Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T09:53:08.859Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  03 February 2010

Get access

Summary

To a very high degree of accuracy, the space-time we inhabit can be taken to be a smooth four-dimensional manifold, endowed with the smooth Lorentzian metric of Einstein's special or general relativity. The formalism most commonly used for the mathematical treatment of manifolds and their metrics is, of course, the tensor calculus (or such essentially equivalent alternatives as Cartan's calculus of moving frames). But in the specific case of four dimensions and Lorentzian metric there happens to exist – by accident or providence – another formalism which is in many ways more appropriate, and that is the formalism of 2-spinors. Yet 2-spinor calculus is still comparatively unfamiliar even now – some seventy years after Cartan first introduced the general spinor concept, and over fifty years since Dirac, in his equation for the electron, revealed a fundamentally important role for spinors in relativistic physics and van der Waerden provided the basic 2-spinor algebra and notation.

The present work was written in the hope of giving greater currency to these ideas. We develop the 2-spinor calculus in considerable detail, assuming no prior knowledge of the subject, and show how it may be viewed either as a useful supplement or as a practical alternative to the more familiar world-tensor calculus. We shall concentrate, here, entirely on 2-spinors, rather than the 4-spinors that have become the more familiar tools of theoretical physicists. The reason for this is that only with 2- spinors does one obtain a practical alternative to the standard vector – tensor calculus, 2-spinors being the more primitive elements out of which 4-spinors (as well as world-tensors) can be readily built.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×