Skip to main content Accessibility help
×
  • Cited by 29
Publisher:
Cambridge University Press
Online publication date:
December 2015
Print publication year:
2016
Online ISBN:
9781107705548

Book description

Multi-scale systems, involving complex interacting processes that occur over a range of temporal and spatial scales, are present in a broad range of disciplines. Several methodologies exist to retrieve this multi-scale information from a given time series; however, each method has its own limitations. This book presents the mathematical theory behind the stochastic analysis of scaling time series, including a general historical introduction to the problem of intermittency in turbulence, as well as how to implement this analysis for a range of different applications. Covering a variety of statistical methods, such as Fourier analysis and wavelet transforms, it provides readers with a thorough understanding of the techniques and when to apply them. New techniques to analyse stochastic processes, including empirical mode decomposition, are also explored. Case studies, in turbulence and ocean sciences, are used to demonstrate how these statistical methods can be applied in practice, for students and researchers.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Abry, P., Chainais, P., Coutin, L., and Pipiras, V. 2009. Multifractal random walks as fractional Wiener integrals. IEEE Trans. Inform. Theory, 55(8), 3825–3846.
Ahlers, G., Grossmann, S., and Lohse, D. 2009. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev. Mod. Phys., 81(2), 503–537.
Alexakis, A., and Doering, C. R. 2006. Energy and e nstrophy dissipation in steady state 2D turbulence. Phys. Lett. A, 359(6), 652–657.
Anh, Vo V., Leonenko, Nikolai N., and Shieh, Narn-Rueih. 2008. Multifractality of products of geometric Ornstein-Uhlenbeck-type processes. Adv. Appl. Prob., 40, 1129–1156.
Anselmet, F., Gagne, Y., Hopfinger, E. J., and Antonia, R. A. 1984. High-order velocity structure functions in turbulent shear flows. J. Fluid Mech., 140, 63–89.
Applebaum, D. 2004. Lévy processes and stochastic calculus. Cambridge University Press.
Apt, J. 2007. The spectrum of power from wind turbines. J. Power Sources, 169(2), 369–374.
Arnéodo, A., Baudet, C., Belin, F., Benzi, R., Castaing, B., Chabaud, B., Chavarria, R., Ciliberto, S., Camussi, R., and Chilla, F. 1996. Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity. Europhys. Lett., 34(6), 411–416.
Arnéodo, A., Benzi, R., Berg, J., Biferale, L., Bodenschatz, E., Busse, A., Calzavarini, E., Castaing, B., Cencini, M., Chevillard, L., Fisher, R. T., Grauer, R., Homann, H., Lamb, D., Lanotte, A. S., Lévêque, E., Luthi, B., Mann, J., Mordant, N., Muller, W.-C., Ott, S., Ouellette, N. T., Pinton, J.-F., Pope, S. B., Roux, S. G., Toschi, F., Xu, H., and Yeung, P. K. 2008. Universal intermittent properties of particle trajectories in highly turbulent flows. Phys. Rev. Lett., 100(25), 254504.
Arrault, J., Arnéodo, A., Davis, A., and Marshak, A. 1997. Wavelet based multifractal analysis of rough surfaces: application to cloud models and satellite data. Phys. Rev. Lett., 79(1), 75–78.
Ashkenazi, S., and Steinberg, V. 1999. Spectra and statistics of velocity and temperature fluctuations in turbulent convection. Phys. Rev. Lett., 83(23), 4760–4763.
Bacry, E., and Muzy, J.-F. 2003. Log-infinitely divisible multifractal processes. Commun. Math. Phys., 236(3), 449–475.
Bacry, E., Delour, J., and Muzy, J. F. 2001. A multifractal random walk. Phys. Rev. E, 64(2), 026103.
Balocchi, R., Menicucci, D., Santarcangelo, E., Sebastiani, L., Gemignani, A., Ghelarducci, B., and Varanini, M. 2004. Deriving the respiratory sinus arrhythmia from the heartbeat time series using empirical mode decomposition. Chaos Soliton Fract., 20(1), 171–177.
Barabási, A.-L., Szépfalusy, P., and Vicsek, T. 1991. Multifractal spectra of multi-affine functions. Physica A, 178(1), 17–28.
Bardet, J. M., and Kammoun, I. 2008. Asymptotic properties of the detrended fluctuation analysis of long-range-dependent processes. IEEE Trans. Inform. Theory, 54(5), 2041–2052.
Barral, J., and Mandelbrot, B. B. 2002. Multifractal products of cylindrical pulses. Probab. Theory Related Fields, 124(3), 409–430.
Bashan, A., Bartsch, R., Kantelhardt, J.W., and Havlin, S. 2008. Comparison of detrending methods for fluctuation analysis. Physica A, 387(21), 5080–5090.
Batchelor, G. K. 1953. The theory of homogeneous turbulence. Cambridge University Press.
Batchelor, G. K., and Townsend, A. A. 1949. The nature of turbulent motion at large wavenumbers. Proc. R. Soc. A, 199(1057), 238–255.
Battjes, J. A. 1988. Surf zone dynamics. Annu. Rev. Fluid Mech., 20(1), 257–291.
Bec, J., Biferale, L., Cencini, M., Lanotte, A. S., and Toschi, F. 2006. Effects of vortex filaments on the velocity of tracers and heavy particles in turbulence. Phys. Fluids, 18, 081702.
Bec, J., Homann, H., and Krstulovic, G. 2014. Clustering, fronts, and heat transfer in turbulent suspensions of heavy particles. Phys. Rev. Lett., 112, 234503.
Beck, C. 2007. Statistics of three-dimensional Lagrangian turbulence. Phys. Rev. Lett., 98(6), 064502.
Benzi, R., Paladin, G., Vulpiani, A., and Parisi, G. 1984. On the multifractal nature of fully developed turbulence and chaotic systems. J. Phys. A, 17, 3521–3531.
Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F., and Succi, S. 1993a. Extended self-similarity in turbulent flows. Phys. Rev. E, 48(1), 29–32.
Benzi, R., Biferale, L., Crisanti, A., Paladin, G., Vergassola, M., and Vulpiani, A. 1993b. A random process for the construction of multiaffine fields. Physica D, 65(4), 352–358.
Benzi, R., Ciliberto, S., Baudet, C., and Chavarria, G. R. 1995. On the scaling of threedimensional homogeneous and isotropic turbulence. Physica D, 80(4), 385–398.
Benzi, R., Biferale, L., Calzavarini, E., Lohse, D., and Toschi, F. 2009. Velocity-gradient statistics along particle trajectories in turbulent flows: the refined similarity hypothesis in the Lagrangian frame. Phys. Rev. E, 80(6), 066318.
Beran, J. 1994. Statistics for long-memory processes. CRC Press.
Berg, J., Ott, S., Mann, J., and Lüthi, B. 2009. Experimental investigation of Lagrangian structure functions in turbulence. Phys. Rev. E, 80(2), 026316.
Bernard, D. 2000. Influence of friction on the direct cascade of the 2d forced turbulence. Europhys. Lett., 50, 333–339.
Bernard, P. S., and Wallace, J. M. 2002. Turbulent flow: analysis, measurement, and prediction. John Wiley & Sons.
Biagini, F., Hu, Y., Oksendal, B., and Zhang, T. 2008. Stochastic calculus for fractional Brownian motion and applications. Springer Verlag.
Biferale, L., Boffetta, G., Celani, A., Crisanti, A., and Vulpiani, A. 1998. Mimicking a turbulent signal: sequential multiaffine processes. Phys. Rev. E, 57, R6261–R6264.
Biferale, L., Cencini, M., Lanotte, A. S., and Vergni, D. 2003. Inverse velocity statistics in two-dimensional turbulence. Phys. Fluids, 15(4), 1012–1020.
Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A., and Toschi, F. 2004. Multifractal statistics of Lagrangian velocity and acceleration in turbulence. Phys. Rev. Lett., 93(6), 064502.
Blain, S., Guillou, J., Treguer, P., Woerther, P., Delauney, L., Follenfant, E., Gontier, O., Hamon, M., Leilde, B., Masson, A., Tartub, C., and Vuillemin, R. 2004. High frequency monitoring of the coastal environment using the marel buoy. J. Environ. Monit., 6, 569–575.
Boffetta, G. 2007. Energy and enstrophy fluxes in the double cascade of two-dimensional turbulence. J. Fluid Mech., 589, 253–260.
Boffetta, G., and Ecke, R. E. 2012. Two-Dimensional Turbulence. Annu. Rev. Fluid Mech., 44, 427–451.
Boffetta, G., and Musacchio, S. 2010. Evidence for the double cascade scenario in twodimensional turbulence. Phys. Rev. E, 82(1), 016307.
Boffetta, G., Celani, A., Musacchio, S., and Vergassola, M. 2002. Intermittency in twodimensional Ekman-Navier-Stokes turbulence. Phys. Rev. E, 66(2), 026304.
Bolgiano, R. 1959. Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res., 64, 2226–2229.
Boettcher, F., Barth, S., and Peinke, J. 2007. Small and large scale fluctuations in atmospheric wind speeds. Stoch. Env. Res. Risk A., 21(3), 299–308.
Bouchet, F., and Venaille, A. 2012. Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep., 515, 227–295.
Brown, E., and Ahlers, G. 2007. Large-scale circulation model for turbulent Rayleigh- Bénard convection. Phys. Rev. Lett., 98(Mar.), 134501.
Brown, E., Nikolaenko, A., and Ahlers, G. 2005. Reorientation of the large-scale circulation in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett., 95, 084503.
Calif, R., and Schmitt, F. G. 2012. Modeling of atmospheric wind speed sequence using a lognormal continuous stochastic equation. J. Wind Eng. Ind. Aerodyn., 109, 1–8.
Calif, R., and Schmitt, F. G. 2014. Multiscaling and joint multiscaling description of the atmospheric wind speed and the aggregate power output from a wind farm. Nonlinear Proc. Geoph., 21(2), 379–392.
Calif, R., Schmitt, F. G., and Huang, Y. 2013. Multifractal description of wind power fluctuations using arbitrary order Hilbert spectral analysis. Physica A, 392, 4106–4120.
Celani, A., Lanotte, A., Mazzino, A., and Vergassola, M. 2000. Universality and saturation of intermittency in passive scalar turbulence. Phys. Rev. Lett., 84, 2385–2388.
Celani, A., Musacchio, S., and Vincenzi, D. 2010. Turbulence in more than two and less than three dimensions. Phys. Rev. Lett., 104(18), 184506.
Chainais, P. 2006. Multidimensional infinitely divisible cascades. EPJ B, 51(2), 229–243.
Champagne, F. H. 1978. The fine-scale structure of the turbulent velocity field. J. Fluid Mech., 86(01), 67–108.
Chang, G. C., and Dickey, T. D. 2001. Optical and physical variability on timescales from minutes to the seasonal cycle on the New England shelf: July 1996 to June 1997. J. Geophys. Res., 106, 9435–9453.
Chavez, F. P., Pennington, J., Herlien, R., Jannasch, H., Thurmond, G., and Friederich, G. E. 1997. Moorings and drifters for real-time interdisciplinary oceanography. J. Atmos. Oceanic Technol., 14, 1199–1211.
Chen, J., Xu, Y. L., and Zhang, R. C. 2004. Modal parameter identification of Tsing Ma suspension bridge under Typhoon Victor: EMD-HT method. J. Wind Eng. Ind. Aerodyn., 92(10), 805–827.
Chen, S. Y., and Cao, N. 1995. Inertial range scaling in turbulence. Phys. Rev. E, 52(6), 5757–5759.
Chen, S. Y., Sreenivasan, K. R., Nelkin, M., and Cao, N. Z. 1997. Refined similarity hypothesis for transverse structure functions in fluid turbulence. Phys. Rev. Lett., 79(12), 2253–2256.
Chen, S. Y., Ecke, R. E., Eyink, G. L., Wang, X., and Xiao, Z. 2003. Physical mechanism of the two-dimensional enstrophy cascade. Phys. Rev. Lett., 91(21), 214501.
Chen, S. Y., Ecke, R. E., Eyink, G. L., Rivera, M., Wan, M., and Xiao, Z. 2006. Physical mechanism of the two-dimensional inverse energy cascade. Phys. Rev. Lett., 96(8), 84502.
Chen, Z., Ivanov, P. Ch., Hu, K., and Stanley, H. E. 2002. Effect of nonstationarities on detrended fluctuation analysis. Phys. Rev. E, 65(4), 041107.
Chevillard, L., and Meneveau, C. 2006. Lagrangian dynamics and statistical geometric structure of turbulence. Phys. Rev. Lett., 97(17), 174501.
Chevillard, L., Roux, S. G., Lévêque, E., Mordant, N., Pinton, J.-F., and Arnéodo, A. 2003. Lagrangian velocity statistics in turbulent flows: Effects of dissipation. Phys. Rev. Lett., 91(21), 214502.
Ching, E. S. C., Chui, K.-W., Shang, X. D., Qiu, X.-L., Tong, P., and Xia, K.-Q. 2004. Velocity and temperature cross-scaling in turbulent thermal convection. J. Turbul., 5, 027.
Cioni, S., Ciliberto, S., and Sommeria, J. 1995. Temperature structure functions in turbulent convection at low Prandtl number. Europhys. Lett., 32, 413.
Cohen, L. 1995. Time-frequency analysis. Englewood Cliffs, NJ: Prentice Hall PTR.
Collet, P., and Koukiou, F. 1992. Large deviations for multiplicative chaos. Commun. Math. Phys., 147(2), 329–342.
Corrsin, S. 1951. On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys., 22, 469.
Corrsin, S. 1975. Limitations of gradient transport models in random walks and in turbulence. Adv. Geophys., 18, 25–60.
Costa, A., Crespo, A., Navarro, J., Lizcano, G., Madsen, H., and Feitosa, E. 2008. A review on the young history of the wind power short-term prediction. Renew. Sust. Eenerg. Rev., 12(6), 1725–1744.
Coughlin, K. T., and Tung, K. K. 2004. 11-Year solar cycle in the stratosphere extracted by the empirical mode decomposition method. Adv. Space Res., 34(2), 323–329.
Dahlstedt, K., and Jensen, H. J. 2005. Fluctuation spectrum and size scaling of river flow and level. Physica A, 348, 596–610.
Daubechies, I. 1992. Ten lectures on wavelets. Philadelphia: SIAM.
Davidson, P. A., and Pearson, B. R. 2005. Identifying turbulent energy distribution in real, rather than Fourier, space. Phys. Rev. Lett., 95, 214501.
Davis, A., Marshak, A., Wiscombe, W., and Cahalan, R. 1994. Multifractal characterizations of nonstationarity and intermittency in geophysical fields: observed, retrieved, or simulated. Journal of Geophysical Research: Atmospheres, 99(D4), 8055–8072.
Davis, A. B., Marshak, A. L., and Wiscombe, W. J. 1993. Bi-multifractal analysis and multiaffine modeling of non-stationary geophysical processes, application to turbulence and clouds. Fractals, 1(3), 560–567.
de Montera, L., Jouini, M., Verrier, S., Thiria, S., and Crepon, M. 2011. Multifractal analysis of oceanic chlorophyll maps remotely sensed from space. Ocean Sci., 7(2), 219–229.
de Montera, L., Barthès, L., Mallet, C., and Golé, P. 2009. The effect of rain–no rain intermittency on the estimation of the universal multifractals model parameters. J. Hydrometeor., 10(2), 493–506.
Denman, K., Okubo, A., and Platt, T. 1977. The chlorophyll fluctuation spectrum in the sea. Limnol. Oceanogr., 22(6), 1033–1038.
Denman, K. L. 1976. Covariability of chlorophyll and temperature in the sea. Deep Sea Res.: Oceanogr. Abstr., 23, 539–550.
Desprez, M. 2000. Physical and biological impact of marine aggregate extraction along the French coast of the Eastern English Channel: short-and long-term post-dredging restoration. ICES Journal of Marine Science: Journal du Conseil, 57(5), 1428–1438.
Dickey, T. D. 1991. The emergence of concurrent high resolution physical and bio-optical measurements in the upper ocean and their applications. Rev. Geophys., 29, 383–413.
Dubrulle, B. 1994. Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance. Phys. Rev. Lett., 73(7), 959–962.
Dur, G., Schmitt, F. G., and Souissi, S. 2007. Analysis of high frequency temperature time series in the Seine estuary from the Marel autonomous monitoring buoy. Hydrobiologia, 588(1), 59–68.
Echeverria, J. C., Crowe, J. A., Woolfson, M. S., and Hayes-Gill, B. R. 2001. Application of empirical mode decomposition to heart rate variability analysis. Med. Biol. Eng. Comput., 39(4), 471–479.
Eggers, J., and Grossmann, S. 1992. Effect of dissipation fluctuations on anomalous velocity scaling in turbulence. Phys. Rev. A, 45(4), 2360.
Egolf, P.W., and Weiss, D. A. 1998. Difference-quotient turbulence model: the axisymmetric isothermal jet. Phys. Rev. E, 58(1), 459.
Embrechts, P., and Maejima, M. 2002. Self-similar processes. Princeton University Press.
Falkovich, G., and Lebedev, V. 1994. Universal direct cascade in two-dimensional turbulence. Phys. Rev. E, 50(5), 3883.
Falkovich, G., and Lebedev, V. 2011. Vorticity statistics in the direct cascade of twodimensional turbulence. Phys. Rev. E, 83(4), 045301.
Falkovich, G., and Sreenivasan, K. R. 2006. Lessons from hydrodynamic turbulence. Phys. Today, 59, 43.
Falkovich, G., Gawedzki, K., and Vergassola, M. 2001. Particles and fields in fluid turbulence. Rev. Mod. Phys., 73(4).
Falkovich, G., Xu, H. T., Pumir, A., Bodenschatz, E., Biferale, L., Boffetta, G., Lanotte, A.S., and Toschi, F. 2012. On Lagrangian single-particle statistics. Phys. Fluids, 24(4), 055102.
Farge, M. 1992. Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech., 24(1), 395–457.
Farge, M., Kevlahan, N., Perrier, V., and Goirand, E. 1996. Wavelets and turbulence. Proc. IEEE, 84(4), 639–669.
Feller, W. 1971. An introduction to probalitity theory and its applications. NewYork:Wiley.
Flandrin, P. 1998. Time-frequency/time-scale analysis. San Diego, CA: Academic Press.
Flandrin, P., and Gonçalvès, P. 2004. Empirical mode decompositions as data-driven wavelet-like expansions. IJWMIP, 2(4), 477–496.
Flandrin, P., Rilling, G., and Gonçalvès, P. 2004. Empirical mode decomposition as a filter bank. IEEE Signal Processing Lett., 11(2), 112–114.
Frisch, U. 1995. Turbulence: the legacy of AN Kolmogorov. Cambridge University Press.
Frisch, U., and Matsumoto, T. 2002. On multifractality and fractional derivatives. J. Stat. Phys., 108(5-6), 1181–1202.
Frisch, U., Sulem, P. L., and Nelkin, M. 1978. A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech., 87(4), 719–736.
Gagne, Y. 1980. Contribution à l’étude expérimentale de l'intermittence de la turbulence à petite échelle. PhD thesis.
Garcia, H. E., and Gordon, L. I. 1992. Oxygen solubility in seawater: better fitting equations. Limnol. Oceanogr., 37, 1307–1312.
Ghashghaie, S., Breymann, W., Peinke, J., Talkner, P., and Dodge, Y. 1996. Turbulent cascades in foreign exchange markets. Nature, 381(6585), 767–770.
Gipe, P. 1995. Wind energy comes of age. Vol. 4. New York: John Wiley & Sons.
Gnedenko, B. V., and Kolmogorov, A. N. 1954. Limit distributions for sums of independent random variables.
Gottschall, Julia, and Peinke, Joachim. 2008. How to improve the estimation of power curves for wind turbines. Environ. Res. Lett., 3(1), 015005.
Grant, H. L., Stewart, R.W., and Moilliet, A. 1962. Turbulence spectra from a tidal channel. J. Fluid Mech., 12(2), 241–268.
Grassberger, P., and Procaccia, I. 1983. Generalized dimensions of strange attractors. Phys. Rev. Lett., 50(6), 346.
Grossmann, S., and Lohse, D. 2004. Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids, 16, 4462.
Gurvich, A. S. 1960. Frequency spectra and distribution functions of vertical wind components. Izvestia ANSSSR Geophys Ser, 7, 1042.
Gurvich, A. S., and Yaglom, A.M. 1967. Breakdown of eddies and probability distributions for small-scale turbulence. Phys. Fluids, 10(9), S59–S65.
Gurvich, A. S., and Zubkovskii, S. L. 1963. Experimental estimate of fluctuations in the turbulent energy dissipation. Izv. Akad. Nauk SSSR, Ser. Geofiz, 12, 1856–1858.
Haar, A. 1910. On the theory of orthogonal function systems. Mathematische Annalen, 69, 331–371.
Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., and Shraiman, B. I. 1986. Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A, 33(2), 1141–1151.
Hartlep, T., Tilgner, A., and Busse, F. H. 2003. Large scale structures in Rayleigh-Bénard convection at high Rayleigh numbers. Phys. Rev. Lett., 91(6), 64501.
He, G. W. 2011. Anomalous scaling for Lagrangian velocity structure functions in fully developed turbulence. Phys. Rev. E, 83(2), 025301.
He, G. W., and Zhang, J. B. 2006. Elliptic model for space-time correlations in turbulent shear flows. Phys. Rev. E, 73, 055303(R).
He, X. Z., and Tong, P. 2011. Kraichnan's random sweeping hypothesis in homogeneous turbulent convection. Phys. Rev. E, 83, 037302.
He, X. Z., He, G.W., and Tong, P. 2010. Small-scale turbulent fluctuations beyond Taylor's frozen-flow hypothesis. Phys. Rev. E, 81, 065303(R).
He, X. Z., Funfschilling, D., Nobach, H., Bodenschatz, E., and Ahlers, G. 2012. Transition to the ultimate state of turbulent Rayleigh-Bénard convection. Phys. Rev. Lett., 108(2), 024502.
Heneghan, C., and McDarby, G. 2000. Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes. Phys. Rev. E, 62(5), 6103–6110.
Hentschel, H. G. E., and Procaccia, I. 1983. The infinite number of generalized dimensions of fractals and strange attractors. Physica D, 8(3), 435–444.
Hinze, J. O., Sonnenberg, R. E., and Builtjes, P. J. H. 1974. Memory effect in a turbulent boundary-layer flow due to a relatively strong axial variation of the mean-velocity gradient. Appl. Sci. Res., 29(1), 1–13.
Hu, K., Ivanov, P. C., Chen, Z., Carpena, P., and Stanley, H. E. 2001. Effect of trends on detrended fluctuation analysis. Phys. Rev. E, 64(1), 11114.
Huang, N. E. 2005. Hilbert-Huang transform and its applications. World Scientific. Chap. 1. Introduction to the Hilbert-Huang transform and its related mathematical problems, 1–26.
Huang, N. E., and Wu, Z. 2005. An adaptive data analysis method for nonlinear and nonstationary time series: the empirical mode decomposition and Hilbert spectrum analysis. Proceedings of the 4th International Conference on Wavelet and Its Application, Macao.
Huang, N. E., Wu, M. L., Long, S. R., Shen, S. S. P., Qu, W., Gloersen, P., and Fan, K. L. 2003a. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc. R. Soc. A, 459(2037), 2317–2345.
Huang, N. E., Wu, M. L., Qu, W., Long, S. R., and Shen, S. S. P. 2003b. Applications of Hilbert-Huang transform to non-stationary financial time series analysis. Appl. Stoch. Model Bus., 19(3), 245–268.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C., and Liu, H. H. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A, 454(1971), 903–995.
Huang, N. E., Shen, Z., and Long, S. R. 1999. A new view of nonlinear water waves: the Hilbert spectrum. Annu. Rev. Fluid Mech., 31(1), 417–457.
Huang, Y. X. 2009. Arbitrary-order Hilbert spectral analysis: definition and application to fully developed turbulence and environmental time series. PhD thesis, Université des Sciences et Technologies de Lille - Lille 1, France & Shanghai University, China.
Huang, Y. X. 2014. Detrended structure-function in fully developed turbulence. J. Turbul., 15(4), 209–220.
Huang, Y. X., Schmitt, F. G., Lu, Z. M, and Liu, Y. L. 2008a. An amplitude-frequency study of turbulent scaling intermittency using Hilbert spectral analysis. Europhys. Lett., 84, 40010.
Huang, Y. X., Schmitt, F. G., Lu, Z. M., and Liu, Y. L. 2008b. Analyse de l'invariance d’échelle de séries temporelles par la décomposition modale empirique et l'analyse spectrale de Hilbert. Traitement du Signal, 25, 481–492.
Huang, Y. X., Schmitt, F. G., Lu, Z. M., and Liu, Y. L. 2009a. Analysis of Daily River Flow Fluctuations Using Empirical Mode Decomposition and Arbitrary Order Hilbert Spectral Analysis. J. Hydrol., 373, 103–111.
Huang, Y. X., Schmitt, F. G., Lu, Z. M., and Liu, Y. L. 2009b. Autocorrelation function of velocity increments in fully developed turbulence. EPL, 86, 40010.
Huang, Y. X., Schmitt, F. G., Lu, Z. M., Fougairolles, P., Gagne, Y., and Liu, Y. L. 2010. Second-order structure function in fully developed turbulence. Phys. Rev. E, 82(2), 026319.
Huang, Y. X., Schmitt, F. G., Hermand, J.-P., Gagne, Y., Lu, Z. M., and Liu, Y. L. 2011a. Arbitrary-order Hilbert spectral analysis for time series possessing scaling statistics: comparison study with detrended fluctuation analysis and wavelet leaders. Phys. Rev. E, 84(1), 016208.
Huang, Y. X., Schmitt, F. G., Zhou, Q., Qiu, X., Shang, X. D., Lu, Z. M., and Liu, Y. L. 2011b. Scaling of maximum probability density functions of velocity and temperature increments in turbulent systems. Phys. Fluids, 23, 125101.
Huang, Y. X., Biferale, L., Calzavarini, E., Sun, C., and Toschi, F. 2013. Lagrangian single particle turbulent statistics through the Hilbert-Huang transforms. Phys. Rev. E, 87, 041003(R).
Huang, Y. X., Schmitt, F. G., and Gagne, Y. 2014. Two-scale correlation and energy cascade in three-dimensional turbulent flows. J. Stat. Mech, 5, P05002.
Hwang, P. A., Huang, N. E., and Wang, D. W. 2003. A note on analyzing nonlinear and nonstationary ocean wave data. Appl. Ocean Res., 25(4), 187–193.
Inoue, E. 1952. Turbulent fluctuations in temperature in the atmosphere and oceans. J. Meteor. Soc. Japan, 29, 246–253.
Irion, R. 1999. Soap films reveal whirling worlds of turbulence. Science, 284(5420), 1609–1610.
Jaffard, S. 1999. The multifractal nature of Lévy processes. Probab. Theory Related Fields, 114(2), 207–227.
Jaffard, S., Lashermes, B., and Abry, P. 2007. Wavelet leaders in multifractal analysis. In Wavelet analysis and applications. Birkhauser Verlag, Basel: Springer, 201–246.
Janicki, A., and Weron, A. 1994. Simulation and chaotic behavior of alpha-stable stochastic processes. New York: Marcel Dekker.
Jánosi, I. M., and Müller, R. 2005. Empirical mode decomposition and correlation properties of long daily ozone records. Phys. Rev. E, 71(5), 56126.
Juneja, A., Lathrop, D. P., Sreenivasan, K. R., and Stolovitzky, G. 1994. Synthetic turbulence. Phys. Rev. E, 49(6), 5179.
Kader, B. A., and Yaglom, A. M. 1984. Turbulent structure of an unstable atmospheric surface layer. In Nonlinear and Turbulent Processes in Physics, vol. 1, 829.
Kahane, J. P. 1985. Sur le chaos multiplicatif. Ann. Sci. Math. Québec, 9(2), 105–150.
Kang, H., Chester, S., and Meneveau, C. 2003. Decaying turbulence in an active-gridgenerated flow and comparisons with large-eddy simulation. J. Fluid Mech., 480, 129–160.
Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., and Stanley, H. E. 2002. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A, 316(1-4), 87–114.
Katul, G., and Chu, C.-R. 1998. A theoretical and experimental investigation of energycontaining scales in the dynamic sublayer of boundary-layer flows. Boundary-Layer Meteorol., 86(2), 279–312.
Katul, G. G., Chu, C. R., Parlange, M. B., Albertson, J. D., and Ortenburger, T. A. 1995. Low-wavenumber spectral characteristics of velocity and temperature in the atmospheric surface layer. J. Geophys. Res., 100(D7), 14243–14255.
Katul, G. G., Porporato, A., and Nikora, V. 2012. Existence of k- 1 power-law scaling in the equilibrium regions of wall-bounded turbulence explained by Heisenberg's eddy viscosity. Phys. Rev. E, 86(6), 066311.
Katzenstein, W., Fertig, E., and Apt, J. 2010. The variability of interconnected wind plants. Energy Policy, 38(8), 4400–4410.
Kellay, H., Wu, X. L., and Goldburg, W. I. 1998. Vorticity measurements in turbulent soap films. Phys. Rev. Lett., 80(2), 277–280.
Kellay, H., and Goldburg, W. I. 2002. Two-dimensional turbulence: a review of some recent experiments. Rep. Prog. Phys., 65(5), 845.
Kelley, D. H., and Ouellette, N. T. 2011. Spatiotemporal persistence of spectral fluxes in two-dimensional weak turbulence. Phys. Fluids, 23(11), 115101.
Khurana, N., and Ouellette, N. T. 2012. Interactions between active particles and dynamical structures in chaotic flow. Phys. Fluids, 24(9), 091902.
Kida, S. 1991. Log stable distribution and intermittency of turbulence. J. Phys. Soc. Jpn., 60(1), 5–8.
Kolmogorov, A. N. 1940. The Wiener spiral and some other interesting curves in Hilbert space. Dokl. Akad. Nauk SSSR, 26(2), 115–118.
Kolmogorov, A. N. 1941a. Energy dissipation in locally isotropic turbulence. Doklady AN SSSR, 32(1), 19–21.
Kolmogorov, A. N. 1941b. Local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Dokl. Akad. Nauk SSSR, 30, 301.
Kolmogorov, A. N. 1962. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech., 13, 82–85.
Korotenko, K. A., Sentchev, A. V., and Schmitt, F. G. 2012. Effect of variable winds on current structure and Reynolds stresses in a tidal flow: analysis of experimental data in the eastern English Channel. Ocean Science, 8(6), 1025–1040.
Koscielny-Bunde, E., Kantelhardt, J. W., Braun, P., Bunde, A., and Havlin, S. 2006. Longterm persistence and multifractality of river runoff records: detrended fluctuation studies. J. Hydrol., 322(1-4), 120–137.
Kraichnan, R. H. 1967. Inertial Ranges in Two-Dimensional Turbulence. Phys. Fluids, 10, 1417–1423.
Kraichnan, R. H., and Montgomery, D. 1980. Two-dimensional turbulence. Rep. Prog. Phys., 43, 547.
Kunnen, R. P. J., Clercx, H. J. H., Geurts, B. J., van Bokhoven, L. J. A., Akkermans, R. A. D., and Verzicco, R. 2008. Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh-Bénard convection. Phys. Rev. E, 77(1), 016302.
Kuramoto, Y., Battogtokh, D., and Nakao, H. 1998. Multiaffine chemical turbulence. Phys. Rev. Lett., 81(16), 3543.
Landau, L. D., and Lifshits, E. M. 1944. Fluid mechanics, 1st Russian edn. Landberg, L. 1999. Short-term prediction of the power production from wind farms. J.Wind Eng. Ind. Aerodyn., 80(1), 207–220.
Lashermes, B., Abry, P., and Chainais, P. 2004. New insights into the estimation of scaling exponents. IWMIP, 2(04), 497–523.
Lashermes, B., Jaffard, S., and Abry, P. 2005. Wavelet leader based multifractal analysis. In IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005. Proceedings ICASSP'05., vol. 4. IEEE, iv–161.
Lashermes, B., Roux, S. G., Abry, P., and Jaffard, S. 2008. Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders. Eur. Phys. J. B, 61(2), 201–215.
Lévy, P. 1937. Théorie de laddition des variables aléatoires. Gauthiers-Villars, Paris.
Li, M. Y., and Huang, Y. X. 2014. Hilbert–Huang Transform based multifractal analysis of China stock market. Physica A, 406, 222–229.
Loh, C. H., Wu, T. C., and Huang, N. E. 2001. Application of the Empirical Mode Decomposition-Hilbert Spectrum Method to Identify Near-Fault Ground-Motion Characteristics and Structural Responses. BSSA, 91(5), 1339–1357.
Lohse, D., and Xia, K.-Q. 2010. Small-scale properties of turbulent Rayleigh-Bénard convection. Annu. Rev. Fluid Mech., 42, 335–364.
Long, S. R., Huang, N. E., Tung, C. C., Wu, M. L., Lin, R. Q., Mollo-Christensen, E., and Yuan, Y. 1995. The Hilbert techniques: an alternate approach for non-steady time series analysis. IEEE Geoscience and Remote Sensing Soc. Lett., 3, 6–11.
Loutridis, S. J. 2005. Resonance identification in loudspeaker driver units: A comparison of techniques. Appl. Acoust., 66(12), 1399–1426.
Lovejoy, S, and Schertzer, D. 2012. Haar wavelets, fluctuations and structure functions: convenient choices for geophysics. Nonlinear Proc. Geoph., 19(5), 513–527.
Lovejoy, S, Schertzer, D, Tessier, Y, and Gaonac'h, H. 2001a. Multifractals and resolutionindependent remote sensing algorithms: the example of ocean colour. Int. J. Remote Sens., 22(7), 1191–1234.
Lovejoy, S., Currie, W. J. S., Tessier, Y., Claereboudt, M. R., Bourget, E., Roff, J. C., and Schertzer, D. 2001b. Universal multifractals and ocean patchiness: phytoplankton, physical fields and coastal heterogeneity. J. Plankton Res., 23(2), 117-141.
Lovejoy, Shaun, and Schertzer, Daniel. 2013. The weather and climate: emergent laws and multifractal cascades. Cambridge University Press.
Ludena, Carenne. 2008. Lp-variations for multifractal fractional random walks. Ann. Appl. Probab., 18(3), 1138-1163.
Lumley, J. L. 1970. Toward a turbulent constitutive relation. J. Fluid Mech., 41(02), 413-434.
Maejima, M. 1983. On a class of self-similar processes. Probab. Theory Related Fields, 62(2), 235-245.
Malik, S. C., and Arora, S. 1992. Mathematical Analysis. New York: John Wiley & Sons Inc.
Mallat, S., and Hwang, W. L. 1992. Singularity detection and processing with wavelets. IEEE Trans. Inform. Theory, 38(2), 617-643.
Mallat, S. G. 1999. A wavelet tour of signal processing. Burlington: Academic Press.
Mandelbrot, B. B. 1974. Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J. Fluid Mech., 62(2), 331-358.
Mandelbrot, B. B. 1983. The fractal geometry of nature/Revised and enlarged edition. Vol. 1.
Mandelbrot, B. B. 1991. Random multifractals: negative dimensions and the resulting limitations of the thermodynamic formalism. Proc. R. Soc. A, 434(1890), 79-88.
Mandelbrot, B. B., Fisher, A. J., and Calvet, L. E. 1997. A Multifractal Model of Assets Returns. Cowles Foundation discussion paper no. 1164.
Mandelbrot, B. B., and Van Ness, J.W. 1968. Fractional Brownian Motions, Fractional Noises and Applications. SIAM Review, 10, 422.
Manneville, Paul. 2004. Instabilités, chaos et turbulence. Editions Ecole Polytechnique.
Mantegna, R. N., and Stanley, H. E. 1996. Turbulence and financial markets. Nature, 383(6601), 587-588.
Marsan, D., Schertzer, D., and Lovejoy, S. 1996. Causal space-time multifractal processes: Predictability and forecasting of rain fields. Journal of Geophysical Research: Atmospheres, 101(D21), 26333-26346.
Meneveau, C. 2011. Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech., 43, 219-245.
Meneveau, C., and Sreenivasan, K. R. 1987. Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett., 59(13), 1424.
Merrifield, S. T., Kelley, D. H., and Ouellette, N. T. 2010. Scale-dependent statistical geometry in two-dimensional flow. Phys. Rev. Lett., 104(25), 254501.
Meyer, Yves. 1995. Wavelets and operators. Vol. 1. Cambridge: Cambridge University Press.
Milan, P., Wächter, M., and Peinke, J. 2013. Turbulent character of wind energy. Phys. Rev. Lett., 110(13), 138701.
Molla, K. I., Rahman, M. S., Sumi, A., and Banik, P. 2006. Empirical mode decomposition analysis of climate changes with special reference to rainfall data. Discrete Dyn. Nat. Soc., 45348.
Monin, A. S., and Yaglom, A. M. 1971. Statistical Fluid Mechanics vd II. MIT Press.
Morales, A, Wächter, M, and Peinke, J. 2012. Characterization of wind turbulence by higher-order statistics. Wind Energy, 15(3), 391-406.
Mordant, N., Delour, J., Léveque, E., Arnéodo, A., and Pinton, J.-F. 2002. Long time correlations in Lagrangian dynamics: a key to intermittency in turbulence. Phys. Rev. Lett., 89(25), 254502.
Muzy, J. F., Bacry, E., and Arneodo, A. 1991. Wavelets and multifractal formalism for singular signals: application to turbulence data. Phys. Rev. Lett., 67(25), 3515-3518.
Muzy, J. F., Bacry, E., and Arneodo, A. 1993. Multifractal formalism for fractal signals: the structure-function approach versus the wavelet-transform modulus-maxima method. Phys. Rev. E, 47(2), 875-884.
Muzy, J.-F., Bacry, E., and Kozhemyak, A. 2006. Extreme values and fat tails of multifractal fluctuations. Phys. Rev. E, 73(6), 066114.
Muzy, J.-F., and Bacry, E. 2002. Multifractal stationary random measures and multifractal random walks with log infinitely divisible scaling laws. Phys. Rev. E, 66(5), 056121.
Nakao, H. 2000. Multi-scaling properties of truncated Lévy flights. Phys. Lett. A, 266(4), 282-289.
Nam, K., Ott, E., Antonsen Jr, T. M., and Guzdar, P. N. 2000. Lagrangian chaos and the effect of drag on the enstrophy cascade in two-dimensional turbulence. Phys. Rev. Lett., 84(22), 5134-5137.
Nam, S., Kim, G., Kim, K. R., Kim, K., Cheng, L. Oh, Kim, K. W., Ossi, H., and Kim, Y. G. 2005. Application of real-time monitoring buoy systems for physical and biogeochemical parameters in the coastal ocean around the Korean peninsula. Mar. Technol. Soc. J., 39(2), 70-80.
Nickels, T. B. B., Marusic, I., Hafez, S., and Chong, M. S. 2005. Evidence of the k-11 Law in a High-Reynolds-Number Turbulent Boundary Layer. Phys. Rev. Lett., 95(7), 074501.
Nicolis, G., and Nicolis, C. 2012. Foundations of complex systems: emergence, information and predicition. World Scientific.
Niemela, J. J., Skrbek, L., Sreenivasan, K. R., and Donnelly, R. J. 2000. Turbulent convection at very high Rayleigh numbers. Nature, 404(6780), 837-840.
Nieves, V., Llebot, C., Turiel, A., Solé, J.ordi, García-Ladona, E., Estrada, M., and Blasco, D. 2007. Common turbulent signature in sea surface temperature and chlorophyll maps. Geophys. Res. Lett., 34(23).
Nikias, C. L, and Shao, M. 1995. Signal processing with alpha-stable distributions and applications. Wiley-Interscience.
Nikora, V. 1999. Origin of the -1 spectral law in wall-bounded turbulence. Phys. Rev. Lett., 83(4), 734.
Novikov, E. A. 1969. Scale similarity for random fields. Soviet Physics Doklady, 14, 104-107.
Novikov, E. A. 1971. Intermittency and scale similarity in the structure of a turbulent flow. J. Appl. Math. Mech., 35(2), 231-241.
Novikov, E. A. 1989. Two-particle description of turbulence, Markov property, and intermittency. Phys. Fluids A, 1(2), 326-330.
Novikov, E. A. 1990. The effects of intermittency on statistical characteristics of turbulence and scale similarity of breakdown coefficients. Phys. Fluids A, 2(5), 814-820.
Novikov, E. A. 1994. Infinitely divisible distributions in turbulence. Phys. Rev. E, 50(5), R3303.
Novikov, E. A., and Stewart, R.W. 1964. The intermittency of turbulence and the spectrum of energy dissipation fluctuations. Bull. Acad. Sci. SSSR Geophy. Ser., 3, 408-413.
Obukhov, A. M. 1941. Spectral energy distribution in a turbulent flow. Dokl. Akad. Nauk SSSR, 32, 22-24.
Obukhov, A. M. 1949. Structure of the temperature field in a turbulent flow. Izv. Akad. Nauk SSSR Ser. Geog. i Geofiz., 13, 58-69.
Obukhov, A. M. 1959. On the influence of Archimedean forces on the structure of the temperature field in a turbulent flow. Doklady Akademi Nauk SSSR, 125, 1246–48.
Obukhov, A. M. 1962. Some specific features of atmospheric turbulence. J. Fluid Mech., 13(1), 77–81.
Oświȩcimka, P., Kwapień, J., and Drożdż, S. 2006. Wavelet versus detrended fluctuation analysis of multifractal structures. Phys. Rev. E, 74(1), 16103.
Panchev, S. 1972. Random Functions and Turbulence. Oxford: Pergamon.
Paret, J., Jullien, M.C., and Tabeling, P. 1999. Vorticity statistics in the two-dimensional enstrophy cascade. Phys. Rev. Lett., 83(17), 3418–3421.
Parisi, G., and Frisch, U. 1985. On the singularity spectrum of fully developed turbulence. in M., Ghil, R., Benzi, G., Parisi (eds.), Turbulence and Predictability in Geophysical Fluid Dynamics and Climatic Dynamics, Amsterdam: North-Holland, 84–87.
Pecknold, S., Lovejoy, S., Schertzer, D., Hooge, C., and Malouin, J. F. 1993. The simulation of universal multifractals. In Perdang, J. M., and A., Lejeune (eds), Cellular Automata: Prospects in astrophysical applications, vol. 1. World Scientific, 228–267.
Peinke, J., Barth, S., Boettcher, F., Heinemann, D., and Lange, B. 2004. Turbulence, a challenging problem for wind energy. Physica A, 338(1), 187–193.
Peng, C. K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., and Goldberger, A. L. 1994. Mosaic organization of DNA nucleotides. Phys. Rev. E, 49(2), 1685–1689.
Percival, D. B., and Walden, A. T. 1993. Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. Cambridge: Cambridge University Press.
Perpete, N. 2013. Construction of multifractal fractional randowm walks with Hurst index smaller than 1/2. Stoch. Dyn., 13(4), 1350003.
Perpete, N., and Schmitt, F. G. 2011. A discrete log-normal process to sequentially generate a multifractal time series. J. Stat. Mech., 2011(12), P12013.
Perry, A. E., Henbest, S., and Chong, M. S. 1986. A theoretical and experimental study of wall turbulence. J. Fluid Mech., 165, 163–199.
Pipiras, V., and Taqqu, M. S. 2000. Integration questions related to fractional Brownian motion. Probab. Theory Related Fields, 118(2), 251–291.
Piquet, J. 1999. Turbulent flows: models and physics. Berlin: Springer.
Platt, T., and Denman, K. L. 1975. Spectral analysis in ecology. Annu. Rev. Ecol. Syst., 189–210.
Pond, S., and Stewart, R. W. 1965. Measurements of the statistical characteristics of smallscale turbulent motions. Izv. Atmos. Oceanic Phys, 1, 914–919.
Ponomarenko, V. I., Prokhorov, M. D., Bespyatov, A. B., Bodrov, M. B., and Gridnev, V. I. 2005. Deriving main rhythms of the human cardiovascular system from the heartbeat time series and detecting their synchronization. Chaos Soliton Fract., 23, 1429–1438.
Pope, S. B. 2000. Turbulent Flows. Cambridge: Cambridge University Press.
Pottier, C., Turiel, A., and Garçon, V. 2008. Inferring missing data in satellite chlorophyll maps using turbulent cascading. Remote Sens. Environ., 112(12), 4242–4260.
Pugh, D. 2004. Changing sea levels: effects of tides, weather and climate. Cambridge: Cambridge University Press.
Qiu, X., Mompean, G., Schmitt, F. G., and Thompson, R. L. 2011. Modeling turbulentbounded flow using non-Newtonian viscometric functions. J. Turbul 12(15), 1–18.
Qiu, X., Huang, Y. X., Zhou, Q., and Sun, C. 2014. Scaling of maximum probability density function of velocity increments in turbulent Rayleigh-Bénard convection. J. Hydrodyn., 26(3), 351–362.
Rajput, B. S., and Rosinski, J. 1989. Spectral representations of infinitely divisible processes. Probab. Theory Related Fields, 82(3), 451–487.
Renosh, P. R., Schmitt, F. G., Loisel, H., Sentchev, A., and Mériaux, X. 2014. High frequency variability of particle size distribution and its dependency on turbulence over the sea bottom during re-suspension processes. Cont. Shelf Res., 77, 51–60.
Renosh, P. R., Schmitt, F. G., and Loisel, H. 2015. Scaling analysis of ocean surface turbulent heterogeneities from satellite remote sensing: use of 2D structure functions. PLoS One, 10(5), e0126975.
Rhodes, R., and Vargas, V. 2014. Gaussian multiplicative chaos and applications: a review. Probability Surveys, 11, 315–392.
Richardson, L. F. 1922. Weather prediction by numerical process. Cambridge: Cambridge University Press.
Rilling, G., Flandrin, P., and Gonçalvès, P. 2003. On empirical mode decomposition and its algorithms. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, 3, 8–11.
Robert, R., and Vargas, V. 2010. Gaussian multiplicative chaos revisited. Ann. Probab., 38(2), 605–631.
Rodrigues Neto, C., Zanandrea, A., Ramos, F. M., Rosa, R. R., Bolzan, M. J. A., and , L. D. A. 2001. Multiscale analysis from turbulent time series with wavelet transform. Physica A, 295(1-2), 215–218.
Sadegh Movahed, M., Jafari, G. R., Ghasemi, F., Rahvar, S., and Rahimi Tabar, M. R. 2006. Multifractal detrended fluctuation analysis of sunspot time series. J. Stat. Mech., 02003.
Saito, Y. 1992. Log-gamma distribution model of intermittency in turbulence. J. Phys. Soc. Jpn., 61(2), 403–406.
Samorodnitsky, G., and Taqqu, M. S. 1994. Stable non-Gaussian random processes: stochastic models with infinite variance. Chapman & Hall.
Sanchez, I. 2006. Short-term prediction of wind energy production. Int. J. Forecasting, 22(1), 43–56.
Sawford, B. L., and Yeung, P. K. 2011. Kolmogorov similarity scaling for one-particle Lagrangian statistics. Phys. Fluids, 23, 091704.
Schertzer, D., and Lovejoy, S. 1984. On the dimension of atmospheric motions. 505–512.
Schertzer, D., and Lovejoy, S. 1987. Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. J. Geophys. Res, 92(D8), 9693–9714.
Schertzer, D., and Lovejoy, S. 1992. Hard and soft multifractal processes. Physica A, 185(1), 187–194.
Schertzer, D., Lovejoy, S., and Schmitt, F. G. 1995. Structures in turbulence and multifractal universality. in M., Meneguzzi, A., Pouquet and P. L., Sulem (eds.), Small-scale structures in 3D hydro and MHD turbulence. Berlin: Springer Verlag, 137–144.
Schertzer, D., Lovejoy, S., Schmitt, F. G., Chigirinskaya, Y., and Marsan, D. 1997. Multifractal cascade dynamics and turbulent intermittency. Fractals, 5(3), 427–471.
Schmitt, F., Schertzer, D., Lovejoy, S., Brunet, Y., et al. 1994. Empirical study of multifractal phase transitions in atmospheric turbulence. Nonlinear Proc. Geoph., 1(2/3), 95–104.
Schmitt, F., Schertzer, D., Lovejoy, S., and Brunet, Y. 1996. Multifractal temperature and flux of temperature variance in fully developed turbulence. Europhys. Lett., 34(3), 195.
Schmitt, F. G. 2007a. About Boussinesq's turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. C.R. Mécanique, 335(9), 617–627.
Schmitt, F. G. 2007b. Direct test of a nonlinear constitutive equation for simple turbulent shear flows using DNS data. Commun. Nonlinear Sci. Numer. Simul., 12(7), 1251–1264.
Schmitt, F. G., and Chainais, P. 2007. On causal stochastic equations for log-stable multiplicative cascades. Eur. Phys. J. B, 58(2), 149–158.
Schmitt, F. G., and Seuront, L. 2001. Multifractal random walk in copepod behavior. Physica A, 301(1-4), 375–396.
Schmitt, F. G., Lavallee, D., Schertzer, D., and Lovejoy, S. 1992. Empirical determination of universal multifractal exponents in turbulent velocity fields. Phys. Rev. Lett., 68(3), 305–308.
Schmitt, F. G., Schertzer, D., and Lovejoy, S. 1999. Multifractal analysis of foreign exchange data. Appl. Stoch. Mod. Data Anal., 15(1), 29–53.
Schmitt, F. G., Huang, Y. X., Lu, Z., Zongo, S. B., Molinero, J. C., and Liu, Y. 2007. Analysis of nonliner biophysical time series in aquatic environments: scaling properties and empirical mode decomposition. In Tsonis, A., and Elsner, J. (eds.), Nonlinear Dynamics in Geosciences. Springer, 261–280.
Schmitt, F. G., Dur, G., Souissi, S., and Brizard Zongo, S. 2008. Statistical properties of turbidity, oxygen and pH fluctuations in the Seine river estuary (France). Physica A, 387(26), 6613–6623.
Schmitt, F. G., Vinkovic, I., and Buffat, M. 2010. Use of Lagrangian statistics for the analysis of the scale separation hypothesis in turbulent channel flow. Phys. Lett. A, 374(33), 3319–3327.
Schmitt, F. G. 2005. Relating Lagrangian passive scalar scaling exponents to Eulerian scaling exponents in turbulence. EPJ B, 48(1), 129–137.
Schmitt, F. G. 2006. Linking Eulerian and Lagrangian structure functions scaling exponents in turbulence. Physica A, 368(2), 377–386.
Schmitt, F. G., and Marsan, D. 2001. Stochastic equations generating continuous multiplicative cascades. EPJ B, 20(1), 3–6.
Schmitt, F. G., Huang, Y. X., Lu, Z. M., Liu, Y. L., and Fernandez, N. 2009. Analysis of velocity fluctuations and their intermittency properties in the surf zone using empirical mode decomposition. J. Mar. Syst., 77, 473–481.
Serrano, E., and Figliola, A. 2009. Wavelet leaders: a new method to estimate the multifractal singularity spectra. Physica A, 388(14), 2793–2805.
Seuront, L., and Schmitt, F. G. 2005. Multiscaling statistical procedures for the exploration of biophysical couplings in intermittent turbulence. Part I. Theory. Deep Sea Res. Part II, 52(9-10), 1308–1324.
Seuront, L., Schmitt, F., Lagadeuc, Y., Schertzer, D., Lovejoy, S., and Frontier, S. 1996a. Multifractal analysis of phytoplankton biomass and temperature in the ocean. Geophys. Res. Lett., 23(24), 3591–3594.
Seuront, L., Schmitt, F., Schertzer, D., Lagadeuc, Y., and Lovejoy, S. 1996b. Multifractal intermittency of Eulerian and Lagrangian turbulence of ocean temperature and plankton fields. Nonlinear Proc. Geoph., 3(4), 236–246.
Seuront, L., Schmitt, F., Lagadeuc, Y., Schertzer, D., and Lovejoy, S. 1999. Universal multifractal analysis as a tool to characterize multiscale intermittent patterns: example of phytoplankton distribution in turbulent coastal waters. J. Plankton Res., 21(5), 877–922.
Shang, X. D., Qiu, X.-L., Tong, P., and Xia, K.-Q. 2003. Measured local heat transport in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett., 90, 074501.
Shang, X. D., Qiu, X.-L., Tong, P., and Xia, K.-Q. 2004. Measurements of the local convective heat flux in turbulent Rayleigh-Bénard convection. Phys. Rev. E, 70, 026308.
Shang, X. D., Tong, P., and Xia, K.-Q. 2008. Scaling of the local convective heat flux in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett., 100(6), 244503.
She, Z. S., and Lévêque, E. 1994. Universal scaling laws in fully developed turbulence. Phys. Rev. Lett., 72(3), 336–339.
She, Z. S., and Waymire, E. C. 1995. Quantized Energy Cascade and Log-Poisson Statistics in Fully Developed Turbulence. Phys. Rev. Lett., 74(2), 262–265.
Shraiman, B. I., and Siggia, E. D. 2000. Scalar turbulence. Nature, 405(6787), 639–646.
Siggia, E. D. 1994. High rayleigh number convection. Annu. Rev. Fluid Mech., 26, 137–168.
Solé, J., Turiel, A., and Llebot, J. E. 2007. Using empirical mode decomposition to correlate paleoclimatic time-series. Nat. Hazard Earth Sys., 7, 299–307.
Sørensen, P., Hansen, A. D., and Carvalho Rosas, P. A. 2002. Wind models for simulation of power fluctuations from wind farms. J. Wind Eng. Ind. Aerodyn., 90(12), 1381–1402.
Sreenivasan, K. R. 1991. On Local Isotropy of Passive Scalars in Turbulent Shear Flows. Proc. R. Soc. A, 434(1890), 165–182.
Sreenivasan, K. R., and Antonia, R. A. 1997. The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech., 29, 435–472.
Sreenivasan, K. R., and Kailasnath, P. 1993. An update on the intermittency exponent in turbulence. Phys. Fluids A, 5(2), 512–514.
Svendsen, I. A. 1987. Analysis of surf zone turbulence. J. Geophys. Res., 92(C5), 5115–5124.
Tabeling, P. 2002. Two-dimensional turbulence: a physicist approach. Phys. Rep., 362(1), 1–62.
Tan, H. S., Huang, Y. X., and Meng, J.-P. 2014. Hilbert Statistics of Vorticity Scaling in Two-Dimensional Turbulence. Phys. Fluids, 26(2), 015106.
Taqqu, M. S., and Wolpert, R. L. 1983. Infinite variance self-similar processes subordinate to a Poisson measure. Probab. Theory Related Fields, 62(1), 53–72.
Taqqu, M. S. 1988. Self-similar processes. Encyclopedia of Statistical Sciences.
Taylor, G. I. 1938. The Spectrum of Turbulence. Proc. R. Soc. A, 164(919), 476–490.
Tennekes, H., and Lumley, J. L. 1972. A First Course in Turbulence. MIT Press.
Tessier, Y, Lovejoy, S., Schertzer, D., Lavallée, D., and Kerman, B. 1993. Universal multifractal indices for the ocean surface at far red wavelengths. Geophys. Res. Lett., 20(12), 1167–1170.
Tessier, Y., Lovejoy, S., Hubert, P., Schertzer, D., and Pecknold, S. 1996. Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. J. Geophys. Res., 101, 26427–26440.
Thomson, W. 1887. On the propagation of laminar motion through a turbulently moving inviscid liquid. Philos. Mag., 342–353.
Toschi, F., and Bodenschatz, E. 2009. Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech., 41, 375–404.
Toschi, F., Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., and Lanotte, A. 2005. Acceleration and vortex filaments in turbulence. J. Turbul., 6(6), 15.
Tran, T., Chakraborty, P., Guttenberg, N., Prescott, A., Kellay, H., Goldburg, W., Goldenfeld, N., and Gioia, G. 2010. Macroscopic effects of the spectral structure in turbulent flows. Nature Phys., 6(6), 438–441.
Tsang, Y. K., Ott, E., Antonsen Jr, T. M., and Guzdar, P. N. 2005. Intermittency in twodimensional turbulence with drag. Phys. Rev. E, 71(6), 066313.
Tsinober, A. 2009. An informal conceptual introduction to turbulence. Dordrecht: Springer Verlag.
Turiel, A., Nieves, V., García-Ladona, E., Font, J., Rio, M.-H., and Larnicol, G. 2009. The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines. Ocean Science, 5(4), 447–460.
Uchaikin, V. V., and Zolotarev, V. M. 1999. Chance and stability: stable distributions and their applications. Walter de Gruyter.
Van Heijst, G. J. F., and Clercx, H. J. H. 2009. Laboratory modeling of geophysical vortices. Annu. Rev. Fluid Mech., 41, 143–164.
Veltcheva, A. D., and Soares, C. G. 2004. Identification of the components of wave spectra by the Hilbert Huang transform method. Appl. Ocean Res., 26(1-2), 1–12.
Vicsek, T., and Barabasi, A.-L. 1991. Multi-affine model for the velocity distribution in fully turbulent flows. J. Phys. A, 24(15), L845.
Warhaft, Z. 2000. Passive scalars in turbulent flows. Annu. Rev. Fluid Mech., 32(1), 203–240.
Weisse, Ralf. 2010. Marine climate and climate change: storms, wind waves and storm surges. Springer Science & Business Media.
Wendt, H., Abry, P., and Jaffard, S. 2007. Bootstrap for Empirical Multifractal Analysis with Application to Hydrodynamic Turbulences. IEEE Signal Processing Mag., 24(4), 38–48.
Wilcox, D. C., et al. 1998. Turbulence modeling for CFD. Vol. 2. DCW industries La Canada, CA.
Wu, Z., and Huang, N. E. 2004. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. A, 460, 1597–1611.
Wu, Z., and Huang, N. E. 2010. On the filtering properties of the empirical mode decomposition. Adv. Adapt. Data Anal., 2(04), 397–414.
Wu, Z., Huang, N. E., Long, S. R., and Peng, C. K. 2007. On the trend, detrending, and variability of nonlinear and nonstationary time series. PNAS, 104(38), 14889.
Xi, H. D., and Xia, K. Q. 2007. Cessations and reversals of the large-scale circulation in turbulent thermal convection. Phys. Rev. E, 75(6), 066307.
Xi, H. D., Lam, S., and Xia, K. Q. 2004. From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech., 503, 47–56.
Xia, H., Punzmann, H., Falkovich, G., and Shats, M. G. 2008. Turbulence-condensate interaction in two dimensions. Phys. Rev. Lett., 101(19), 194504.
Xia, H., Byrne, D., Falkovich, G., and Shats, M. 2011. Upscale energy transfer in thick turbulent fluid layers. Nature Phys., 7(4), 321–324.
Xu, H. T., Bourgoin, M., Ouellette, N. T., and Bodenschatz, E. 2006a. High order Lagrangian velocity statistics in turbulence. Phys. Rev. Lett., 96(2), 024503.
Xu, H. T., Ouellette, N. T., and Bodenschatz, E. 2006b. Multifractal dimension of lagrangian turbulence. Phys. Rev. Lett., 96(11), 114503.
Yaglom, A. M. 1957. Some classes of random fields in n-dimensional space, related to stationary random processes. Theor. Probab. Appl+, 2, 273–320.
Yaglom, A. M. 1966. The influence on the fluctuation in energy dissipation on the shape of turbulent characteristics in the inertial interval. Soviet Physics Dokladi, 2, 26–30.
Yeung, P. K. 2002. Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech., 34(1), 115–142.
Zhang, Q., Xu, C., Chen, Y. D., and Yu, Z. 2008. Multifractal detrended fluctuation analysis of streamflow series of the Yangtze River basin, China. Hydrol. Process., 22, 4997– 5003.
Zhao, X., and He, G.-W. 2009. Space-time correlations of fluctuating velocities in turbulent shear flows. Phys. Rev. E, 79, 046316.
Zhou, Q., and Xia, K.-Q. 2008. Comparative experimental study of local mixing of active and passive scalars in turbulent thermal convection. Phys. Rev. E, 77, 056312.
Zhou, Q., and Xia, K.-Q. 2011. Disentangle plume-induced anisotropy in the velocity field in buoyancy-driven turbulence. J. Fluid Mech., 684, 192–203.
Zhou, Q., Sun, C., and Xia, K.-Q. 2007. Morphological evolution of thermal plumes in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett., 98, 074501.
Zhou, Q., Xi, H. D., Zhou, S. Q., Sun, C., and Xia, K. Q. 2009. Oscillations of the largescale circulation in turbulent Rayleigh–Bénard convection: the sloshing mode and its relationship with the torsional mode. J. Fluid Mech., 630, 367–390.
Zhou, Q., Li, C. M., Lu, Z. M., and Liu, Y. L. 2011. Experimental investigation of longitudinal space-time correlations of the velocity field in turbulent Rayleigh-Bénard convection. J. Fluid Mech., 683, 94–111.
Zhou, S.-Q., and Xia, K.-Q. 2001. Scaling properties of the temperature field in convective turbulence. Phys. Rev. Lett., 87, 064501.
Zhou, S.-Q., and Xia, K.-Q. 2002. Plume statistics in thermal turbulence: mixing of an active scalar. Phys. Rev. Lett., 89(18), 184502.
Zolotarev, V. M. 1986. One-dimensional stable distributions. Vol. 65. American Mathematical Society.
Zongo, S. B, and Schmitt, F. G. 2011. Scaling properties of pH fluctuations in coastal waters of the English Channel: pH as a turbulent active scalars. Nonlinear Proc. Geoph., 18, 829–839.
Zongo, S. B., Schmitt, F. G., and Lefebvre, A. 2011. Observations biogéochimiques des eaux cˆotières à Boulogne-sur-mer à haute fréquence: les measures automatiques de la bouée MAREL,. 253–266.
Zybin, K. P., Sirota, V. A., Ilyin, A. S., and Gurevich, A. V. 2008. Lagrangian statistical theory of fully developed hydrodynamical turbulence. Phys. Rev. Lett., 100(17), 174504.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.