Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2007
  • Online publication date: December 2009

4 - Mechanical properties of structural nanocrystalline materials – experimental observations

Summary

In this chapter we will describe and discuss the experimental evidence for the mechanical behavior of nanocrystalline materials. This will include pure metals, alloys, intermetallic compounds, ceramics, and multiphase materials. The range of mechanical properties for which measurements have been made will be covered. While the models and theoretical explanations for the various phenomena believed responsible for mechanical properties of nanocrystalline materials will be emphasized in Chapter 5, some discussion of deformation mechanisms must necessarily accompany the description of experimental results.

Elastic properties of nanostructured materials

The early measurements of the elastic constants on nanocrystalline materials prepared by the inert-gas-condensation method gave values, for example for Young's modulus, E, which were significantly lower than values for conventional grain size materials (Suryanarayana, 1995). While various reasons were given for the lower values of E, it was suggested by Krstic and co-workers (1993) that the presence of extrinsic defects, e.g. pores and cracks, was responsible for the low values of E in nanocrystalline materials compacted from powders. This conclusion was based upon the observation that nanocrystalline NiP produced by electroplating with negligible porosity levels had an E value comparable to fully dense conventional grain size Ni (Wong et al., 1993). Krstic et al. (1993) and Boccaccini et al. (1993) developed theories to account for the decrease in E with porosity which agree with E vs.% porosity data on nanocrystalline Fe produced by inert-gas condensation and warm consolidation (Fougere et al., 1995).

Related content

Powered by UNSILO
References
Anderson, T. L. (1996). Fracture Mechanics. Boca Raton: CRC Press.
Argon, A. S., and Veprek, S. (2002). Mater. Res. Soc. Symp. Proceedings, 697, 3.
Asaro, R. J., and Suresh, S. (2005). Actual Mater., 53, 3369–3382.
Baker, I., Nagpal, P., Liu, F., and Munroe, P. R. (1991). Acta Metall. Mater., 39, 1637–1644.
Baker, M., Kench, P. J., Tsotsos, C., Gibson, P. N., Leyland, A., and Matthews (2005). J. Vac. Sci. Technol., A 23, 1–11.
Barnett, S. A. (1993). In Physics of Thin Films Vol. 17: Mechanic and Dielectric Properties, ed. Francombe, M. H., and Vossen, J. L.Boston: Academic Press, p. 2.
Barnet, S. and Madan, A. (1999). Phys. World, 11, 45.
Barnett, S. A., Madan, A., Kim, I., and Martin, K. (2003). MRS Bulletin, 28, 169.
Barsoum, M. W. (1997). Fundamentals of Ceramics. New York: McGraw-Hill, pp. 414–417.
Boccaccini, A. R., Ondracek, G., Mazilu, P., and Windelburg, D. (1993). J. Mech. Behav. Mater., 4, 119.
Bohn, R., Haubold, T., Birringer, R., and Gleiter, H. (1991). Scripta Metall. Mater., 25, 811–816.
Bohn, R., Oehring, M., Pfullmann, Th., Appel, F., and Bormann, R. (1995). In Processing and Properties of Nanocrystalline Materials, ed. Suryanarayana, C., Singh, J., and Froes, F. H.Warrendale, PA: TMS, pp. 355–366.
Bolshakov, A., Oliver, W. C., and Pharr, G. M. (1996). J. Mater. Res., 11, 760.
Bonetti, E., Campari, E. G., Del Bianco, L., Pasquini, L., and Sampaolesi, E. (1999). NanoStructured Mater., 11, 709–720.
Budrovic, Z., Van Swygenhoven, H., Derlet, P. M., Van Petegem, S., and Schmitt, B. (2004). Science, 304, 273–276.
Cai, B., Kong, Q. P., Lu, L., and Lu, K. (2000). Mater. Sci. Engr. A, 286, 188–192.
Carsley, J. E., Milligan, W. W., Hackney, S. A., and Aifantis, E. C. (1995). Metall. Mater. Trans. A, 26A, 2479.
Carsley, J. E., Fisher, A., Milligan, W. W., and Aifantis, E. C. (1998). Metall. Mater. Trans. A, 29, 2261–2271.
Chan, K. S. (1990). Scripta Metall. Mater., 24, 1725–1730.
Chang, H., Altstetter, C. J., and Averback, R. S. (1992). J. Mater. Res., 7, 2962–2970.
Chen, M., Ma, E., Hemker, K. J., Sheng, H., Wang, Y., and Cheng, X. (2003). Science, 300, 1275–1277.
Cheng, S., Spencer, J. A., and Milligan, W. W. (2003). Acta Mater., 51, 4505–4518.
Chokshi, A. H., Rosen, A., Karch, J., and Gleiter, H. (1989). Scripta Mater., 23, 1679.
Chu, W.-Y., and Thompson, A. W. (1991). Scripta Metall. Mater., 25, 641–644.
Chu, X., and Barnett, S. A. (1995). J. Appl. Phys., 77, 4403.
Conrad, H., Narayan, J., and Jung, K. (2005). Inter. J. Refractory & Hard Materials (in press).
Cottrell, A. H. (1958). Trans. TMS-AIME, 212, 192.
Dalla Torre, F., Van Swygenhoven, H., and Victoria, M. (2002). Acta Mater., 50, 3957–3970.
Demkowicz, M. J., and Argon, A. S. (2004). Phys. Rev. Lett., 93, 025505.
Deng, J., Wang, D. L., Kong, Q. P., and Shui, J. P. (1995). Scripta Metall. Mater., 32, 349–352.
Derlet, P. M., and Van Swygenhoven, H. (2002). Phil. Mag. A, 82, 1–15.
Dieter, G. E. (1976). Mechanical Metallurgy, 2nd edition. McGraw-Hill, p. 270.
Diserens, M., Patscheider, J., and Lévy, F., (1998). Surf. Coat. Technol., 108–109, 241.
Diserens, M., Patscheider, J., and Lévy, F., (1999). Surf. Coat. Technol., 120–121, 158.
Duscher, G., Chisholm, M. F., Alber, U., and Ruhle, M. (2004). Nature Mater., 3, 621–626.
Donovan, P. E., and Stobbs, W. M. (1981). Acta Metall., 29, 1419.
Eckert, J. (2002). Structure formation and mechanical behavior of two-phase nanostructured materials. In Nanostructured Materials: Processing, Properties and Applications, ed. Koch, C. C.Norwich, NY; William Andrew Publ., pp. 423–525.
Edington, J. W., Melton, K. N., and Cutler, C. P. (1976). Prog. Mater. Sci., 21, 61–170.
Fischer-Cripps, A. C., Karvankova, P., and Veprek, S. (2006). Surf. Coat. Technol., 200, 5645.
Fougere, G. E., Riester, L., Ferber, M., Weertman, J. R., and Siegel, R. W. (1995). Mater. Sci. Eng., A204, 1.
Gonsalves, K. E., Rangarajan, S. P., Law, C. C., Garcia-Ruiz, A., and Chow, G. M. (1997). NanoStructured Mater., 9, 169–172.
Goodwin, T. J., Yoo, S. H., Matteazzi, P., and Groza, J. R. (1997). NanoStructured Mater., 8, 559–566.
Greer, A. L. (2001). Mater. Sci. Engr. A, 304–306, 68–72.
Hahn, H., and Averback, R. S. (1991). J. Am. Ceram. Soc., 74, 2918–2921.
Hall, E. O. (1951). Proc. R. Soc. Lond., 364, 474.
Han, B. Q., and Lavernia, E. J. (2005). Adv. Eng. Mater., 7, 247–250.
Hanlon, T., Kwon, Y.-N., and Suresh, S. (2003). Scripta Mater., 49, 675–680.
Hao, S., Delley, B., Veprek, S., and Stampfl, C. (2006). Phys. Rev. Lett., 97, 086102.
He, L., and Ma, E. (1996). NanoStructured Mater., 7, 327–339.
Helersson, U., Todorova, S., Barnett, S. A., Sundgren, J., Markert, L. C., and Greene, J. E. (1987). J. Appl. Phys., 62, 481.
Hertzberg, R. W. (1989). Deformation and Fracture Mechanics of Engineering Materials, 3rd edition. New York: Wiley.
Hoffmann, M., and Birringer, R. (1996). Acta Mater., 44, 2729–2736.
Hofler, H. J., and Averback, R. S. (1990). Scripta Metall. Mater., 24, 2401–2406.
Holleck, H., Lahres, M., Woll, P. (1990). Surf. Coat. Technol., 41, 179.
Hu, X., Han, Z., Li, G., and Gu, M. (2002). J. Vac. Sci. Technol., A20, 1921.
Hu, X., Zhang, H., J. Dai, J., Li, G., and Gu, M. (2005). J. Vac. Sci. Technol., A23, 114.
Huang, S. C., and Chesnutt, J. C. (1994). In Intermetallic Compounds, Vol. 2, Practice, ed. Westbrook, J. H., and Fleischer, R. L.Chichester, UK: John Wiley & Sons, Ltd., pp. 73–90.
Huang, Z., Gu, L. Y., and Weertman, J. R. (1997). Scripta Mater., 42, 1071–1075.
Hugo, R. C., Kung, H., Weertman, J. R., Mitra, R., Knapp, J. A., and Follstaedt, D. M. (2003). Acta Mater., 51, 1937–1943.
Hutchinson, J. W. (1984). Scripta Metall., 18, 421–422.
Inoue, A., Nakazato, K., Kawamura, Y., and Masumoto, T. (1994). Mater. Sci. Engr. A, 179/180, 654–658.
Jia, D., Ramesh, K. T., and Ma, E. (2000). Scripta Mater., 42, 73–78.
Karimpoor, A. A., Erb, U., Aust, K. T., and Palumbo, G. (2003). Scripta Mater., 49, 651–656.
Karvankova, P., Veprek-Heijman, M. G. J., Zindulka, O., Bergmaier, A., and Veprek, S. (2003). Surf. Coat. Technol., 163–164, 149.
Karvankova, P., Veprek-Heijman, M. G. J., Azinovic, D., and Veprek, S. (2006). Surf. Coat. Technol., 200, 2978.
Ke, M., Hachney, S. A., Milligan, W. W., and Aifantis, E. C. (1995). NanoStructured Mater., 5, 689–698.
Kim, D. K., and Okazaki, K. (1992). Mater. Sci. Forum, 88–90, 553–560.
Koch, C. C., and Cho, Y. S. (1992). NanoStructured Mater., 1, 207–212.
Koch, C. C., Morris, D. G., Lu, K., and Inoue, A. (1999). MRS Bulletin, 24, 54–58.
Koch, C. C., and Narayan, J. (2001). The Inverse Hall–Petch Effect – Fact or Artifact? In MRS Symp. Proc. Vol. 634, ed. Farkas, D., Kung, H., Mayo, M., Swygenhoven, H., and Weertman, J. R.Warrendale, PA: MRS, pp. B5.1.1–B5.1.11.
Koch, C. C., Youssef, K. M., Scattergood, R. O., and Murty, K. L. (2005). Adv. Engr. Mater., 7, 787–794.
Koehler, J. S. (1970). Phys. Rev., B2, 547.
Krstic, V., Erb, U., and Palumbo, G. (1993). Scripta Metall. Mater., 29, 1501.
Kumar, K. S., Suresh, S., Chisholm, M. F., Horton, J. A., and Wang, P. (2003). Acta Mater., 51, 387–405.
Kumar, K. S., Van Swygenhoven, H., and Suresh, S. (2003). Acta Mater., 51, 5743–5774.
Lehocky, S. L. (1978a). J. Appl. Phys., 49, 5479.
Lehocky, S. L. (1978b). Phys. Rev. Lett., 41, 1814.
Li, H., and Ebrahimi, F. (2004). Appl. Phys. Lett., 84, 4307–4309.
Li, J., Sun, Y., Sun, X., and Qiao, J. (2005). Surface & Coatings Technology, 192, 331–335.
Li, J. C. M., (1963). Trans. TMS-AIME, 227, 239.
Li, S. H., Shi, Y. L., and Peng, H. R. (1992). Plasma Chem. Plasma Process., 12, 287.
Li, Y. J., Blum, W., and Breutinger, F. (2004). Mater. Sci. Engr. A, 387–389, 585–589.
Liao, X. Z., Zhao, Y. H., Srinivason, S. G., and Zhu, Y. T. (2004). Appl. Phys. Lett., 84, 592–594.
Liao, X. Z., Zhou, F., Lavernia, E. J., He, D. W., and Zhu, Y. T. (2003). Appl. Phys. Lett., 83, 5062–5064.
Ljungcrantz, H., Hultman, L., and Sundgren, J.-E., (1995). J. Appl. Phys., 78, 832.
Lu, L., Li, S. X., and Lu, K. (2001). Scripta Mater., 45, 1163–1169.
Malow, T. R., and Koch, C. C. (1998). Metall. Mater. Trans. A, 29A, 2285–2295.
Malow, T. R., Koch, C. C., Miraglia, P. Q., and Murty, K. L. (1998). Mater. Sci. Engr. A, 252, 36–43.
Männling, H.-D., (2003). Ph.D. Thesis, Technical University Munich.
Markmann, J., Bunzel, P., Rosner, H., Liu, K. W., Padmanabhan, K. A., Birringer, R., Gleiter, H., and Weissmuller, J. (2003). Scripta Mater., 49, 637–644.
Mayo, M. J. (1997). NanoStructured Mater., 9, 717–726.
McFadden, S. X., Mishra, R. S., Valiev, R. Z., Zhilyaev, A. P., and Mukherjee, A. K. (1999). Nature, 398, 684–686.
Meyers, M. A., and Ashworth, E. (1982). Phil. Mag., 737.
Meyers, M. A., and Chawla, K. K. (1999). Mechanical Behavior of Materials. New Jersey: Prentice-Hall, p. 541.
Milligan, W. W. (2003). Mechanical behavior of bulk nanocrystalline and ultrafine-grain metals. In Comprehensive Structural Integrity, ed. Milne, I., Ritchie, R. O., and Karihaloo, B.Amsterdam: Elsevier, pp. 529–550.
Milligan, W. W., Hackney, S. A., Ke, M., and Aifantis, E. C. (1993). NanoStructured Mater., 2, 267–276.
Mirshams, R. A., Xiao, C. H., Whang, S. H., and Yin, W. M. (2001). Mater. Sci. Engr. A., 315, 21–27.
Mishra, R. S., Valiev, R. Z., and Mukherjee, A. K. (1997). NanoStructured Mater., 9, 473–476.
Mishra, R. S., Valiev, R. Z., McFadden, S. X., and Mukherjee, A. K. (1998). Mater. Sci. Engr. A, 252, 174–178.
Mitra, R., Chiou, W.-A., and Weertman, J. R. (2004). J. Mater. Res., 19, 1029–1037.
Mohamed, F. A., and Li, Y. (2001). Mater. Sci. Engr. A, 298, 1–15.
Morris, D. G. (1998). Mechanical behavior of nanostructured materials, Materials Science Foundations 2. Enfield NH: Trans. Tech. Publ., pp. 42–74.
Morris, D. G., and Morris, M. A. (1991). Acta Metall. Mater., 39, 1763.
Morris-Munoz, M. A., Dodge, A., and Morris, D. G. (1999). NanoStructured Mater., 11, 873–885.
Mukherjee, A. K. (2002). Mater. Sci. Engr. A., 322, 1–22.
Mukhopadhyay, J., Kaschner, G., and Mukherjee, A. K. (1990). Scripta Metall. Mater., 24, 857–862.
Musil, J., Kadlec, S., Vyskocil, J., and Valvoda, V. (1988). Thin Solid Films, 167, 107.
Niederhofer, A., Bolom, T., Nesladek, P., Moto, K., Eggs, C., Patil, D. S., and Veprek, S. (2001). Surf. Coat. Technol., 146–147, 183.
Nieman, G. W., Weertman, J. R., and Siegel, R. W. (1990). Scripta Metall. Mater., 24, 145–150.
Nieman, G. W., Weertman, J. R., and Siegel, R. W. (1991). J. Mater. Res., 6, 1012–1027.
Nowack, A. S., and Berry, B. S. (1972). Anelastic Relaxation in Crystalline Solids. New York: Academic Press.
Odén, M., (2004). Invited paper at the 51st Int. Symp. of the American Vacuum Society, Anaheim, November 14–19, 2004.
Ostwaldt, D., Klepaczko, J. R., and Klimanik, P. J. (1997). PHYS IV FRANCE, 7, C3–385.
Ovidko, I. A. (2003). Phil. Mag. Lett., 83, 611–620.
Palumbo, G., Gonzalez, F., Brennenstuhl, A. M., Erb, U., Shmayda, W., and Lichtenberger, P. C. (1997). NanoStructured Mater., 9, 737–746.
Patscheider (2004). Private communication, unpublished.
Petch, N. J. (1953). J. Iron Steel Inst., 174, 25.
Prilliman, S. G., Erdonmez, C. K., Clark, S. M., Alivisatos, A. P., Karvankova, P., and Veprek, S. (2006). Mater. Sci. Eng. A, 437, 379.
Prochazka, J., Karvankova, P., Veprek-Heijman, M. G. J., and Veprek, S. (2004). Mater. Sci. Eng. A, 384, 102.
Rose, J. H., Smith, J. R., Guinea, F., and Ferrante, J. (1984). Phys. Rev. B, 29, 2963.
Rosner, H., Markmann, J., and Weissmuller, J. (2004). Phil. Mag. Lett., 84, 321–334.
Sakai, S., Tanimoto, H., and Mizubayashi, H. (1999). Acta Mater., 47, 211–217.
Sakai, S., Tanimoto, H., Otsuka, K., Yamada, T., Koda, Y., Kita, E., and Mizubayashi, H. (2001). Scripta Mater., 45, 1313.
Sanders, P. G., Rittner, M., Kiedaisch, E., Weertman, J. R., Kung, H., and Lu, Y. C. (1997). NanoStructured Mater., 9, 433–440.
Sanders, P. G., Eastman, J. A., and Weertman, J. R. (1997). Acta Mater., 45, 4019.
Sauthoff, G. (1994). Plastic deformation. In Intermetallic Compounds, Principles and Practice, ed. Westbrook, J. H., and Fleischer, R. L.Chichester: John Wiley and Sons, pp. 924–925.
Schuh, C. A., Argon, S. A., Nieh, T. G., and Wadsworth, J. (2003). Phil. Mag., 83, 2585.
Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., and Suresh, S. (2003). Acta Mater., 51, 5159–5172.
Schweinfest, R., Paxton, A. T., and Finnis, M. W. (2004). Nature, 432, 1008.
Sergueeva, A. V., Mara, N. A., and Mukherjee, A. K. (2004). Mat. Res. Symp., Proc., 821, P9.8.1–P9.8.7.
Shan, Z., Stach, E. A., Wiezorek, J. M. K., Knapp, J. A., Follstaedt, D. M., and Mao, S. X. (2004). Science, 305, 654–657.
Shen, T. D., and Koch, C. C. (1996). Acta Mater., 44, 753–761.
Shen, T. D., Koch, C. C., Tsui, T. Y., and Pharr, G. M. (1995). J. Mater. Res., 10, 2892.
Shen, Y. F., Lu, L., Lu, Q. H., Jin, Z. H., and Lu, K., (2005). Scripta Mater., 52, 989–994.
Shinin, M., Hultman, L., and Barnett, S. A. (1992). J. Mater. Res., 7, 902.
Shinin, M., and Barnett, S. A. (1995). Appl. Phys. Lett., 64, 61.
Siegel, R. W. (1997). Mater. Sci. Forum, 235–238, 851–860.
Siegel, R. W., and Fougere, G. E. (1994). In Nanophase Materials: Synthesis Properties, Applications, ed. Hadjipanayis, G. C., and Seigel, R. W.Dordrecht, the Netherlands: Kluwer Acad. Publ., p. 233.
Smith, J. R., Ferrante, J., Vinet, P., Gray, J. G., Richter, R., and Rose, J. (1987). In Chemistry and Physics of Fracture, ed. Latanisos, R. M., and Jones, R. H.Dordrecht: Martinus Nijhoff, p. 329.
Söderberg, H., Molina, J., Hultman, L., and Odén, M., (2005). J. Appl. Phys., 97, 114–327.
Strunk, H. P. (2003). Institute of Materials Science, University Erlangen-Nürnberg, Germany, unpublished results.
Suryanarayana, C. (1995). Int. Mater. Rev., 40, 41–64.
Swadener, J. G., Taljat, B., and Pharr, G. M. (2001). J. Mater. Res., 16, 2901.
Tabor, D. (1951). The Hardness of Metals. Oxford: Clarendon Press.
Taketani, K., Uoya, A., Ohtera, K., Uehara, T., Higashi, K., Inoue, A., and Masumoto, T. (1994). J. Mater. Sci., 29, 6513–6517.
Tanimoto, H., Sakai, S., and Mizubayashi, H. (2004). Mater. Sci. Engr. A., 370, 135–141.
Tanimoto, H., Sakai, S., and Mizubayashi, H. (1999). NanoStructured Mater., 12, 751–756.
Tellkamp, V. L., Melmed, A., and Lavernia, E. J. (2001). Metall. Mater. Trans. A, 32A, 2335.
Tsui, T. Y., Oliver, W. C., and Pharr, G. M. (1996). J. Mater. Res., 11, 752.
Valvoda, V., Kuzel, R., Cerny, R., and Musil, J. (1988). Thin Solid Films, 156, 63.
Vliet, K. J., Li, J., Zhu, T., Yip, S., and Suresh, S. (2003). Phys. Rev. B, 67, 104105.
Vasudevan, V. K., Court, S. A., Kurath, P., and Fraser, H. L. (1989). Scripta Metall., 23, 467–469.
Vaz, P., Rebouta, L., Godeau, Ph., Girardeau, T., Pacaud, J., Riviere, J. P., and Traverse, A. (2001). Surf. Coat. Technol., 146–147, 274.
Veprek, S., and Argon, A. S. (2002). J. Vac. Sci. Technol., B20, 650.
Veprek, S., and Reiprich, S. (1995). Thin Solid Films, 268, 64.
Veprek, S., Sarott, F.-A., and Iqbal, Z. (1987). Phys. Rev., B36, 3344.
Veprek, S., Reiprich, S., and Li, S. H. (1995a). Appl. Phys. Lett., 66, 2640.
Veprek, S., Haussmann, M., and Reiprich, S. (1995b). J. Vac. Sci. Technol., A14, 46.
Veprek, S., Niederhofer, A., Moto, K., Nesladek, P., Männling, H.-D., and Bolom, T. (2000a). Mater. Res. Soc. Symp. Proc., 581, 321.
Veprek, S., Niederhofer, A., Moto, K., Bolom, T., Männling, H.-D., Nesladek, P., Dollinger, G., and Bergmaier, A. (2000b). Surf. Coat. Technol., 133–134, 152.
Veprek, S., Mukherjee, S., Karvankova, P., Männling, H.-D., He, J. L., Moto, K., Prochazka, J., and Argon, A. S. (2003a). J. Vac. Sci. Technol., A21, 532.
Veprek, S., Mukherjee, S., Karvankova, P., Männling, H.-D., He, J. L., Moto, K., Prochazka, J., and Argon, A. S. (2003b). Thin Solid Films, 436, 220.
Veprek, S., Männling, H.-D., Niederhofer, A., Ma, D., and Mukherjee, S. (2004). J. Vac. Sci. Technol, B22, L5.
Veprek, S., Veprek-Heijman, G. M. J., Karvankova, P., and Prochazka, J. (2005a). Thin Solid Films, 476, 1.
Veprek, S., Männling, H.-D., Karvankova, P., and Prochazka, J. (2005b). Surf. Coat. Technol., in press.
Veprek, R. G., Parks, D. M., Argon, A. S., and Veprek, S. (2005c). Mater. Sci. Eng. A, submitted.
Veprek, S., Karvankova, P., and Veprek-Heijman, M. G. J., (2005d). J. Vac. Sci. Technol., B23, L17.
Vinogradov, A. Y., and Agnew, S. R. (2004). Nanocrystalline materials: fatigue. In Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, Inc., pp. 2269–2288.
Voevodin, A. A., Prasad, S. V., and Zabinski, J. S. (1997). J. Appl. Phys., 82, 855.
Voevodin, A. A., Fitz, T. A., Hu, J. J., and Zabinski, J. S. (2002). J. Vac. Sci. Technol., A20, 1434.
Voevodin, A. A., and Zabinski, J. S. (2005). Surf. Coat. Technol., 65, 741.
Wang, D. L., Kong, Q. P., and Shui, J. P. (1994). Scripta Metall. Mater., 31, 47–54.
Wang, N., Wang, Z., Aust, K. T., and Erb, U. (1997). Mater. Sci. Engr. A, 237, 150–158.
Wang, Y. M., and Ma, E. (2004). Appl. Phys. Lett., 85, 2750–2752.
Wang, Y., Chen, M., Zhou, F., and Ma, E. (2002). Nature, 419, 912–915.
Wang, Y. M., Hodge, A. M., Biener, J., Hamza, A. V., Barnes, D. E., Liu, K., and Nieh, T. G., (2005). Appl. Phys. Lett., 86, 101915-1-3.
Weertman, J. R. (2002). In Nanostructured Materials: Processing, Properties, and Applications, ed. Koch, C. C.Norwich, NY: William Andrew Pub., pp. 397–421.
Weertman, J. R., and Averback, R. S. (1996). In Nanomaterials: Synthesis, Properties, and Applications, ed. Edelstein, A. S., and Cammarata, R. C.Bristol: Institute of Physics Publ., p. 323.
Wei, Q., Cheng, S., Ramesh, K. T., and Ma, E. (2004). Mater. Sci. Engr. A., 381, 71–79
Wei, Q., Jia, D., Ramesh, K. T., and Ma, E. (2002). Appl. Phys. Lett., 81, 1240–1242.
Wilde, J. R., and Greer, A. L. (2001). Mater. Sci. Engr. A., 304–306, 932–936.
Witkin, D., Lee, Z., Rodreguez, R., Nutt, S., and Lavernia, E. J. (2003). Scripta Mater., 49, 297–302.
Witney, A. B., Sanders, P. G., Weertman, J. R., and Eastman, J. A. (1995). Scripta Metall. Mater., 33, 2025–2030.
Wong., L., Ostrander, D., Erb, U., Palumbo, G., and Aust, K. T. (1993). In Nanophases and Nanocrystalline Structures, ed. Shull, R. D., and Sanchez, J. M.Warrendale, PA: TMS, p. 85.
Xiao, M., and Kong, Q. P. (1997). Scripta Mater., 36, 299–303.
Yin, W. M., Whang, S. H., Mirshams, R., and Xiao, C. H. (2001). Mater. Sci. Engr. A, 301, 18–22.
Yin, W. M., Whang, S. H., and Mirshams, R. A. (2005). Acta Mater., 53, 383–392.
Yoo, S. H., Sudarshan, T. S., Sethuram, K., Subhash, G., and Aifantis, E. C. (1999). Nano-Structured Mater., 12, 23.
Youngdahl, C. J., Sanders, P. G., Eastman, J. A., and Weertman, J. R. (1997). Scripta Mater., 37, 809.
Youngdahl, C. J., Weertman, J. R., Hugo, R. C., and Kung, H. H. (2001). Scripta Mater., 44, 1475–1478.
Youssef, K. M., Scattergood, R. O., Murty, K. L., and Koch, C. C. (2004). Appl. Phys. Lett., 85, 929–931.
Youssef, K. M., Scattergood, R. O., Murty, K., Horton, J. A., and Koch, C. C. (2005). Appl. Phys. Lett., 87, 091904-1–091904-13.
Zhang, K., Weertman, J. R., and Eastman, J. A. (2004). 85, 5197–5199.
Zhang, X., Wang, H., Scattergood, R. O., Narayan, J., Koch, C. C., Sergueeva, A. V., and Mukherjee, A. K. (2002). Appl. Phys. Lett., 81, 823–825.
Zhang, S., Sun, D., Fu, Y., and Du, H., (2005). Surf. Coat. Technol., 198, 2.
Zhang, R. F., and Veprek, S. (2006). Mater. Sci. Eng. A., 424, 128.
Zhu, X. K., Zhang, X., Wang, H., Sergueeva, A. V., Mukherjee, A. K., Scattergood, R. O., Narayan, J., and Koch, C. C. (2003). Scripta Mater., 49, 429–433.
Zimmermann, A. F., Palumbo, G., Aust, K. T., and Erb, U. (2002). Mater. Sci. Engr. A, 328, 137–146.