Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T00:54:12.791Z Has data issue: false hasContentIssue false

2 - Flexibility in the foraging strategies of spiders

Published online by Cambridge University Press:  05 June 2012

Ximena J. Nelson
Affiliation:
University of Canterbury, New Zealand
Robert R. Jackson
Affiliation:
University of Canterbury, New Zealand
Marie Elisabeth Herberstein
Affiliation:
Macquarie University, Sydney
Get access

Summary

Although many spiders build prey-capture webs, spider foraging strategies include species that, instead of building webs, deploy silk in other ways for prey capture. Additionally, there are species that capture prey, either by ambush or by active pursuit, without making notable use of silk in the process. There are striking examples of predatory specialisation from spiders, particularly among the Salticidae, suggesting that assumptions about adaptive trade-offs, in which the small nervous systems of spiders might constrain their cognitive or sensory abilities, need to be carefully evaluated. Predatory versatility, whereby an individual spider adopts a conditional strategy with which it classifies prey into diverse categories, illustrates that an individual spider may be a poly-specialist, because it is polyphagic and at the same time it is highly specialised on more than one prey type. More generally, individual flexibility in spider behaviour has important implications concerning the cognitive capacities of predators that orchestrate their strategies using small nervous systems.

Introduction

At first glance, characterising spider foraging might appear straightforward. All spiders are predators, and most frequently the spider's prey is an insect. All spiders produce silk, which is often put to use as part of their predatory arsenal. Yet a closer look reveals staggering diversity – and it is not just variation between species that contributes to this diversity, as we also need to address variation within single species and even within individual spiders.

Type
Chapter
Information
Spider Behaviour
Flexibility and Versatility
, pp. 31 - 56
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, R. A. and Elgar, M. A. (2001). Exploitation of the green tree ant, Oecophylla smaragdina, by the salticid spider Cosmophasis bitaeniata. Australian Journal of Zoology, 49, 129–137.CrossRefGoogle Scholar
Austin, A. D. and Blest, A. D. (1979). The biology of two Australian species of dinopid spider. Journal of Zoology, London, 189, 145–156.CrossRefGoogle Scholar
Barth, F. G. (2002). Spider senses: technical perfection and biology. Zoology, 105, 271–285.CrossRefGoogle ScholarPubMed
Berenbaum, M. R. (1996). Introduction to the symposium: on the evolution of specialization. American Naturalist, 148 (Suppl.), S78–S83.CrossRefGoogle Scholar
Beutel, R. G., Pohl, H. and Hunefeld, F. (2005). Strepsipteran brains and effects of miniaturization (Insecta). Arthropod Structure and Development, 34, 301–313.CrossRefGoogle Scholar
Blest, A. D. and Land, M. F. (1977). The physiological optics of Dinopis subrufus L. Koch: a fish-lens in a spider. Proceedings of the Royal Society of London, B, 196, 197–222.CrossRefGoogle Scholar
Blest, A. D., McIntyre, P. and Carter, M. (1988). A re-examination of the principal retinae of Phidippus johnsoni and Plexippus validus (Araneae: Salticidae): implications for optical modelling. Journal of Comparative Physiology, A, 162, 47–56.CrossRefGoogle Scholar
Blest, A. D., O'Carroll, D. C. and Carter, M. (1990). Comparative ultrastructure of Layer I receptor mosaics in principal eyes of jumping spiders: the evolution of regular arrays of light guides. Cell and Tissue Research, 262, 445–460.CrossRefGoogle Scholar
Christy, J. H. (1995). Mimicry, mate choice, and the sensory trap hypothesis. American Naturalist, 146, 171–181.CrossRefGoogle Scholar
Clark, R. J. and Jackson, R. R. (1994). Self recognition in a jumping spider: Portia labiata females discriminate between their own draglines and those of conspecifics. Ethology, Ecology & Evolution, 6, 371–375.CrossRefGoogle Scholar
Clark, R. J. and Jackson, R. R. (1995). Araneophagic jumping spiders discriminate between the draglines of familiar and unfamiliar conspecifics. Ethology, Ecology & Evolution, 7, 185–190.CrossRefGoogle Scholar
Clark, R. J., Harland, D. P. and Jackson, R. R. (2000). Speculative hunting by an araneophagic salticid spider. Behaviour, 137, 1601–1612.CrossRefGoogle Scholar
Clark, R. J., Jackson, R. R. and Waas, J. R. (1999). Draglines and assessment of fighting ability in cannibalistic jumping spiders. Journal of Insect Behavior, 12, 753–766.CrossRefGoogle Scholar
Clements, A. N. (1999). The Biology of Mosquitoes. Wallingford, UK: CABI Publishing.Google Scholar
Coddington, J. A. (1986). Orb webs in ‘non-orb weaving’ ogre-faced spiders (Araneae: Dinopidae): a question of genealogy. Journal of Cladistics, 2, 53–67.CrossRefGoogle Scholar
Cohen, A. C. (1995). Extra-oral digestion in predaceous terrestrial Arthropoda. Annual Review of Entomology, 40, 85–103.CrossRefGoogle Scholar
Cramer, K. L. (2008). Are brown recluse spiders Loxosceles reclusa (Araneae, Sicariidae) scavengers? The influence of predator satiation, prey size, and prey quality. Journal of Arachnology, 36, 140–144.CrossRefGoogle Scholar
Cross, F. R. and Jackson, R. R. (2009a). How cross-modality effects during intraspecific interactions of jumping spiders differ depending on whether a female-choice or mutual-choice mating system is adopted. Behavioral Processes, 80, 162–168.CrossRefGoogle ScholarPubMed
Cross, F. R. and Jackson, R. R. (2009b). A blood-feeding jumping spider's affinity for particular plants, Lantana camara and Ricinus communis. New Zealand Journal of Zoology, 36, 75–80.CrossRefGoogle Scholar
Curio, E. (1976). The Ethology of Predation. Berlin: Springer Verlag.CrossRefGoogle Scholar
Cushing, P. E. (1997). Myrmecomorphy and myrmecophily in spiders: a review. Florida Entomologist, 80, 165–193.CrossRefGoogle Scholar
Dawkins, R. (1996). Climbing Mount Improbable. New York: W.W. Norton.Google Scholar
Dennett, D. C. (1996). Kinds of Minds: Towards an Understanding of Consciousness. New York: Simon and Schuster.Google Scholar
Dennett, D. C. (2005). Sweet Dreams: Philosophical Obstacles to a Science of Consciousness. Cambridge, MA: MIT Press.Google Scholar
Eberhard, W. G. (1977). Aggressive chemical mimicry by a bolas spider. Science, 198, 1173–1175.CrossRefGoogle ScholarPubMed
Eberhard, W. G. (2007). Miniaturized orb-weaving spiders: behavioural precision is not limited by small size. Proceedings of the Royal Society of London, B, 274, 2203–2209.CrossRefGoogle Scholar
Edmunds, M. (1974). Defence in Animals: A Survey of Anti-Predator Defences. London: Longman.Google Scholar
Elgar, M. A. and Allan, R. A. (2004). Predatory spider mimics acquire colony-specific cuticular hydrocarbons from their ant model prey. Naturwissenschaften, 91, 143–147.CrossRefGoogle ScholarPubMed
Elias, D. O., Mason, A. C., Maddison, W. P. and Hoy, R. R. (2003). Seismic signals in a courting male jumping spider (Araneae: Salticidae). Journal of Experimental Biology, 206, 4029–4039.CrossRefGoogle Scholar
Endler, J. A. and Basolo, A. L. (1998). Sensory ecology, receiver biases and sexual selection. Trends in Ecology and Evolution, 13, 415–420.CrossRefGoogle ScholarPubMed
Foelix, R. F. (1970). Chemosensitive hairs in spiders. Journal of Morphology, 132, 313–334.CrossRefGoogle ScholarPubMed
Foelix, R. F. (1996). Biology of Spiders, 2nd edn. Oxford, UK: Oxford University Press and New York: Georg Thieme Verlag.Google Scholar
Forster, L. M. (1982). Vision and prey-catching strategies in jumping spiders. American Scientist, 70, 165–175.Google Scholar
Fry, J. D. (1996). The evolution of host specialization: are trade-offs overrated?American Naturalist, 148 (Suppl.), S84–S107.CrossRefGoogle Scholar
Futuyma, D. J. and Moreno, G. (1988). The evolution of ecological specialization. Annual Reviews of Ecology and Systematics, 19, 207–233.CrossRefGoogle Scholar
Gemeno, C., Yeargan, K. V. and Haynes, K. F. (2000). Aggressive chemical mimicry by the bolas spider Mastophora hutchinsoni: identification and quantification of a major prey's sex pheromone components in the spider's volatile emissions. Journal of Chemical Ecology, 26, 1235–1243.CrossRefGoogle Scholar
Getty, R. M. and Coyle, F. A. (1996). Observations on prey capture and anti-predator behaviors of ogre-faced spiders (Deinopis) in southern Costa Rica (Araneae, Deinopidae). Journal of Arachnology, 24, 93–100.Google Scholar
Guilford, T. and Dawkins, M. S. (1991). Receiver psychology and the evolution of animal signals. Animal Behaviour, 42, 1–14.CrossRefGoogle Scholar
Hallas, S. E. A. and Jackson, R. R. (1986). Prey-holding abilities of the nests and webs of jumping spiders (Araneae, Salticidae). Journal of Natural History, 20, 881–894.CrossRefGoogle Scholar
Harland, D. P. and Jackson, R. R. (2000a). ‘Eight-legged cats’ and how they see: a review of recent work on jumping spiders (Araneae: Salticidae). Cimbebasia, 16, 231–240.Google Scholar
Harland, D. P. and Jackson, R. R. (2000b). Cues by which Portia fimbriata, an araneophagic jumping spider, distinguishes jumping-spider prey from other prey. Journal of Experimental Biology, 203, 3485–3494.Google ScholarPubMed
Harland, D. P. and Jackson, R. R. (2002). Influence of cues from the anterior medial eyes of virtual prey on Portia fimbriata, an araneophagic jumping spider. Journal of Experimental Biology, 205, 1861–1868.Google ScholarPubMed
Harland, D. P. and Jackson, R. R. (2004). Portia perceptions: the Umwelt of an araneophagic jumping spider. In Complex Worlds from Simpler Nervous Systems (ed. Prete, F. R.). Cambridge, MA: MIT Press, pp. 5–40.Google Scholar
Harland, D. P. and Jackson, R. R. (in press). How jumping spiders see the world. In How Animals See the World: Behavior, Biology, and Evolution of Vision (ed. Lazareva, O., Shimizu, T. and Wasserman, E.). Oxford, UK: Oxford University Press.
Haynes, K. F., Gemeno, C., Yeargan, K. V., Millar, J. G. and Johnson, K. M. (2002). Aggressive chemical mimicry of moth pheromones by a bolas spider: how does this specialist predator attract more than one species of prey?Chemoecology, 12, 99–105.CrossRefGoogle Scholar
Haynes, K. F., Yeargan, K. V., Millar, J. G. and Chastain, B. B. (1996). Identification of sex pheromone of Tetanolita mynesalis (Lepidoptera: Noctuidae), a prey species of bolas spider, Mastophora hutchinsoni. Journal of Chemical Ecology, 22, 75–89.CrossRefGoogle Scholar
Hölldobler, B. (1983). Territorial behavior in the green tree ant (Oecophylla smaragdina). Biotropica, 15, 241–250.CrossRefGoogle Scholar
Hölldobler, B. and Wilson, E. O. (1990). The Ants. Heidelberg, Germany: Springer Verlag.CrossRefGoogle Scholar
Jackson, R. R. (1977). Courtship versatility in the jumping spider Phidippus johnsoni (Araneae: Salticidae). Animal Behaviour, 25, 953–957.CrossRefGoogle Scholar
Jackson, R. R. (1979). Nests of Phidippus johnsoni (Araneae, Salticidae): characteristics, pattern of occupation, and function. Journal of Arachnology, 7, 47–58.Google Scholar
Jackson, R. R. (1982). The behavior of communicating in jumping spiders (Salticidae). In Spider Communication: Mechanisms and Ecological Significance (ed. Witt, P. N. and Rovner, J. S.). Princeton, NJ: Princeton University Press, pp. 213–247.Google Scholar
Jackson, R. R. (1986). Web building, predatory versatility, and the evolution of the Salticidae. In Spiders: Webs, Behavior, and Evolution (ed. Shear, W. A.). Stanford, CA: Stanford University Press, pp. 232–268.Google Scholar
Jackson, R. R. (1988). The biology of Jacksonoides queenlandicus, a jumping spider (Araneae: Salticidae) from Queensland: intraspecific interactions, web-invasion, predators, and prey. New Zealand Journal of Zoology, 15, 1–37.CrossRefGoogle Scholar
Jackson, R. R. (1990). Ambush predatory behaviour of Phaeacius malayensis and Phaeacius sp. indet., spartaeine jumping spiders (Araneae: Salticidae) from tropical Asia. New Zealand Journal of Zoology, 17, 491–498.CrossRefGoogle Scholar
Jackson, R. R. (1992). Eight-legged tricksters: spiders that specialize at catching other spiders. BioScience, 42, 590–598.CrossRefGoogle Scholar
Jackson, R. R. and Blest, A. D. (1982). The biology of Portia fimbriata, a web-building jumping spider (Araneae, Salticidae) from Queensland: utilization of webs and predatory versatility. Journal of Zoology, London, 196, 255–293.CrossRefGoogle Scholar
Jackson, R. R. and Hallas, S. E. A. (1986). Capture efficiencies of web-building jumping spiders (Araneae, Salticidae): is the jack-of-all-trades the master of none?Journal of Zoology, London, 209, 1–7.CrossRefGoogle Scholar
Jackson, R. R. and Macnab, A. M. (1989). Display, mating and predatory behaviour of the jumping spider Plexippus paykulli (Araneae, Salticidae). New Zealand Journal of Zoology, 16, 151–168.CrossRefGoogle Scholar
Jackson, R. R. and Pollard, S. D. (1996). Predatory behavior of jumping spiders. Annual Review of Entomology, 41, 287–308.CrossRefGoogle ScholarPubMed
Jackson, R. R. and Pollard, S. D. (1997). Jumping spider mating strategies: sex among cannibals in and out of webs. In The Evolution of Mating Systems in Insects and Arachnids (ed. Choe, J. C. and Crespi, B. J.). Cambridge, UK: Cambridge University Press, pp. 340–351.CrossRefGoogle Scholar
Jackson, R. R. and Wilcox, R. S. (1994). Spider flexibly chooses aggressive mimicry signals for different prey by trial and error. Behaviour, 127, 21–36.CrossRefGoogle Scholar
Jackson, R. R. and Wilcox, R. S. (1998). Spider-eating spiders. American Scientist, 86, 350–357.CrossRefGoogle Scholar
Jackson, R. R., Clark, R. J. and Harland, D. P. (2002a). Behavioural and cognitive influences of kairomones on an araneophagic spider. Behaviour, 139, 749–775.CrossRefGoogle Scholar
Jackson, R. R., Li, D., Fijn, N. and Barrion, A. T. (1998). Predator-prey interactions between aggressive-mimic jumping spiders (Salticidae) and araeneophagic spitting spiders (Scytodidae) from the Philippines. Journal of Insect Behavior, 11, 319–342.CrossRefGoogle Scholar
Jackson, R. R., Nelson, X. J. and Salm, K. (2008). The natural history of Myrmarachne melanotarsa, a social ant-mimicking jumping spider. New Zealand Journal of Zoology, 35, 225–235.CrossRefGoogle Scholar
Jackson, R. R., Nelson, X. J. and Sune, G. O. (2005). A spider that feeds indirectly on vertebrate blood by choosing female mosquitoes as prey. Proceedings of the National Academy of Sciences of the USA, 102, 15 155–15,160.CrossRefGoogle ScholarPubMed
Jackson, R. R., Pollard, S. D., Li, D. and Fijn, N. (2002b). Interpopulation variation in the risk-related decisions of Portia labiata, an araneophagic jumping spider (Araneae, Salticidae), during predatory sequences with spitting spiders. Animal Cognition, 5, 215–223.CrossRefGoogle Scholar
Jackson, R. R., Pollard, S. D., Nelson, X. J., Edwards, G. B. and Barrion, A. T. (2001). Jumping spiders (Araneae: Salticidae) that feed on nectar. Journal of Zoology, 255, 25–29.CrossRefGoogle Scholar
Kirschfeld, K. (1976). The resolution of lens and compound eyes. In Neural Principles in Vision (ed. Zettler, F. and Weiler, R.). Berlin: Springer Verlag, pp. 354–370.CrossRefGoogle Scholar
Krafft, B. and Leborgne, R. (1979). Perception sensorielle et importance des phénomènes vibratoires chez les araignées. Journal de Psychologie, 3, 299–334.Google Scholar
Labhart, T. and Nilsson, D. E. (1995). The dorsal eye of the dragonfly Sympetrum: specializations for prey detection against the blue sky. Journal of Comparative Physiology, A, 176(4), 437–453.CrossRefGoogle Scholar
Land, M. F. (1969a). Structure of the retinae of the principal eyes of jumping spiders (Salticidae: Dendryphantinae) in relation to visual optics. Journal of Experimental Biology, 51, 443–470.Google ScholarPubMed
Land, M. F. (1969b). Movements of the retinae of jumping spiders (Salticidae: Dendryphantinae) in response to visual stimuli. Journal of Experimental Biology, 51, 471–493.Google ScholarPubMed
Land, M. F. and Nilsson, D. E. (2002). Animal Eyes. Oxford, UK: Oxford University Press.Google Scholar
Laughlin, S., Blest, A. D. and Stowe, S. (1980). The sensitivity of receptors in the posterior median eye of the nocturnal spider, Dinopis. Journal of Comparative Physiology, 141, 53–65.CrossRefGoogle Scholar
Li, D. (2000). Prey preferences of Phaeacius malayensis, a spartaeine jumping spider (Araneae: Salticidae) from Singapore. Canadian Journal of Zoology – Revue Canadienne de Zoologie, 78, 2218–2226.CrossRefGoogle Scholar
Li, D. and Jackson, R. R. (2003). A predator's preference for egg-carrying prey: a novel cost of parental care. Behavioral Ecology and Sociobiology, 55, 129–136.CrossRefGoogle Scholar
Li, D., Jackson, R. R. and Barrion, A. T. (1999). Parental and predatory behaviour of Scytodes sp., an araneophagic spitting spider (Araneae: Scytodidae) from the Philippines. Journal of Zoology, 247, 293–310.CrossRefGoogle Scholar
Li, D., Jackson, R. R. and Lim, L. M. M. (2003). Influence of background and prey orientation on an ambushing predator's decisions. Behaviour, 140, 739–764.CrossRefGoogle Scholar
Maddison, W. P. and Hedin, M. C. (2003). Jumping spider phylogeny (Araneae: Salticidae). Invertebrate Systematics, 17, 529–549.CrossRefGoogle Scholar
Malli, H., Kuhn-Nentwig, L., Imboden, H. and Nentwig, W. (1999). Effects of size, motility and paralysation time of prey on the quantity of venom injected by the hunting spider Cupiennius salei. Journal of Experimental Biology, 202, 2083–2089.Google ScholarPubMed
Masters, W. M., Markl, H. S. and Moffat, A. M. (1986). Transmission of vibrations in a spider's web. In Spiders: Webs, Behavior, and Evolution (ed. Shear, W. A.). Stanford, CA: Stanford University Press, pp. 47–69.Google Scholar
McIlwain, J. T. (1996). An Introduction to the Biology of Vision. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Meehan, C. J., Olson, E. J., Reudink, M. W., Kyser, K. T. and Curry, R. L. (2009). Herbivory in a spider through exploitation of an ant–plant mutualism. Current Biology, 19, R892–R893.CrossRefGoogle Scholar
Minsky, M. (1986). The Society of Mind. New York: Simon and Schuster.Google Scholar
Morse, D. H. (2006). Fine-scale substrate use by a small sit-and-wait predator. Behavioral Ecology, 17, 405–409.CrossRefGoogle Scholar
Nelson, X. J. and Jackson, R. R. (2006a). A predator from East Africa that chooses malaria vectors as preferred prey. PLoS ONE, 1, e132.CrossRefGoogle ScholarPubMed
Nelson, X. J. and Jackson, R. R. (2006b). Vision-based innate aversion to ants and ant mimics. Behavioral Ecology, 17, 676–681.CrossRefGoogle Scholar
Nelson, X. J. and Jackson, R. R. (2009a). An ant-like jumping spider that practises aggressive mimicry by deploying Batesian mimicry against ant-averse prey. Biology Letters, 5, 755–757.CrossRefGoogle Scholar
Nelson, X. J. and Jackson, R. R. (2009b). Collective Batesian mimicry of ant groups by aggregating spiders. Animal Behaviour, 78, 123–129.CrossRefGoogle Scholar
Nelson, X. J., Jackson, R. R., Edwards, G. B. and Barrion, A. T. (2004). Predation by ants on jumping spiders (Araneae: Salticidae) in the Philippines. New Zealand Journal of Zoology, 31, 45–56.CrossRefGoogle Scholar
Nelson, X. J., Jackson, R. R. and Sune, G. O. (2005). Use of Anopheles-specific prey-capture behavior by the small juveniles of Evarcha culicivora, a mosquito-eating jumping spider. Journal of Arachnology, 33, 541–548.CrossRefGoogle Scholar
Platnick, N. I. (2010). The World Spider Catalogue, Version 10.0. American Museum of Natural History, online at http://research.amnh.org/iz/spiders/catalog. Accessed 1/9/10.
Pollard, S. D. (1990). The feeding strategy of a New Zealand crab spider Diaea sp. indet. (Araneae, Thomisidae): post-capture decision rules. Journal of Zoology, London, 222, 601–615.CrossRefGoogle Scholar
Pollard, S. D. (1994). Consequences of sexual selection on feeding in male jumping spiders (Araneae: Salticidae). Journal of Zoology, London, 243, 203–208.CrossRefGoogle Scholar
Pollard, S. D., Beck, M. W. and Dodson, G. N. (1995). Why do male crab spiders drink nectar?Animal Behaviour, 49, 1443–1448.CrossRefGoogle Scholar
Pollard, S. D., Macnab, A. M. and Jackson, R. R. (1987). Communication with chemicals: pheromones and spiders. In Ecophysiology of Spiders (ed. Nentwig, W.). Heidelberg, Germany: Springer Verlag, pp. 133–141.CrossRefGoogle Scholar
Řezáč, M., Pekár, S. and Lubin, Y. (2008). How oniscophagous spiders overcome woodlouse armour. Journal of Zoology, London, 275, 64–71.CrossRefGoogle Scholar
Richman, D. B. and Jackson, R. R. (1992). A review of the ethology of jumping spiders (Araneae, Salticidae). Bulletin of the British Arachnological Society, 9, 33–37.Google Scholar
Roberts, J. A. and Uetz, G. W. (2005). Information content of female chemical signals in the wolf spider, Schizocosa ocreata: male discrimination of reproductive state and receptivity. Animal Behaviour, 70, 271–223.CrossRefGoogle Scholar
Robinson, M. H. and Robinson, B. (1971). Predatory behavior of ogre-faced spider Dinopis longipes F. Cambridge (Araneae, Dinopidae). American Midland Naturalist, 85, 85–96.CrossRefGoogle Scholar
Ruhren, S. and Handel, S. N. (1999). Jumping spiders (Salticidae) enhance the seed production of a plant with extrafloral nectaries. Oecologia, 119, 227–230.CrossRefGoogle ScholarPubMed
Sandidge, J. S. (2003). Scavenging by brown recluse spiders. Nature, 426, 30.CrossRefGoogle ScholarPubMed
Schiller, C. (1957). Instinctive Behavior. New York: Hallmark Press.Google Scholar
Smith, R. B. and Mommsen, T. P. (1984). Pollen feeding in an orb-weaving spider. Science, 226, 1330–1333.CrossRefGoogle Scholar
Stowe, M. K., Tumlinson, J. H. and Heath, R. R. (1987). Chemical mimicry: bolas spiders emit components of moth prey species sex-pheromones. Science, 236, 964–967.CrossRefGoogle ScholarPubMed
Su, K. F. Y., Meier, R., Jackson, R. R., Harland, D. P. and Li, D. (2007). Convergent evolution of eye ultrastructure and divergent evolution of vision-mediated predatory behaviour in jumping spiders. Journal of Evolutionary Biology, 20, 1478–1489.CrossRefGoogle ScholarPubMed
Suter, R. B. and Stratton, G. E. (2005). Scytodes vs. Schizocosa: predatory techniques and their morphological correlates. Journal of Arachnology, 33, 7–15.CrossRefGoogle Scholar
Tarsitano, M. S., Jackson, R. R. and Kirchner, W. (2000). Signals and signal choices made by araneophagic jumping spiders while hunting the orb-weaving spiders Zygiella x-notata and Zosis genicularis. Ethology, 106, 595–615.CrossRefGoogle Scholar
Taylor, R. M. and Bradley, R. A. (2009). Plant nectar increases survival, molting, and foraging in two foliage wandering spiders. Journal of Arachnology, 37, 232–237.CrossRefGoogle Scholar
Taylor, R. M. and Foster, W. A. (1996). Spider nectarivory. American Entomologist, 42, 82–86.CrossRefGoogle Scholar
Taylor, R. M. and Pfannenstiel, R. S. (2008). Nectar feeding by wandering spiders on cotton plants. Environmental Entomology, 37, 996–1002.CrossRefGoogle ScholarPubMed
Vogelei, A. and Greissl, R. (1989). Survival strategies of the crab spider Thomisus onustus Walckenaer 1806 (Chelicerata, Arachnida, Thomisidae). Oecologia, 80, 513–515.CrossRefGoogle Scholar
Uexküll, J. (1909). Umwelt und Innenwelt der Tiere. Berlin: Springer Verlag.Google Scholar
Uexküll, J. (1957). A stroll through the worlds of animals and men: a picture book of invisible worlds. Reprinted 1957 in Instinctive Behavior: The Development of a Modern Concept (ed. Schiller, C. H.). New York: International Universities Press.Google Scholar
Weng, J. L., Barrantes, G. and Eberhard, W. G. (2006). Feeding by Philoponella vicina (Araneae, Uloboridae) and how uloborid spiders lost their venom glands. Canadian Journal of Zoology, 84, 1752–1762.CrossRefGoogle Scholar
Wesolowska, W. and Jackson, R. R. (2003). Evarcha culicivora sp. nov., a mosquito-eating jumping spider from East Africa (Araneae: Salticidae). Annales Zoologici, 53, 335–338.Google Scholar
West-Eberhard, M. J. (2003). Developmental Plasticity and Evolution. New York: Oxford University Press.Google Scholar
White, G. B. (1974). Anopheles gambiae complex and disease transmission in Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene, 68, 278–301.CrossRefGoogle ScholarPubMed
Whitlock, M. C. (1996). The red queen beats the jack-of-all-trades: the limitations on the evolution of phenotypic plasticity and niche breadth. American Naturalist, 148 (Suppl.), S65–S77.CrossRefGoogle Scholar
Wigger, E., Kuhn-Nentwig, L. and Nentwig, W. (2002). The venom optimisation hypothesis: a spider injects large venom quantities only into difficult prey types. Toxicon, 40, 749–752.CrossRefGoogle ScholarPubMed
Williams, D. S. and McIntyre, P. (1980). The principal eyes of a jumping spider have a telephoto component. Nature, 228, 578–580.CrossRefGoogle Scholar
Wilson, D. S. and Yoshimura, J. (1994). On the coexistence of specialists and generalists. American Naturalist, 144, 692–707.CrossRefGoogle Scholar
Wyatt, T. D. (2003). Pheromones and Animal Behaviour. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Yeargan, K. V. (1994). Biology of bolas spiders. Annual Review of Entomology, 39, 81–99.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×