Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: July 2013

2 - Germ-cell differentiation from pluripotent cells

from Part 1 - Female gamete

References

1. Adamson, G.D., de Mouzon, J., Lancaster, P.et al. World collaborative report on in vitro fertilization, 2000. Fertility and Sterility. 2006; 85(6): 1586–1622.
2. Marques-Mari, A.I., Lacham-Kaplan, O., Medrano, J.V.et al. Differentiation of germ cells and gametes from stem cells. Human Reproduction Update. 2009; 15(3): 379–390.
3. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S.et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998; 282(5391): 1145–1147.
4. Takahashi, K., Yamanaka, S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126(4): 663–676.
5. Ancelin, K., Lange, U.C., Hajkova, P.et al. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nature Cell Biology. 2006; 8(6): 623–630.
6. Wylie, C.C., Stott, D., Donovan, P.J.Primordial germ cell migration. Developmental Biology (New York 1985). 1986; 2: 433–448.
7. Fujimoto, T., Miyayama, Y., Fuyuta, M.The origin, migration and fine morphology of human primordial germ cells. Anatomical Record. 1977; 188(3): 315–330.
8. Castrillon, D.H., Quade, B.J., Wang, T.Y.et al. The human VASA gene is specifically expressed in the germ cell lineage. Proceedings of the National Academy of Sciences of the United States of America. 2000; 97: 9585–9590.
9. Seki, Y., Hayashi, K., Itoh, K.et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Developmental Biology. 2005; 278(2): 440–458.
10. McLaren, A. Germ cells and germ cell sex. Philosophical Transactions of the Royal Society of London B, Biological Science. 1995; 350(1333): 229–233.
11. McLaren, A. Meiosis and differentiation of mouse germ cells. Symposia of the Society for Experimental Biology. 1984; 38: 7–23.
12. Bowles, J., Knight, D., Smith, C.et al. Retinoid signaling determines germ cell fate in mice. Science. 2006; 312(5773): 596–600.
13. Kelly, W.G., Aramayo, R.Meiotic silencing and the epigenetics of sex. Chromosome Research 2007; 15(5): 633–51.
14. Pittman, D.L., Cobb, J., Schimenti, K.J. et al. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Molecular Cell. 1998; 1(5): 697–705.
15. Reynolds, N., Collier, B., Bingham, V.et al. Translation of the synaptonemal complex component Sycp3 is enhanced in vivo by the germ cell specific regulator Dazl. RNA. 2007; 13(7): 974–981.
16. Kota, S.K., Feil, R.Epigenetic transitions in germ cell development and meiosis. Developmental Cell. 2010; 19(5): 675–686.
17. Akimoto, C., Kitagawa, H., Matsumoto, T. et al. Spermatogenesis-specific association of SMCY and MSH5. Genes to Cells. 2008; 13(6): 623–633.
18. Hübner, K., Fuhrmann, G., Christenson, L.K.et al. Derivation of oocytes from mouse embryonic stem cells. Science. 2003; 300(5623): 1251–1256.
19. Toyooka, Y., Tsunekawa, N., Akasu, R.et al. Embryonic stem cells can form germ cells in vitro. Proceedings of the National Academy of Sciences of the United States of America. 2003; 100(20): 11457–11462.
20. Geijsen, N., Horoschak, M., Kim, K.et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature. 2004; 427(6970): 148–154.
21. Novak, I., Lightfoot, D.A., Wang, H.et al. Mouse embryonic stem cells form follicle-like ovarian structures but do not progress through meiosis. Stem Cells. 2006; 24(8): 1931–1936.
22. Nayernia, K., Nolte, J., Michelmann, H.W.et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Developmental Cell. 2006; 11(1): 125–132.
23. Clark, A.T., Bodnar, M.S., Fox, M.et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Human Molecular Genetics. 2004; 13: 727–739.
24. Park, T.S., Galic, Z., Conway, A.E.et al. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells. 2009; 27(4): 783–795.
25. Kee, K., Gonsalves, J.M., Clark, A.T.et al. Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells and Development. 2006; 15(6): 831–837.
26. Kee, K., Angeles, V., Flores, M. et al. Human DAZL, DAZ and BOULE genes modulate primordial germ cell and haploid gamete formation. Nature. 2009; 462: 222–225.
27. Panula, S., Medrano, J.V., Kee, K.et al. Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells. Human Molecular Genetics. 2011; 20(4): 752–762.
28. Medrano, J.V., Ramathal, C., Nguyen, H.N.et al. Divergent RNA-binding proteins, DAZL and VASA, induce meiotic progression in human germ cells derived in vitro. Stem Cells. 2012; 30(3): 441–451.
29. Eguizabal, C., Montserrat, N., Vassena, R.et al. Complete meiosis from human induced pluripotent stem cells. Stem Cells. 2011; 29(8): 1186–1195.
30. Handel, M.A., Schimenti, J.C.Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nature Reviews Genetics. 2010; 11(2): 124–136.
31. Sun, S.C., Kim, N.H.Spindle assembly checkpoint and its regulators in meiosis. Human Reproduction Update. 2012; 18(1): 60–72.
32. Kassir, Y., Adir, N., Boger-Nadjar, E.et al. Transcriptional regulation of meiosis in budding yeast. International Review of Cytology. 2003; 224: 111–171.
33. Gill, M.E., Hu, Y.C., Lin, Y.et al. Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108(18): 7443–7448.
34. Buchold, G.M., Coarfa, C., Kim, J.et al. Analysis of microRNA expression in the prepubertal testis. PLoS One. 2010; 5(12): e15317.
35. Suh, N., Blelloch, R.Small RNAs in early mammalian development: from gametes to gastrulation. Development. 2011; 138(9): 1653–1661.
36. Han, J., Pedersen, J.S., Kwon, S.C.et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell. 2009; 136(1): 75–84.
37. Fabian, M.R., Sonenberg, N., Filipowicz, W.Regulation of mRNA translation and stability by microRNAs. Annual Review of Biochemistry. 2010; 79: 351–379.
38. West, J.A., Viswanathan, S.R., Yabuuchi, A.et al. A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature. 2009; 460(7257): 909–913.
39. Zhong, X., Li, N., Liang, S.et al. Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. Journal of Biological Chemistry. 2010; 285(53): 41961–41971.
40. Hayashi, K., Chuva de Sousa Lopes, S.M., Kaneda, M.et al. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 2008; 3(3): e1738.
41. Western, P.S., van den Bergen, J.A., Miles, D.C. et al. Male fetal germ cell differentiation involves complex repression of the regulatory network controlling pluripotency. FASEB Journal 2010; 24(8): 3026–3035.
42. Yan, N., Lu, Y., Sun, H. et al. A microarray for microRNA profiling in mouse testis tissues. Reproduction 2007; 134(1): 73–79.
43. Marcon, E., Babak, T., Chua, G.et al. miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Research. 2008; 16(2): 243–260.
44. Bouhallier, F., Allioli, N., Lavial, F.et al. Role of miR-34c microRNA in the late steps of spermatogenesis. RNAA Publication of the Rna Society. 2010; 16(4): 720–31.
45. Luo, L., Ye, L., Liu, G.et al. Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS One 2010; 5(8): e11744.
46. Aravin, A.A., Sachidanandam, R., Bourc'his, D. et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Molecular Cell. 2008; 31(6): 785–799.
47. Kuramochi-Miyagawa, S., Watanabe, T., Gotoh, K.et al. MVH in piRNA processing and gene silencing of retrotransposons. Genes Development. 2010; 24(9): 887–892.
48. Carmell, M.A., Girard, A., van de Kant, H.J. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Development Cell. 2007; 12(4): 503–514.
49. Ruggiu, M., Speed, R., Taggart, M.et al. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature. 1997; 389(6646): 73–77.
50. Lasko, P.F., Ashburner, M.The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature. 1988; 335(6191): 611–617.
51. Tanaka, S.S., Toyooka, Y., Akasu, R.et al. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Development. 2000; 14(7): 841–853.
52. Mohr, S., Stryker, J.M., LambowitzA.M.A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Cell. 2002; 109(6): 769–779.
53. Reynolds, N., Collier, B., Maratou, K.et al. Dazl binds in vivo to specific transcripts and can regulate the pre-meiotic translation of Mvh in germ cells. Human Molecular Genetics. 2005; 14(24): 3899–3909.
54. Becalska, A.N., GavisE.R.Lighting up mRNA localization in Drosophila oogenesis. Development. 2009; 136(15): 2493–2503.
55. Eguizabal, C., Montserrat, N., Vassena, R.et al. Complete meiosis from human induced pluripotent stem cells. Stem Cells. 2011; 29(8): 1186–1195.