Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T08:01:15.197Z Has data issue: false hasContentIssue false

10 - Hydrodynamics and definition of transport coefficients

Published online by Cambridge University Press:  05 June 2012

J. Woods Halley
Affiliation:
University of Minnesota
Get access

Summary

General discussion

In general, by a hydrodynamic description of a many body fluid we mean a description valid at long wavelengths and low frequencies and which is based on closure of the local conservation laws of the fluid by use of a linear relation between fluxes and the gradients of densities. The coefficients of the linear relation are transport coefficients and they are phenomenological parameters of the hydrodynamic theory, calculable in principle from a theory describing the system at shorter length and time scales. The resulting hydrodynamic theory is generally a set of nonlinear partial differential equations of which the Navier–Stokes equations for the hydrodynamics of a simple fluid are a familiar example.

The reason that hydrodynamic theories accurately describe slow motions on large length scales is that global conservation laws link long distances to long times. Physically, for example, conservation of mass results in a diffusion equation in which the distance which particles diffuse increases with the square root of the time (see Problem 10.1). Although this link guarantees that some of the slow variables of the system are described by the hydrodynamic equations, it does not ensure that all of the slow variables can be so described. Near critical points associated with second order phase transitions, there are very slow changes in the fluid which are not described by the conservation laws of hydrodynamics, but which arise because of the very slow development and decay of large, almost stable regions looking like one of the (two or more) phases between which the system is slowly fluctuating.

Type
Chapter
Information
Statistical Mechanics
From First Principles to Macroscopic Phenomena
, pp. 195 - 216
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×