Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T03:57:18.796Z Has data issue: false hasContentIssue false

10 - Measuring and forecasting financial variability using realised variance

Published online by Cambridge University Press:  06 January 2010

Ole E. Barndorff-Nielsen
Affiliation:
Department of Mathematical Sciences, University of Aarhus
Bent Nielsen
Affiliation:
Nuffield College, University of Oxford
Neil Shephard
Affiliation:
Nuffield College, University of Oxford
Carla Ysusi
Affiliation:
Department of Statistics, University of Oxford
Andrew Harvey
Affiliation:
University of Cambridge
Siem Jan Koopman
Affiliation:
Vrije Universiteit, Amsterdam
Neil Shephard
Affiliation:
University of Oxford
Get access

Summary

Abstract

We use high frequency financial data to proxy, via the realised variance, each day's financial variability. Based on a semiparametric stochastic volatility process, a limit theory shows you can represent the proxy as a true underlying variability plus some measurement noise with known characteristics. Hence filtering, smoothing and forecasting ideas can be used to improve our estimates of variability by exploiting the time series structure of the realised variances. This can be carried out based on a model or without a model. A comparison is made between these two methods.

Introduction

Neil Shephard was fortunate to have Jim Durbin as his supervisor and time series teacher during his first year of graduate studies at the London School of Economics (LSE) in 1986–7. It was just before Jim retired. Jim was very interested in state space models, having recently written the Harvey and Durbin (1986) influential seat-belt case study on structural time series models.

Ole Barndorff-Nielsen's main contact with the research work of Jim Durbin has been with his pathbreaking paper Durbin (1980). Together with the papers by Cox (1980) and Hinkley (1980), this was of key import for the discovery of the general form of the p*-formula for the law of the maximum likelihood estimator and hence the development of the theory that has flown from that formula (see Barndorff-Nielsen and Cox (1994) and the survey paper by Skovgaard (2001)).

Jim's research has had a profound impact on statistics and econometrics. From modelling, estimating and testing time series models to instrumental variables and general estimating equations, through to modern distribution theory, his work has been characterised by energy and inventiveness. He has an original mind.

Type
Chapter
Information
State Space and Unobserved Component Models
Theory and Applications
, pp. 205 - 235
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×