Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-17T19:05:18.285Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  26 October 2017

Horatiu Nastase
Affiliation:
Universidade Estadual Paulista, São Paulo
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] S. A., Hartnoll, “Lectures on holographic methods for condensed matter physics,” Class. Quant. Grav. 26, 224002 (2009), arXiv:0903.3246 [hep-th].Google Scholar
[2] N., Iqbal, H., Liu, and M., Mezei, “Lectures on holographic non-Fermi liquids and quantum phase transitions,” arXiv:1110.3814 [hep-th].
[3] C. P., Herzog, “Lectures on holographic superfluidity and superconductivity,” J. Phys. A 42, 343001 (2009), arXiv:0904.1975 [hep-th].Google Scholar
[4] J., McGreevy, “Holographic duality with a view toward many-body physics,” Adv. High Energy Phys. 2010, 723105 (2010), arXiv:0909.0518 [hep-th].Google Scholar
[5] J., Zaanen, Y. W., Sun, Y., Liu, and K., Schalm, Holographic Duality in Condensed Matter Physics, Cambridge University Press, 2016.
[6] C., Kittel, Introduction to Solid State Physics, John Wiley and Sons, 2005.
[7] P., Phillips, Advanced Solid State Physics, Westview Press, 2003.
[8] H., Năstase, Introduction to the AdS/CFT Correspondence, Cambridge University Press, 2015.
[9] L. D., Faddeev, “How algebraic Bethe ansatz works for integrable model,” arXiv:hepth/ 9605187.
[10] T. R., Klassen and E., Melzer, “The thermodynamics of purely elastic scattering theories and conformal perturbation theory,” Nucl. Phys. B 350, 635 (1991).Google Scholar
[11] J., Polchinski, String Theory, vol. I, Cambridge University Press, 2000.
[12] S., Sachdev, Quantum Phase Transitions, Cambridge University Press, 2011.
[13] G. V., Dunne, “Aspects of Chern-Simons theory,” arXiv:hep-th/9902115.
[14] A., Stern, “Anyons and the quantum Hall effect – A pedagogical review,” Ann. Phys. 323, 204 (2008).Google Scholar
[15] S., Rao, “An Anyon primer,” arXiv:hep-th/9209066.
[16] E., Witten, “Three lectures on topological phases of matter,” arXiv:1510.07698 [cond-mat.mes-hall].
[17] G. W., Moore and N., Read, “Nonabelions in the fractional quantum Hall effect,” Nucl. Phys. B 360, 362 (1991).Google Scholar
[18] X.-L., Qi and S.-C., Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys 83 (2011) 1057, arXiv:1008.2026 [cond-mat.mes-hall].CrossRefGoogle Scholar
[19] X. L., Qi, E., Witten, and S. C., Zhang, “Axion topological field theory of topological superconductors,” Phys. Rev. B 87, 134519 (2013), arXiv:1206.1407 [cond-mat.supr-con].Google Scholar
[20] X. L., Qi, T., Hughes, and S. C., Zhang, “Topological field theory of timereversal invariant insulators,” Phys. Rev. B 78, 195424 (2008), arXiv:0802.3537 [cond-mat.mes-hall].Google Scholar
[21] P., Coleman, “Heavy fermions and the Kondo lattice: A 21st century perspective,” arXiv:1509.05769 [cond-mat.str-el].
[22] L. D., Landau and E. M., Lifshitz, Course of Theoretical Physics Course of Theoretical Physics, vol. 6, Fluid Mechanics Fluid Mechanics, 2nd ed., Elsevier, 1987.
[23] M., Rangamani, “Gravity and hydrodynamics: lectures on the fluid-gravity correspondence,” Class. Quant. Grav. 26, 224003 (2009), arXiv:0905.4352 [hep-th].Google Scholar
[24] V. E., Hubeny, S., Minwalla, and M., Rangamani, “The fluid-gravity correspondence,” arXiv:1107.5780 [hep-th].
[25] P. J. E., Peebles, Principles of Physical Cosmology, Princeton University Press, 1993.
[26] R. M., Wald, General Relativity, University of Chicago Press, 1984.
[27] C.W., Misner, K. S., Thorne, and J. A., Wheeler, Gravitation, Freeman and Co., 1973.
[28] S. W., Hawking and G. F. R., Ellis, The Large Scale Structure of Space-time, Cambridge University Press, 1973.
[29] S. W., Hawking, “Particle creation by black holes,” Commun. Math. Phys 43, 199 (1975), Commun. Math. Phys. 46, 206 (1976).Google Scholar
[30] J. M., Bardeen, B., Carter, and S. W., Hawking, “The four laws of black hole mechanics,” Commun. Math. Phys. 31, 161 (1973).Google Scholar
[31] M. J., Duff, B. E. W., Nilsson, and C. N., Pope, “Kaluza-Klein supergravity,” Phys. Rept. 130, 1 (1986).Google Scholar
[32] H., Năstase, D., Vaman, and P., van Nieuwenhuizen, “Consistency of the AdS(7) × S(4) reduction and the origin of selfduality in odd dimensions,” Nucl. Phys. B 581, 179 (2000), arXiv:hep-th/9911238.Google Scholar
[33] R. I., Nepomechie, “Magnetic monopoles from antisymmetric tensor gauge fields,” Phys. Rev. D 31, 1921 (1985).Google Scholar
[34 C., Teitelboim, “Gauge invariance for extended objects,” Phys. Lett. B 167, 63 (1986).Google Scholar
[35 C., Teitelboim, “Monopoles of higher rank,” Phys. Lett. B 167, 69 (1986).Google Scholar
[36] M. J., Duff, R. R., Khuri, and J. X., Lu, “String solitons,” Phys. Rept. 259, 213 (1995), arXiv:hep-th/9412184.Google Scholar
[37] A. A., Tseytlin, “Harmonic superpositions of M-branes,” Nucl. Phys. B 475, 149 (1996), arXiv:hep-th/9604035.Google Scholar
[38 M., Cvetic and A. A., Tseytlin, “Nonextreme black holes from nonextreme intersecting M-branes,” Nucl. Phys. B 478, 181 (1996), arXiv:hep-th/9606033.Google Scholar
[39] C. P., Burgess and F., Quevedo, “Bosonization as duality,” Nucl. Phys. B 421, 373 (1994), arXiv:hep-th/9401105.Google Scholar
[40 J., Murugan and H., Năstase, “A nonabelian particle-vortex duality,” Phys. Lett. B 753, 401 (2016), arXiv:1506.04090 [hep-th].Google Scholar
[41] L., Alvarez-Gaume and S. F., Hassan, “Introduction to S duality in N=2 supersymmetric gauge theories: A pedagogical review of the work of Seiberg and Witten,” Fortsch. Phys. 45, 159 (1997), arXiv:hep-th/9701069.Google Scholar
[42] M. B., Green, J. H., Schwarz, and E., Witten, Superstring Theory, Cambridge University Press, 1987.
[43] B., Zwiebach, A First Course in String Theory, Cambridge University Press, 2009.
[44] C., Johnson, D-Branes, Cambridge University Press, 2003.
[45] K., Becker, M., Becker, and J. H., Schwarz, String Theory and M-Theory, Cambridge University Press, 2007.
[46] M., Ammon and J., Erdmenger, Gauge/Gravity Duality: Foundations and Applications, Cambridge University Press, 2015.
[47] O., Aharony, S. S., Gubser, J.M.Maldacena, H., Ooguri, and Y., Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323, 183 (2000), arXiv:hep-th/9905111.Google Scholar
[48] J. M., Maldacena, “The large N limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)], arXiv:hep-th/9711200.Google Scholar
[49] E., Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998), arXiv:hep-th/9802150.Google Scholar
[50] S. S., Gubser, I. R., Klebanov, and A. M., Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B 428, 105 (1998), arXiv:hep-th/9802109.Google Scholar
[51] D. E., Berenstein, J. M., Maldacena, and H. S. Năstase, “Strings in flat space and pp waves from N=4 superYang-Mills,” JHEP 0204, 013 (2002), arXiv:hep-th/0202021.Google Scholar
[52] J. C., Plefka, “Lectures on the plane wave string gauge theory duality,” Fortsch. Phys. 52, 264 (2004), arXiv:hep-th/0307171.Google Scholar
[53] J., Kowalski-Glikman, “Vacuum states in Supersymmetric Kaluza-Klein theory,” Phys. Lett. B 134, 194 (1984).Google Scholar
[54] R., Penrose, “Any spacetime has a plane wave as a limit,” Differential Geometry and Relativity, Reidel, 1974, pp. 271–275.
[55] M., Blau, J. M., Figueroa-O'Farrill, C., Hull, and G., Papadopoulos, “A new maximally supersymmetric background of IIB superstring theory,” JHEP 0201, 047 (2002), arXiv:hep-th/0110242.Google Scholar
[56] M., Blau, J. M., Figueroa-O'Farrill, C., Hull, and G., Papadopoulos, “Penrose limits and maximal supersymmetry,” Class. Quant. Grav. 19, L87 (2002), arXiv:hepth/ 0201081.Google Scholar
[57] P. C., Aichelburg and R. U., Sexl, “On the gravitational field of a massless particle,” Gen. Rel. Grav. 2, 303 (1971).Google Scholar
[58] G. T., Horowitz and A. R., Steif, “Space-time singularities in string theory,” Phys. Rev. Lett. 64, 260 (1990).Google Scholar
[59] J. A., Minahan and K., Zarembo, “The Bethe ansatz for N = 4 superYang-Mills,” JHEP 0303, 013 (2003), arXiv:hep-th/0212208.Google Scholar
[60] J., Plefka, “Spinning strings and integrable spin chains in the AdS/CFT correspondence,” Living Rev. Rel. 8, 9 (2005), arXiv:0507136 [hep-th].Google Scholar
[61] K., Zarembo, “Semiclassical Bethe ansatz and AdS/CFT,” Comptes Rendus Physique 5, 1081 (2004) [Fortsch. Phys. 53, 647 (2005)], arXiv:hep-th/0411191.Google Scholar
[62] M. F., Paulos, J., Penedones, J., Toledo, B. C. van Rees, and P., Vieira, “The S-matrix bootstrap I: QFT in AdS,” arXiv:1607.06109 [hep-th].
[63] D., Bernard, “An introduction to Yangian symmetries,” Int. J. Mod. Phys. B 7, 3517 (1993), arXiv:hep-th/9211133.Google Scholar
[64] L., Dolan, C. R., Nappi, and E., Witten, “Yangian symmetry in D = 4 superconformal Yang-Mills theory,” arXiv:hep-th/0401243.
[65] N., Beisert, V., Dippel, and M., Staudacher, “A novel long range spin chain and planar N = 4 super Yang-Mills,” JHEP 0407, 075 (2004), arXiv:hep-th/0405001.Google Scholar
[66] N., Beisert, “The SU(2–2) dynamic S-matrix,” Adv. Theor. Math. Phys. 12, 948 (2008), arXiv:hep-th/0511082.Google Scholar
[67] N., Beisert, B., Eden, and M., Staudacher, “Transcendentality and crossing,” J. Stat. Mech. 0701, P01021 (2007), arXiv:hep-th/0610251.Google Scholar
[68] S., Kachru, X., Liu, and M., Mulligan, “Gravity duals of Lifshitz-like fixed points,” Phys. Rev. D 78, 106005 (2008), arXiv:0808.1725 [hep-th].Google Scholar
[69] M., Taylor, “Non-relativistic holography,” arXiv:0812.0530 [hep-th].
[70] T., Griffin, P., Horava, and C. M., Melby-Thompson, “Lifshitz gravity for Lifshitz holography,” Phys. Rev. Lett. 110, no. 8, 081602 (2013), arXiv:1211.4872 [hep-th].Google Scholar
[71] C. P., Herzog, M., Rangamani, and S. F., Ross, “Heating up Galilean holography,” JHEP 0811, 080 (2008), arXiv:0807.1099 [hep-th].Google Scholar
[72] A., Adams, K., Balasubramanian, and J., McGreevy, “Hot spacetimes for cold atoms,” JHEP 0811, 059 (2008), arXiv:0807.1111 [hep-th].Google Scholar
[73] J., Maldacena, D., Martelli, and Y., Tachikawa, “Comments on string theory backgrounds with non-relativistic conformal symmetry,” JHEP 0810, 072 (2008), arXiv:0807.1100 [hep-th].Google Scholar
[74] D. T., Son, “Toward an AdS/cold atoms correspondence: A geometric realization of the Schrödinger symmetry,” Phys. Rev. D 78, 046003 (2008), arXiv:0804.3972 [hep-th].Google Scholar
[75] K., Balasubramanian and J., McGreevy, “Gravity duals for non-relativistic CFTs,” Phys. Rev. Lett. 101, 061601 (2008), arXiv:0804.4053 [hep-th].Google Scholar
[76] E., Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys. 2, 505 (1998), arXiv:hep-th/9803131.Google Scholar
[77] J., Casalderrey-Solana, H. Liu, D., Mateos, K., Rajagopal, and U. A., Wiedemann, “Gauge/string duality, hot QCD and heavy ion collisions,” arXiv:1101.0618 [hep-th].
[78] S. A., Hartnoll and P., Kovtun, “Hall conductivity from dyonic black holes,” Phys. Rev. D 76, 066001 (2007), arXiv:0704.1160 [hep-th].Google Scholar
[79] S. S., Gubser, A., Nellore, S. S., Pufu, and F. D., Rocha, “Thermodynamics and bulk viscosity of approximate black hole duals to finite temperature quantum chromodynamics,” Phys. Rev. Lett. 101, 131601 (2008), arXiv:0804.1950 [hep-th].Google Scholar
[80] O., DeWolfe, S. S., Gubser, and C., Rosen, “A holographic critical point,” Phys. Rev. D 83, 086005 (2011), arXiv:1012.1864 [hep-th].Google Scholar
[81] H. A., Chamblin and H. S., Reall, “Dynamic dilatonic domain walls,” Nucl. Phys. B 562, 133 (1999), arXiv:hep-th/9903225.Google Scholar
[82] D. T., Son and A. O., Starinets, “Minkowski space correlators in AdSCFT correspondence: Recipe and applications,” JHEP 0209, 042 (2002), arXiv:hep-th/0205051.Google Scholar
[83] N., Iqbal and H., Liu, “Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm,” Phys. Rev. D 79, 025023 (2009), arXiv:0809.3808 [hep-th].Google Scholar
[84] C., Lopez-Arcos, H., Nastase, F., Rojas, and J., Murugan, “Conductivity in the gravity dual to massive ABJM and the membrane paradigm,” JHEP 1401, 036 (2014), arXiv:1306.1263 [hep-th].Google Scholar
[85] S. S., Gubser, “Momentum fluctuations of heavy quarks in the gauge-string duality,” Nucl. Phys. B 790, 175 (2008), arXiv:hep-th/0612143.Google Scholar
[86] J., Casalderrey-Solana and D., Teaney, “Heavy quark diffusion in strongly coupled N = 4 Yang-Mills,” Phys. Rev. D 74, 085012 (2006), arXiv:hep-th/0605199.Google Scholar
[87] U., Gursoy, E., Kiritsis, L., Mazzanti, and F., Nitti, “Langevin diffusion of heavy quarks in non-conformal holographic backgrounds,” JHEP 1012, 088 (2010), arXiv:1006.3261 [hep-th].Google Scholar
[88] G. T., Horowitz and V. E., Hubeny, “Quasinormal modes of AdS black holes and the approach to thermal equilibrium,” Phys. Rev. D 62, 024027 (2000), arXiv:hepth/ 9909056.Google Scholar
[89] S. S., Gubser, “Breaking an Abelian gauge symmetry near a black hole horizon,” Phys. Rev. D 78, 065034 (2008), arXiv:0801.2977 [hep-th].Google Scholar
[90] S. A., Hartnoll, C. P., Herzog, and G. T., Horowitz, “Holographic superconductors,” JHEP 0812, 015 (2008), arXiv:0810.1563 [hep-th].Google Scholar
[91] G. T., Horowitz, J. E., Santos, and B.Way, “A holographic Josephson Junction,” Phys. Rev. Lett. 106, 221601 (2011), arXiv:1101.3326 [hep-th].Google Scholar
[92] S. K., Domokos, C., Hoyos, and J., Sonnenschein, “Holographic Josephson Junctions and Berry holonomy from D-branes,” JHEP 1210, 073 (2012), arXiv:1207.2182 [hep-th].Google Scholar
[93] K. S., Thorne, R. H., Price, and D. A., MacDonald, Black Holes: The Membrane Paradigm, Yale University Press, 1986.
[94] C., Eling, I., Fouxon, and Y., Oz, “The incompressible Navier-Stokes equations from membrane dynamics,” Phys. Lett. B 680, 496 (2009), arXiv:0905.3638 [hep-th].Google Scholar
[95] C., Eling and Y., Oz, “Relativistic CFT Hydrodynamics from the membrane paradigm,” JHEP 1002, 069 (2010), arXiv:0906.4999 [hep-th].Google Scholar
[96] C., Eling, I., Fouxon, and Y., Oz, “Gravity and a geometrization of turbulence: an intriguing correspondence,” arXiv:1004.2632 [hep-th].
[97] C., Eling, Y., Neiman, and Y., Oz, “Membrane paradigm and holographic hydrodynamics,” J. Phys. Conf. Ser. 314, 012032 (2011), arXiv:1012.2572 [hep-th].Google Scholar
[98] S., Bhattacharyya, S., Minwalla, and S. R., Wadia, “The incompressible nonrelativistic Navier-Stokes equation from gravity,” JHEP 0908, 059 (2009), arXiv:0810.1545 [hep-th].Google Scholar
[99] S., Bhattacharyya, V. E., Hubeny, S., Minwalla, and M., Rangamani, “Nonlinear fluid dynamics from gravity,” JHEP 0802, 045 (2008), arXiv:0712.2456 [hep-th].Google Scholar
[100] M. P., Heller, R. A., Janik, and R., Peschanski, “Hydrodynamic flow of the quarkgluon plasma and gauge/gravity correspondence,” Acta Phys. Polon. B 39, 3183 (2008), arXiv:0811.3113 [hep-th].Google Scholar
[101] I., Bredberg, C., Keeler, V., Lysov, and A., Strominger, “Wilsonian approach to fluid/gravity duality,” JHEP 1103, 141 (2011), arXiv:1006.1902 [hep-th].Google Scholar
[102] I., Bredberg, C., Keeler, V., Lysov, and A., Strominger, “From Navier-Stokes to Einstein,” JHEP 1207, 146 (2012), arXiv:1101.2451 [hep-th].Google Scholar
[103] E., Brezin, C., Itzykson, G., Parisi, and J. B., Zuber, “Planar diagrams,” Commun. Math. Phys. 59, 35 (1978). 600 ReferencesGoogle Scholar
[104] H., Lin, O., Lunin, and J. M., Maldacena, “Bubbling AdS space and 1/2 BPS geometries,” JHEP 0410, 025 (2004), arXiv:hep-th/0409174.Google Scholar
[105] M., Cubrovic, J., Zaanen, and K., Schalm, “String theory, quantum phase transitions and the emergent Fermi-Liquid,” Science 325, 439 (2009), arXiv:0904.1993 [hep-th].Google Scholar
[106] S. A., Hartnoll and A., Tavanfar, “Electron stars for holographic metallic criticality,” Phys. Rev. D 83, 046003 (2011), arXiv:1008.2828 [hep-th].Google Scholar
[107] J., de Boer, K., Papadodimas, and E., Verlinde, “Holographic neutron stars,” JHEP 1010, 020 (2010), arXiv:0907.2695 [hep-th].Google Scholar
[108] M., Cubrovic, Y., Liu, K., Schalm, Y. W., Sun, and J., Zaanen, “Spectral probes of the holographic Fermi groundstate: Dialing between the electron star and AdS Dirac hair,” Phys. Rev. D 84, 086002 (2011), arXiv:1106.1798 [hep-th].Google Scholar
[109] L., Susskind, “The Quantum Hall fluid and noncommutative Chern-Simons theory,” arXiv:hep-th/0101029.
[110] S., Hellerman and L., Susskind, “Realizing the quantum Hall system in string theory,” arXiv:hep-th/0107200.
[111] N., Seiberg and E., Witten, “String theory and noncommutative geometry,” JHEP 9909, 032 (1999), arXiv:hep-th/9908142.Google Scholar
[112] S., Ryu and T., Takayanagi, “Topological insulators and superconductors from Dbranes,” Phys. Lett. B 693, 175 (2010), arXiv:1001.0763 [hep-th].Google Scholar
[113] S., Ryu and T., Takayanagi, “Topological insulators and superconductors from string theory,” Phys. Rev. D 82, 086014 (2010), arXiv:1007.4234 [hep-th].Google Scholar
[114] M., Fujita, W., Li, S., Ryu, and T., Takayanagi, “Fractional quantum Hall effect via holography: Chern-Simons, edge states, and hierarchy,” JHEP 0906, 066 (2009), arXiv:0901.0924 [hep-th].Google Scholar
[115] Y., Hikida, W., Li, and T., Takayanagi, “ABJM with flavors and FQHE,” JHEP 0907, 065 (2009), arXiv:0903.2194 [hep-th].Google Scholar
[116] J., Murugan and H. Năstase, “On abelianizations of the ABJM model and applications to condensed matter,” Braz. J. Phys. 45, no. 4, 481 (2015), arXiv:1301.0229 [hep-th].Google Scholar
[117] O., Bergman, N., Jokela, G., Lifschytz, and M., Lippert, “Quantum Hall effect in a holographic model,” JHEP 1010, 063 (2010), arXiv:1003.4965 [hep-th].Google Scholar
[118] A., Mohammed, J., Murugan, and H., Năstase, “Abelian-Higgs and vortices from ABJM: Towards a string realization of AdS/CMT,” JHEP 1211, 073 (2012), arXiv:1206.7058 [hep-th].Google Scholar
[119] A., Mohammed, J., Murugan, and H., Nastase, “Towards a realization of the condensed-matter/gravity correspondence in string theory via consistent Abelian truncation,” Phys. Rev. Lett. 109, 181601 (2012), arXiv:1205.5833 [hep-th].Google Scholar
[120] J., Murugan, H. Năstase, N., Rughoonauth, and J. P., Shock, “Particle-vortex and Maxwell duality in the AdS4 × CP3/ABJM correspondence,” JHEP 1410, 51 (2014), arXiv:1404.5926 [hep-th].Google Scholar
[121] C. P., Burgess and B. P., Dolan, “Particle vortex duality and the modular group: Applications to the quantum Hall effect and other 2-D systems,” Phys. Rev. B 63, 155309 (2001), arXiv:hep-th/0010246.Google Scholar
[122] N., Doroud, D., Tong, and C., Turner, “On superconformal anyons,” JHEP 1601, 138 (2016), arXiv:1511.01491 [hep-th].Google Scholar
[123] K., Kang and H. Năstase, “Heisenberg saturation of the Froissart bound from AdSCFT,” Phys. Lett. B 624, 125 (2005), arXiv:hep-th/0501038.Google Scholar
[124] H., Năstase, “The RHIC fireball as a dual black hole,” arXiv:hep-th/0501068.
[125] H., Năstase, “DBI skyrmion, high energy (large s) scattering and fireball production,” arXiv:hep-th/0512171.
[126] H., Năstase, “A black hole solution of scalar field theory,” arXiv:hep-th/0702037.
[127] H., Năstase, “AdS-CFT and the RHIC fireball,” Prog. Theor. Phys. Suppl. 174, 274 (2008), arXiv:0805.3579 [hep-th].Google Scholar
[128] H., Năstase, “DBI scalar field theory for QGP hydrodynamics,” arXiv:1512.05257 [hep-th].
[129] S., Ryu and T., Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96, 181602 (2006), arXiv:hep-th/0603001.Google Scholar
[130] S., Ryu and T., Takayanagi, “Aspects of holographic entanglement entropy,” JHEP 0608, 045 (2006), arXiv:hep-th/0605073.Google Scholar
[131] T., Nishioka, S., Ryu, and T., Takayanagi, “Holographic entanglement entropy: an overview,” J. Phys. A 42, 504008 (2009), arXiv:0905.0932 [hep-th].Google Scholar
[132] N., Ogawa, T., Takayanagi, and T., Ugajin, “Holographic Fermi surfaces and entanglement entropy,” JHEP 1201, 125 (2012), arXiv:1111.1023 [hep-th].Google Scholar
[133] L., Huijse, S., Sachdev, and B., Swingle, “Hidden Fermi surfaces in compressible states of gauge-gravity duality,” Phys. Rev. B 85, 035121 (2012), arXiv:1112.0573 [cond-mat.str-el].Google Scholar
[134] X., Dong, S., Harrison, S., Kachru, G., Torroba, and H., Wang, “Aspects of holography for theories with hyperscaling violation,” JHEP 1206, 041 (2012), arXiv:1201.1905 [hep-th].Google Scholar
[135] S. A., Hartnoll and C. P., Herzog, “Impure AdS/CFT correspondence,” Phys. Rev. D 77, 106009 (2008), arXiv:0801.1693 [hep-th].Google Scholar
[136] S. A., Hartnoll and D. M., Hofman, “Locally critical resistivities from Umklapp scattering,” Phys. Rev. Lett. 108, 241601 (2012), arXiv:1201.3917 [hep-th].Google Scholar
[137] G. T., Horowitz, J. E., Santos, and D., Tong, “Optical conductivity with holographic lattices,” JHEP 1207, 168 (2012), arXiv:1204.0519 [hep-th].Google Scholar
[138] G. T., Horowitz, J. E., Santos, and D., Tong, “Further evidence for lattice-induced scaling,” JHEP 1211, 102 (2012), arXiv:1209.1098 [hep-th].Google Scholar
[139] D., Vegh, “Holography without translational symmetry,” arXiv:1301.0537 [hep-th].
[140] M., Blake and D., Tong, “Universal resistivity from holographic massive gravity,” Phys. Rev. D 88, no. 10, 106004 (2013), arXiv:1308.4970 [hep-th].Google Scholar
[141] M., Blake, D., Tong, and D., Vegh, “Holographic lattices give the graviton an effective mass,” Phys. Rev. Lett. 112, no. 7, 071602 (2014), arXiv:1310.3832 [hep-th].Google Scholar
[142] A., Donos and S. A., Hartnoll, “Interaction-driven localization in holography,” Nature Phys. 9, 649 (2013), arXiv:1212.2998 [hep-th].Google Scholar
[143] S. A., Hartnoll, P. K., Kovtun, M., Muller, and S., Sachdev, “Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes,” Phys. Rev. B 76, 144502 (2007), arXiv:0706.3215 [cond-mat.str-el]. 602 ReferencesGoogle Scholar
[144] J., Zaanen, “Electrons go with the flow in exotic material systems,” Science 351, 1026 (2016).Google Scholar
[145] A. H., Castro Neto, F., Guinea, N. M. R., Peres, K. S., Novoselov, and A. K., Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).Google Scholar
[146] R. A., Davison, K., Schalm, and J., Zaanen, “Holographic duality and the resistivity of strange metals,” Phys. Rev. B 89, no. 24, 245116 (2014), arXiv:1311.2451 [hep-th].Google Scholar
[147] S. A., Hartnoll, “Theory of universal incoherent metallic transport,” Nature Phys. 11, 54 (2015), arXiv:1405.3651 [cond-mat.str-el].Google Scholar
[148] C., Charmousis, B., Gouteraux, B. S., Kim, E., Kiritsis, and R., Meyer, “Effective holographic Theories for low-temperature condensed matter systems,” JHEP 1011, 151 (2010), arXiv:1005.4690 [hep-th].Google Scholar
[149] S., Sachdev, “Strange metals and the AdS/CFT correspondence,” J. Stat. Mech. 1011, P11022 (2010), arXiv:1010.0682 [cond-mat.str-el].Google Scholar
[150] S., Harrison, S., Kachru, and G., Torroba, “A maximally supersymmetric Kondo model,” Class. Quant. Grav. 29, 194005 (2012), arXiv:1110.5325 [hep-th].Google Scholar
[151] J., Erdmenger, M., Flory, C., Hoyos,M. N., Newrzella, A., O'Bannon, and J., Wu, “Holographic impurities and Kondo effect,” arXiv:1511.09362 [hep-th].

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Horatiu Nastase, Universidade Estadual Paulista, São Paulo
  • Book: String Theory Methods for Condensed Matter Physics
  • Online publication: 26 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316847978.051
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Horatiu Nastase, Universidade Estadual Paulista, São Paulo
  • Book: String Theory Methods for Condensed Matter Physics
  • Online publication: 26 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316847978.051
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Horatiu Nastase, Universidade Estadual Paulista, São Paulo
  • Book: String Theory Methods for Condensed Matter Physics
  • Online publication: 26 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316847978.051
Available formats
×