostruct. Mater., 5, 689.
Kim, H. S. (1998). Scr. Mater., 39, 1057.
Kim, H. S., Estrin, Y., and Bush, M. B. (2000). Acta Mater., 48, 493.
King, A. H. (1999). Interf. Sci., 7, 251.
Klimanek, P., Klemm, V., Romanov, A. E., and Seefeldt, M. (2001). Adv. Eng. Mater., 3, 877.
Klinger, L. M., and Gorbunov, D. A. (1988). Structure and Properties of Interfaces in Metals. Moscow: Nauka (in Russian).
Koch, C. C. (2003). Scr. Mater., 49, 657.
Koch, C. C., and Narayan, J. (2001). Mater. Res. Soc. Symp. Proc., 634, B5.1.1.
Koch, C. C., Morris, D. G., Lu, K., and Inoue, A. (1999). MRS Bullet., 24, 54.
Kolobov, Yu. R. (2002). Interf. Sci., 10, 31.
Kolobov, Yu. R., Grabovetskaya, G. P., Ratochka, I. V., and Ivanov, K. V. (1999). Nanostruct. Mater., 12, 1127.
Kolobov, Yu.R., Grabovetskaya, G. P., Ivanov, K. V., Valiev, R. Z., and Lowe, T. C. (2000). In Investigations and Applications of Severe Plastic Deformation, ed. Lowe, T. C., and Valiev, R. Z., NATO Science Series. Dordrecht: Kluwer, p. 261.
Komarneni, S., Vaja, R. A., Lu, G. Q., Matsushita, J.-I., and Parker, J. C. (eds.) (2003). Nanophase and Nanocomposite Materials IV, vol. 703, Warrendale: MRS Symp. Proc.
Konstantinidi s, D. A., and Aifantis, E. C. (1998). Nanostruct. Maters., 10, 1111.
Krujicic, M., and Olson, G. B. (1998). Interface Sci., 6, 155.
Kumar, K. S., Suresh, S., and Swygenhoven, H. (2003a). Acta Mater., 51, 5743.
Kumar, K. S., Suresh, S., Chisholm, M. F., Norton, J. A., and Wang, P. (2003b). Acta Mater., 51, 387.
Kuntz, J. D., Zhan, G.-D., and Mukherjee, A. K. (2004). MRS Bullet., 29, 22.
Kurzydlowski, K. J. (1990). Scr. Metall. Mater., 24, 879.
Kwok, T., Ho, P. S., Yip, S., and Balluffi, R. W. (1981). Phys. Rev. Lett., 47, 1148.
Larikov, L. N. (1995). Metal. Phys. Appl. Tech., 17, 1.
Lasalmonie, A., and Strudel, J. L. (1986). J. Mater. Sci., 21, 1837.
Li, J. C. M. (1963). Trans. TMS-AIME, 227, 247.
Li, J. C. M., and Chou, Y. T. (1970). Met. Trans., 1, 1145.
Li, H., and Ebrahimi, F. (2004). Appl. Phys. Lett., 84, 4307.
Li, H., and Ebrahimi, F. (2005). Adv. Mater., 17, 1969.
Lian, J., Baudelet, B., and Nazarov, A. A. (1993). Mater. Sci. Eng., A 172, 23.
Liao, X. Z., Zhou, F., Lavernia, E. J., et al. (2003a). Appl. Phys. Lett., 83, 632.
Liao, X. Z., Zhou, F., Lavernia, E. J., He, D. W., and Zhu, Y. T. (2003b). Appl. Phys. Lett., 83, 5062.
Liao, X. Z., Zhao, Y. H., Srinivasan, S. G., Zhu, Y. T., Valiev, R. Z., and Gunderov, D. V. (2004a). Appl. Phys. Lett., 84, 592.
Liao, X. Z., Srinivasan, S. G., Zhao, Y. H., Baskes, M. I., Zhu, Y. T., Zhou, F., Lavernia, E. J., and Hu, H. F. (2004b). Appl. Phys. Lett., 84, 3564.
Lu, K., and Sui, M. L. (1993). Scr. Metall. Mater., 28, 1465.
Lubarda, V. A., Schneider, M. S., Kalantar, D. H., Remington, B. A., and Meyers, M. A. (2004). Acta Mater., 52, 1397.
Ma, E. (2003). Nature Mater., 2, 7.
Ma, Q., and Balluffi, R. W. (1994). Acta Metall. Mater., 42, 1.
MacHahon, G., and Erb, U. (1989). Microstruct. Sci., 17, 447.
Markmann, J., Bunzel, P., Roesner, H., Liu, K. W., Padmanabhan, K. W., Birringer, R., Gleiter, H., and Weissmueller, J. (2003). Scr. Mater., 49, 637.
Malygin, G. A. (1995). Phys. Solid State, 37, 1248.
Masumura, R. A., Hazzledine, P. M., and Pande, C. S. (1998). Acta Mater., 46, 4527.
Masumura, R. A., and Ovid'ko, I. A. (2000). Mater. Phys. Mech., 1, 31.
Mayo, M. J. (1997). Nanostruct. Mater., 9, 717.
Mayo, M. J. (1998). In: Nanostructured Materials: Science and Technology, ed. Chow, G.-M., and Noskova, N. I.Dordrecht: Kluwer, p. 361.
McFadden, S. X., Misra, R. S., Valiev, R. Z., Zhilyaev, A. P., and Mukherjee, A. K. (1999). Nature, 398, 684.
Milligan, W. W. (2003). Mechanical behavior of bulk nanocrystalline and ultrafine-grain metals. In Comprehensive Structural Integrity, ed. Milne, I., Ritchie, R. O., and Karihaloo, B.Amsterdam: Elsevier, p. 529.
Mishin, Yu., and Herzig, Ch. (1995). Nanostruct. Mater., 6, 859.
Mishra, R. S., Valiev, R. Z., McFadden, S. X., and Mukherjee, A. K. (1998). Mater. Sci. Eng., A 252, 174.
Mishra, R. S., Valiev, R. Z., McFadden, S. X., Islamgaliev, R. K., and Mukherjee, A. K., (2001). Phil. Mag., A 81, 37.
Moldovan, D., Wolf, D., and Phillpot, S. R. (2001). Acta Mater., 49, 3521.
Mohamed, F. A., and Li, Y. (2001). Mater. Sci. Eng., A 298, 1.
Morozov, N. F., Ovid'ko, I. A., Petrov, Yu. V., and Sheinerman, A. G. (2003). Rev. Adv. Mater. Sci., 4, 65.
Mukai, T., Suresh, S., Kita, K., Sasaki, H., Kobayashi, N., Higashi, K., and Inoue, A. (2003). Acta Mater., 51, 4197.
Mukherjee, A. K. (2002a). Mater. Sci. Eng., A 322, 1.
Mukherjee, A. K. (2002b). Creep Deformation: Fundamentals and Applications, ed. Mishra, R. S., Earthman, J. C., and Raj, S. V.Warrendale: TMS, p. 3.
Mullner, P., and Romanov, A. E. (2000). Acta Mater., 48, 2337.
Murayama, M., Howe, J. M., Hidaka, H., and Takaki, S. (2002). Science, 295, 2433.
Nazarov, A. A. (1996a). Scr. Mater., 34, 697.
Nazarov, A. A. (1996b). Annales de Chimie (Fr.), 21, 461.
Nazarov, A. A. (1997). Mater. Sci. Forum, 243–245, 31.
Nazarov, A. A. (2000). Phil. Mag. Lett., 80, 221.
Nazarov, A. A. (2003). Phys. Sol. State, 45, 1166.
Nazarov, A. A., Bachurin, D. V., Shenderova, O. A., and Brenner, D. W. (2003). Interface Sci., 11, 417.
Nazarov, A. A., Romanov, A. E., and Valiev, R. Z. (1990). Scripta Metall. Mater., 24, 1929.
Nazarov, A. A., Romanov, A. E., and Valiev, R. Z. (1993). Acta Met. Mater., 41, 1033.
Niederhofer, A., Bolom, T., Nesadek, P., Moto, K., Eggs, C., Patil, D. S., and Veprek, S. (2001). Surf. Coat. Technol., 146–147, 183.
Nieh, T. G., and Wadsworth, J. (1991). Scr. Metall. Mater., 25, 955.
Nieman, G. W., Weertman, J. R., and Siegel, R. W. (1991). J. Mater. Res., 6, 1012.
Niihara, K., Nakahira, A., and Sekino, T. (1993). In: Nanophase and Nanocomposite Materials, ed. Kormaneni, S., Parker, J. C., and Thomas, G. J., MRS Symp. Proc. 286. Pittsburg, p. 405.
Osipov, A. V., and Ovid'ko, I. A. (1992). Appl. Phys., A 54, 517.
Ovid'ko, I. A. (1994). J. Phys. D, 27, 999.
Ovid'ko, I. A. (1997). Nanostruct. Mater., 7, 149.
Ovid'ko, I. A. (2000). Mater. Sci. Eng., A 280, 355.
Ovid'ko, I. A. (2002). Science, 295, 2386.
Ovid'ko, I. A. (2003). Phil. Mag. Lett., 83, 611.
Ovid'ko, I. A. (2004). In: Encyclopedia on Nanoscience and Nanotechnology, Vol. 4, ed. Nalwa, H. S.California: American Sci. Publ., p. 249.
Ovid'ko, I. A. (2005a). Int. Mater. Rev., 50, 65.
Ovid'ko, I. A. (2005b). Rev. Adv. Mater. Sci., 10, 89.
Ovid'k o, I. A., and Reizis, A. B. (1999). J. Phys. D, 32, 2833.
Ovid'k o, I. A., and Reizis, A. B. (2001). Phys. Sol. State, 43, 35.
Ovid'k o, I.A, and Sheinerman, A. G. (2003). Phil. Mag., 83, 1551.
Ovid'k o, I. A., and Sheinerman, A. G. (2004a). Acta Mater., 52, 1201.
Ovid'k o, I. A., and Sheinerman, A. G. (2004b). Rev. Adv. Mater. Sci., 6, 21.
Ovid'k o, I. A., and Sheinerman, A. G. (2005a). Acta Mater., 53, 1347.
Ovid'k o, I. A., and Sheinerman, A. G. (2005b). Rev. Adv. Mater. Sci., 9, 17.
Ovid'k o, I.A, and Sheinerman, A. G. (2006). Phil. Mag., 86, 1415.
Padmanabhan, K. A. (2001). Mater. Sci. Eng., A 304–306, 200.
Padmanabhan, K. A., and Gleiter, H. (2004). Mater. Sci. Eng., A 381, 28.
Palumbo, G., and Aust, K. T. (1989). Mater. Sci. Eng., A 113, 139.
Pande, C. S., and Masumura, R. A. (1984). In: Proceedings of Sixth International Conference on Fracture, p. 857.
Pande, C. S., and Masumura, R. A. (1996). In: Processing and Properties of Nanocrystalline Materials, ed. Suryanarayana, C., Singh, J., and Froes, F. H.Warrendale: TMS, p. 387.
Pande, C. S., Masumura, R. A., and Armstrong, R. W. (1993). Nanostruct. Mater., 2, 323.
Patscheider, J. (2003). MRS Bulletin, 28, 180.
Pozdnyakov, V. A. (2003). Tech. Phys. Lett., 29, 151.
Pozdnyakov, V. A., and Glezer, A. M. (2005). Phys. Sol. State, 47, 817.
Pumphrey, P. H., and Gleiter, H. (1974). Philos. Mag., 30, 593.
Rabukhin, V. B. (1986). Poverkhnost', 7, 126 (in Russian).
Roco, M. C., Williams, R. S., and Alivisatos, P. (eds.), (2000). Nanotechnology Research Directions. Dordrecht: Kluwer.
Romanov, A. E., and Vladimirov, V. I. (1992). Dislocations in Solids, ed. Nabarro, F. R. N., Vol. 9. Amsterdam: North-Holland.
Romanov, A. E. (1995). Nanostruct. Mater., 6, 125.
Romanov, A. E. (2003). European J. Mech., A 22, 727.
Rybin, V. V., and Zhukovskii, I. M. (1978). Sov. Phys. Sol. State, 20, 1056.
Sahimi, M. (1994). Applications of Percolation Theory. London: Taylor and Francis.
Samaras, M., Derlet, P. M., Swygenhoven, H., and Victoria, M. (2002). Phys. Rev. Lett., 88, 125505.
Sanders, P. G., Eastman, J. A., and Weertman, J. R. (1996). In Processing and Properties of NC Materials, ed. Suryanarayana, C., Singh, J., and Froes, F. H.Warrendale: TMS, p. 397.
Scattergood, R. O., and Koch, C. C. (1992). Scr. Mater., 27, 1195.
Schaefer, H.-E., Wurschum, R., Gessmann, T., Stockl, G., Scharwaechter, P., Frank, W., Valiev, R. Z., Fecht, H.-J., and Moelle, C. (1995). Nanostruct. Mater., 6, 869.
Schaefer, H.-E., Reimann, K., Straub, W., Philipp, F., Tanimoto, H., Brossmann, U., and Würschum, R. (2000). Mater. Sci. Eng., A 286, 24.
Schiotz, J. (2004). Scr. Mater., 51, 837.
Schiotz, J., and Jacobsen, K. W. (2003). Science, 301, 1357.
Schiotz, J., Di Tolla, F. D., and Jakobsen, K. W. (1998). Nature, 391, 561.
Schiotz, J., Vegge, T., Di Tiolla, F. D., and Jakobsen, K. W. (1999). Phys. Rev., B 60, 11971.
Seefeldt, M. (2001). Rev. Adv. Mater. Sci., 2, 44.
Sergueeva, A. V., Mara, N. A., and Mukherjee, A. K. (2004). Rev. Adv. Mater. Sci., 7, 67.
Shan, Z., Stach, E. A., Wiezorek, J. M. K., Knapp, J. A., Follstaedt, D. M., and Mao, S. X. (2004). Science, 305, 654.
Shimokawa, T., Nakatani, A., and Kitagawa, H. (2005). Phys. Rev., B 71, 224110.
Siegel, R. W. (1994). In: Encyclopedia of Applied Physics, ed. Trigg, G. L., Vol. 11. Weinheim: VCH, p. 1.
Siegel, R. W., and Fougere, G. E. (1995). Nanostruct. Mater., 6, 205.
Smirnova, E. S., and Chuvil'deev, V. N. (1999). Fiz. Met. Metalloved., 88, 74 (in Russian).
Soer, W. A., Hosson, J. T. M., Minor, A., Moris, J. W. Jr., and Stach, E. (2004). Acta Mater., 52, 5783.
S⊘rens en, M. R., Mishin, Yu., and Voter, A. F. (2000). Phys. Rev., B 62, 3658.
Stauffer, D., and Aharony, A. (1992). Introduction to Percolation Theory. London: Taylor and Francis.
Suryanarayana, R., Frey, C. A., Sastry, S. M. L., Waller, B. E., Bates, S. E., and Buhro, W. E. J. (1996). Mater. Res., 11, 439.
Sutton, A. P., and Balluffi, R. W. (1996). Interfaces in Crystalline Materials. Oxford: Oxford Science Publications.
Suzuoka, T. (1961). Trans. Jap. Inst. Metals, 2, 25.
Tanimoto, H., Farber, P., Würschum, R., Valiev, R. Z., and Schaefer, H.-E. (1999). Nanostruct. Mater., 12, 681.
Tanimoto, H., Pasquini, L., Prümmer, R., Kronmüller, H., and Schaefer, H.-E. (2000). Scripta Mater., 42, 961.
Tellkamp, V. L., Melmed, A., and Lavernia, E. J. (2001). Metall. Mater. Trans., A 32, 2335.
Valiev, R. Z., Gertsman, V.Yu., and Kaibyshev, O. A. (1980). Phys. Stat. Sol., 61, K95.
Valiev, R. Z., and Langdon, T. G. (1993). Acta Metall., 41, 949.
Valiev, R. Z., Islamgaliev, R. K., and Alexandrov, I. V. (2000). Progr. Mater. Sci., 45, 103.
Valiev, R. Z., Song, C., McFadden, S. X., Mukherjee, A. K., and Mishra, R. S. (2001). Phil. Mag., A. 81, 25.
Valiev, R. Z., Alexandrov, I. V., Zhu, Y. T., and Lowe, T. C. (2002). J. Mater. Res., 17, 5.
Valiev, R. Z. (2004). Nature Mater., 3, 511.
Swygenhoven, H., and Derlet, P. M. (2001). Phys. Rev., B 64, 224105.
Swygenhoven, H., Spaczer, M., and Caro, A. (1999a). Acta Mater., 47, 3117.
Swygenhoven, H., Spavzer, M., Caro, A., and Farkas, D. (1999b). Phys. Rev., B 60, 22.
Swygenhoven, H., Derlet, P. M., and Hasnaoui, A. (2002). Phys. Rev., B 66, 024101.
Van Swygenhoven, H., Derlet P. M., Hasnaoui, A., and Samaras, M. (2003). In Nanostructures: Synthesis, Functional Properties and Applications, ed. Tsakalakos, T., Ovid'ko, I. A., and Vasudevan, A. K.Dordrecht: Kluwer, p. 155.
Veprek, S., and Argon, A. S. (2002). J. Vac. Sci. Technol., 20, 650.
Vladimirov, V. I. (1975). Einfuhrüng in die Physikalishe Theorie der Plastizität and Festigkeit. Leipzig: VEB eutscher Verlag für Grundstoffindutrie.
Volpp, T., Göring, E., Kuschke, W.-M., and Arzt, E. (1997). Nanostruct. Mater., 8, 855.
Wang, N., Wang, Z., Aust, K. T., and Erb, U. (1995). Acta Metall. Mater., 43, 519.
Wang, Y., Chen, M., Zhou, F., and Ma, E. (2002). Nature, 419, 912.
Wang, Y. M., and Ma, E. (2004a). Acta Mater., 52, 1699.
Wang, Y. M., and Ma, E. (2004b). Appl. Phys. Lett., 85, 2750.
Wang, Y. M., Hodge, A. M., Biener, J., Hamza, A. V., Barnes, D. E., Liu, K., and Nieh, T. G. (2005). Appl. Phys. Lett., 86, 101915.
Weertman, J. R., and Sanders, P. G. (1994). Solid State Phenom., 35–36, 249.
Wei, Q., Jia, D., Ramesh, K. T., and Ma, E. (2002). Appl. Phys. Lett., 81, 1240.
Wei, Q., Cheng, S., Ramesh, K. T., and Ma, E. (2004). Mater. Sci. Eng., A, 381, 71.
Weissmueller, J., and Markmann, J. (2005). Adv. Eng. Mater., 7, 202.
Witney, A. B., Sanders, P. G., Weertman, J. R., and Eastman, J. A. (1995). Scr. Metall. Mater., 33, 2025.
Wolf, D., Yamakov, V., Phillpot, S. R., Mukherjee, A. K., and Gleiter, H. (2005). Acta Mater., 53, 1.
Würsch um, R., Kübler, A., Gruß, S., Scharwaechter, P., Frank, W., Valiev, R. Z., Mulyukov, R. R., and Schaefer, H.-E. (1996). Annales de Chimie (Fr.), 21, 471.
Würsch um, R., Reimann, K., Gruß, S., Farber, P., Kübler, A., Scharwaechter, P., Frank, W., Kruse, O., Carstanjen, H. D., and Schaefer, H.-E. (1997). Phil. Mag., B 76, 407.
Whipple, R. T. P. (1954). Phil. Mag., 45, 1225.
Yamakov, V., Wolf, D., Salazar, M., Phillpot, S. R., and Gleiter, H. (2001). Acta Mater., 49, 2713.
Yamakov, V., Wolf, D., Phillpot, S. R., and Gleiter, H. (2002). Acta Mater., 50, 61.
Yamakov, V., Wolf, D., Phillpot, S. R., Mukherjee, A. K., and Gleiter, H. (2003). Phil. Mag. Lett., 83, 385.
Yin, K. M., King, A. H., Hsieh, T. E., Chen, F. R., Kai, J. J., and Chang, L. (1997). Microscopy and Microanalysis, 3, 417.
Youngdahl, C. J., Sanders, P. G., Eastman, J. A., and Weertman, J. R. (1997). Scr. Mater., 37, 809.
Youssef, K. M., Scattergood, R. O., Murty, K. L., and Koch, C. C. (2004). Appl. Phys. Lett., 85, 929.
Youssef, K. M., Scattergood, R. O., Murty, K. L., Horton, J. A., and Koch, C. C. (2005). Appl. Phys. Lett., 87, 091904.
Youssef, K. M., Scattergood, R. O., Murty, K. L., and Koch, C. C. (2006). Scr. Mater., 54, 251.
Zaichenko, S. G., and Glezer, A. M. (1997). Phys. Sol. State, 39, 1810.
Zelin, M. G., and Mukherjee, A. K. (1993). Phil. Mag., A 68, 1183.
Zelin, M. G., and Mukherjee, A. K. (1995). Acta Metall. Mater., 43, 2359.
Zelin, M. G., and Mukherjee, A. K. (1996). Mater. Sci. Eng., A 208, 210.
Zelin, M. G., Dunlap, M. R., Rosen, R., and Mukherjee, A. K. (1993). J. Appl. Phys., 74, 4972.
Zelin, M. G., Guillard, S., and Mukherjee, A. (2001). Mater. Sci. Eng., A 309–310, 514.
Zghal, S , Hytch, M. J., Chevalier, J.-P., Twesten, R., Wu, F., and Bellon, P. (2002). Acta Mater., 50, 4695.
Zhan, G.-D., Kuntz, J. D., Wan, J., and Mukherjee, A. K. (2003). In Nanomaterials for Structural Applications, ed. Berndt, C. C., Fisher, T., Ovid'ko, I. A., Skandan, G., and Tsakalakos, T., Vol. 740. Warrendale: MRS Symp. Proc., p. 49.
Zhan, G.-D., Kuntz, J. D., Wan, J., and Mukherjee, A. K. (2004). MRS Bull., 29, 22.
Zhu, Y. T., Liao, X. Z., Srivansan, S. G., Zhao, Y. H., Baskes, M. I., Zhou, F., and Lavernia, E. J. (2004). Appl. Phys. Lett., 85, 5049.
Zhu, Y. T., Liao, X. Z., and Valiev, R. Z. (2005a). Appl. Phys. Lett., 86, 103112.
Zhu, B., Asaro, R. J., Krysl, P., and Bailey, R. (2005b). Acta Mater., 53, 4825.
Ziman, J. (1979). Models of Disorder. Cambridge: Cambridge University Press.