Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T03:23:57.794Z Has data issue: false hasContentIssue false

4 - Suprathreshold stochastic resonance: encoding

Published online by Cambridge University Press:  23 October 2009

Mark D. McDonnell
Affiliation:
Institute for Telecommunications Research, University of South Australia and University of Adelaide
Nigel G. Stocks
Affiliation:
University of Warwick
Charles E. M. Pearce
Affiliation:
University of Adelaide
Derek Abbott
Affiliation:
University of Adelaide
Get access

Summary

In many of the systems and models in which stochastic resonance has been observed, the essential nonlinearity is effectively a single threshold. Usually SR occurs when an entirely subthreshold signal is subjected to additive noise, which allows threshold crossings to occur that otherwise would not have. In such systems, it is generally thought that when the input signal is suprathreshold, then the addition of noise will not have any beneficial effect on the system output.

However, the 1999 discovery of a novel form of SR in simple threshold-based systems showed that this is not the case. This phenomenon is known as suprathreshold stochastic resonance, and occurs in arrays of identical threshold devices subject to independent additive noise. In such arrays, SR can occur regardless of whether the signal is entirely subthreshold or not, hence the name suprathreshold SR. The SSR effect is quite general, and is not restricted to any particular type of signal or noise distribution.

This chapter reviews the early theoretical work on SSR. Recent theoretical extensions are also presented, as well as numerical analysis of previously unstudied input and noise signals, a new technique for calculating the mutual information by integration, and an investigation of a number of channel capacity questions for SSR. Finally, this chapter shows how SSR can be interpreted as a stochastic quantization scheme.

Introduction

Suprathreshold stochastic resonance (SSR) is a form of stochastic resonance (SR) that occurs in arrays of identical threshold devices. A schematic model of the system is shown in Fig. 4.1, and is described in detail in Section 4.3.

Type
Chapter
Information
Stochastic Resonance
From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization
, pp. 59 - 119
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×