Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T03:57:00.223Z Has data issue: false hasContentIssue false

2 - Schizophrenia

from Part II - Primary Psychotic Disorders

Published online by Cambridge University Press:  06 January 2010

Gerald Goldstein
Affiliation:
VA Pittsburgh Healthcare System
Daniel N. Allen
Affiliation:
University of Nevada, Las Vegas
Gretchen L. Haas
Affiliation:
University of Pittsburgh
Daryl Fujii
Affiliation:
University of Hawaii, Manoa
Iqbal Ahmed
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Spectrum of Psychotic Disorders
Neurobiology, Etiology and Pathogenesis
, pp. 15 - 38
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, D. N., Kelley, M. E., Miyatake, R. K., Gurklis, J. A., & Kammen, D. P. (2001). Confirmation of a two-factor model of premorbid adjustment in males with schizophrenia. Schizophrenia Bulletin, 27, 39–46.Google Scholar
Allen, D. N., Frantom, L. V., Strauss, G. P., & Kammen, D. P. (2005). Differential patterns of premorbid academic and social deterioration in patients with schizophrenia. Schizophrenia Research, 75, 389–97.Google Scholar
Ananth, H., Popescu, I., Critchley, H. D., et al. (2002). Cortical and subcortical gray matter abnormalities in schizophrenia determined through structural magnetic resonance imaging with optimized volumetric voxel-based morphometry. American Journal of Psychiatry, 159, 1497–505.Google Scholar
Arnold, S. E., Franz, B. R., Gur, R. C., et al. (1995). Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical-hippocampal interactions. American Journal of Psychiatry, 152, 738–48.Google Scholar
Arnt, J. & Skarsfeldt, T. (1998). Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology, 18(2), 63–101.Google Scholar
Ashby, C. R. Jr., Jiang, L. H., Kasser, R. J., & Wang, R. Y. (1990). Electrophysiological characterization of 5-hydroxytryptamine2 receptors in the rat medial prefrontal cortex. The Journal of Pharmacology and Experimental Therapeutics, 252(1), 171–8.Google Scholar
Aylward, C., Walker, E., & Bettes, B. (1984). Intelligence in schizophrenia: Meta-analysis of the research. Schizophrenia Bulletin, 10, 430–59.Google Scholar
Azrin, N. H. & Teichner, G. (1998). Evaluation of an instructional program for improving medication compliance for chronically mentally ill outpatients. Behaviour Research and Therapy, 36(9), 849–61.Google Scholar
Bilder, R. M., Degreef, G., Pandurangi, A. K., et al. (1998). Neuropsychological deterioration and CT scan findings in chronic schizophrenia. Schizophrenia Research 1, 37–45.Google Scholar
Bilder, R. M., Lipschutz-Broch, L., Reiter, G., et al. (1992). Intellectual deficits in first-episode schizophrenia: Evidence for progressive deterioration. Schizophrenia Bulletin, 18, 437–48.Google Scholar
Bogerts, B., Ashtari, M., Degreef, G., et al. (1990). Reduced temporal limbic structure volumes on magnetic resonance images in first episode schizophrenia. Psychiatry Research, 35, 1–13.Google Scholar
Brown, S., Inskip, H., & Barraclough, B. (2000). Causes of the excess mortality of schizophrenia. British Journal of Psychiatry, 177, 212–17.Google Scholar
Cannon, M., Jones, P., Gilvarry, C., et al. (1997). Premorbid social functioning in schizophrenia and bipolar disorder: Similarities and differences. American Journal of Psychiatry, 154, 1544–50.Google Scholar
Cannon, T. D. & Mednick, S. A. (1993). The schizophrenia high-risk project in Copenhagen: Three decades of progress. Acta Psychiatrica Scandinavica, 370(suppl), 33–47.Google Scholar
Cannon-Spoor, H. E., Potkin, S. G., & Wyatt, R. J. (1982). Measurement of premorbid adjustment in chronic schizophrenia. Schizophrenia Bulletin, 8, 470–84.Google Scholar
Cantor-Grace, E., Zolkowska, K., & McNeil, T. F. (2005). Increased risk of psychotic disorder among immigrants in Malmo: A 3-year first-contact study. Psychological Medicine, 35, 1155–63.Google Scholar
Caspi, A., Reichenberg, A., Weiser, M., et al. (2003). Cognitive performance in schizophrenia patients assessed before and following the first psychotic episode. Schizophrenia Research, 65 (2–3), 87–94.Google Scholar
Chapman, L. J. & Chapman, J. P. (1978). The measurement of differential deficit. Journal of Psychiatric Research, 14(1–4), 303–11.Google Scholar
DeQuardo, J. R., Tandon, R., Goldman, R., et al. (1994). Ventricular enlargement, neuropsychological status, and premorbid function in schizophrenia. Biological Psychiatry, 35, 517–24.Google Scholar
Drake, R. E., Mueser, K. T., Torrey, W. C., et al. (2000). Evidence-based treatment of schizophrenia. Current Psychiatry Reports, 2(5), 393–7.CrossRefGoogle Scholar
Drury, V., Birchwood, M., Cochrane, R., & Macmillan, F. (1996). Cognitive therapy and recovery from acute psychosis: A controlled trial. I. Impact on psychotic symptoms. British Journal of Psychiatry, 169, 593–601.Google Scholar
Dworkin, R. H., Bernstein, G., Kaplansky, L. M., et al. (1991). Social competence and positive and negative symptoms: A longitudinal study of children and adolescents at risk for schizophrenia and affective disorders. American Journal of Psychiatry, 148, 1182–8.Google Scholar
Eckman, T. A., Wirshing, W. C., Marder, S. R., et al. (1992). Technique for training schizophrenic patients in illness self-management: A controlled trial. American Journal of Psychiatry, 149(11), 1549–55.Google Scholar
Ende, G., Braus, D. F., Walter, S., et al. (2000). Effects of age, medication, and illness duration on the N-acetyl aspartate signal of the anterior cingulate region in schizophrenia. Schizophrenia Research, 41(3), 389–95.Google Scholar
Falloon, I. R. H. & Pederson, J. (1985). Family management in the prevention of morbidity of schizophrenia: The adjustment of the family unit. British Journal of Psychiatry, 147, 156–63.Google Scholar
Fenton, W. S. & McGlashan, T. H. (1987). Prognostic scale for chronic schizophrenia. Schizophrenia Bulletin, 13(2), 277–86.Google Scholar
Flashman, L. A. & Green, M. F. (2004). Review of cognition and brain structure in schizophrenia: Profiles, longitudinal course, and effects of treatment. The Psychiatric Clinics of North America, 27(1), 1–18.Google Scholar
Fleischhaker, C., Schulz, E., Tepper, K., et al. (2005). Long-term course of adolescent schizophrenia. Schizophrenia Bulletin, 31(3), 769–80.Google Scholar
Garey, L. J., Ong, W. Y., Patel, T. S., et al. (1998). Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. Journal of Neurology, Neurosurgery, and Psychiatry, 65(4), 446–53.Google Scholar
Gittelman-Klein, R. & Klein, D. F. (1969). Premorbid asocial adjustment and prognosis in schizophrenia. Journal of Psychiatric Research, 7, 35–53.Google Scholar
Glantz, L. A. & Lewis, D. A. (2001). Dendritic spine density in schizophrenia and depression. Archives of General Psychiatry, 58(2), 203.Google Scholar
Glick, I. D., Spencer, J. Jr., Clarkin, J. F., et al. (1990). A randomized clinical trial of inpatient family intervention IV: Follow-up results for subjects with schizophrenia. Schizophrenia Research, 3, 187–200.Google Scholar
Goff, D. C., Cather, C., Evins, A. E., et al. (2005). Medical morbidity and mortality in schizophrenia: Guidelines for psychiatrists. Journal of Clinical Psychiatry, 66, 183–94.Google Scholar
Goldstein, G. & Zubin, J. (1990). Neuropsychological differences between young and old schizophrenics with and without associated neurological dysfunction. Schizophrenia Research, 3, 117–26.Google Scholar
Goldstein, M. J., Rodnick, E. H., Evans, J. R., May, P. R. A., & Steinberg, M. R. (1978). Drug and family therapy in the aftercare treatment of acute schizophrenia. Archives of General Psychiatry, 35, 169–77.Google Scholar
Gumley, A., O'Grady, M., McNay, L., et al. (2003). Early intervention for relapse in schizophrenia: Results of a 12-month randomized controlled trial of cognitive behavioural therapy. Psychological Medicine, 33(3), 419–31.Google Scholar
Gur, R. E., Cowell, P. E., Latshaw, A., et al. (2000a). Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Archives of General Psychiatry, 57, 761–8.Google Scholar
Gur, R. E., Turetsky, B. I., Cowell, P. E., et al. (2000b). Temporolimbic volume reductions in schizophrenia. Archives of General Psychiatry, 57, 769–75.Google Scholar
Haas, G. L. & Castle, D. J. (1998). Sex differences in schizophrenia. In Keshavan, M. S. & Murray, R. M., eds., Neurodevelopment & Adult Psychopathology. New York: Cambridge University Press, pp. 155–77.
Haas, G. L. & Garratt, L. S. (1998). Gender differences in social functioning. In Mueser, K. T. & Tarrier, N., eds., Handbook of Social Functioning in Schizophrenia. Needham Heights: Allyn & Bacon, pp. 149–80.
Haas, G. L. & Sweeney, J. A. (1992). Premorbid and onset features of first episode schizophrenia. Schizophrenia Bulletin, 18, 373–86.Google Scholar
Harrison, P. J. & Weinberger, D. R. (2005). Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence. Molecular Psychiatry, 10(1), 40–68.Google Scholar
Harvey, I., Ron, M., du Bouley, G., et al. (1993). Reduction of cortical volume in schizophrenia on magnetic resonance imaging. Psychological Medicine, 23, 591–604.Google Scholar
Haznedar, M. M., Buchsbaum, M. S., Luu, C., et al. (1997). Decreased anterior cingulate gyrus metabolic rate in schizophrenia. American Journal of Psychiatry, 154, 682–4.Google Scholar
Hemsi, L. K. (1967). Psychiatric morbidity of West Indian immigrants. Social Psychiatry, 2, 95–100.Google Scholar
Herz, M. I. & Lamberti, J. S. (1995). Prodromal symptoms and relapse prevention in schizophrenia. Schizophrenia Bulletin, 21(4), 541–51.Google Scholar
Hogarty, G. E., Schooler, N. R., Ulrich, R., et al. (1979). Fluphenazine and social therapy in the aftercare of schizophrenic patients. Relapse analyses of a two-year controlled study of fluphenazine decanoate and fluphenazine hydrochloride. Archives of General Psychiatry, 36(12), 1283–94.Google Scholar
Hogarty, G. E., Kornblith, S. J., Greenwald, D., et al. (1997). Three-year trials of personal therapy among schizophrenic patients living with or independent of family, I: Description of study and effects on relapse rates. American Journal of Psychiatry, 154, 1504–13.Google Scholar
Hogarty, G. E., Flesher, S., Ulrich, R., et al. (2004). Cognitive enhancement therapy for schizophrenia: Effects of a 2-year randomized trial on cognition and behavior. Archives of General Psychiatry, 61(9), 866–76.Google Scholar
Jablenski, A. (2000). Course and outcome of schizophrenia and their prediction. In Gelder, M. G., Lopez-Ibor, J. J.., & Andreasen, N. C., eds., New Oxford Textbook of Psychiatry, Volume 4 (Section 3.6), New York: Oxford University Press, pp. 612–21.
Jeffreys, S. E., Harvey, C. A., McNaught, A. S., et al. (1997). The Hampstead Schizophrenia Survey 1991. I: Prevalence and service use comparisons in an inner London health authority, 1986–1991. British Journal of Psychiatry, 170, 301–6.Google Scholar
Jeste, D. V., Symonds, L. L., Harris, M. J., et al. (1997). Nondementia nonpraecox dementia praecox? Late-onset Schizophrenia. American Journal of Geriatric Psychiatry, 5, 302–17.Google Scholar
Kapur, S. & Remington, G. (1996). Serotonin–dopamine interaction and its relevance to schizophrenia. American Journal of Psychiatry, 153(4), 466–76.Google Scholar
Kelland, M. D., Freeman, A. S., & Chiodo, L. A. (1990). Serotonergic afferent regulation of the basic physiology and pharmacological responsiveness of nigrostriatal dopamine neurons. Journal of Pharmacology and Experimental Therapeutics, 253(2), 803–11.Google Scholar
Kelley, M. E., Gilbertson, M. W., Mouton, A., & Kammen, D. P. (1992). Deterioration in premorbid functioning in schizophrenia: A developmental model of negative symptoms in drug-free patients. American Journal of Psychiatry, 149, 1543–8.Google Scholar
Kirkpatrick, B., Castle, D., Murray, R. M., & Carpenter, W. T. Jr. (2000). Risk factors for the deficit syndrome of schizophrenia. Schizophrenia Bulletin, 26, 233–42.Google Scholar
Kremen, W. S., Seidman, L. J., Faraone, S. V., et al. (1996). The “3 Rs” and neuropsychological function in schizophrenia: An empirical test of the matching fallacy. Neuropsychology, 10, 22–31.Google Scholar
Leff, J., Kuipers, L., Berkowitz, R., Eberlein-Fries, R., & Sturgeon, D. (1982). A controlled trial of intervention in the families of schizophrenic patients. British Journal of Psychiatry, 141, 121–34.Google Scholar
Lehman, A. F. (1999). Improving treatment for persons with schizophrenia. Psychiatric Quarterly, 70(4), 259–72.Google Scholar
Levitt, J. J., O'Donnell, B. B., McCarley, R. W., Nestor, P. G., & Shenton, M. E. (1996). Correlations of premorbid adjustment in schizophrenia with auditory event-related potential and neuropsychological abnormalities. American Journal of Psychiatry, 153, 1347–9.Google Scholar
Lieberman, J. A. (1999). Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective. Biological Psychiatry, 46(6), 729–39.Google Scholar
Malaspina, D., Perera, G. M., Lignelli, A., et al. (1998). SPECT imaging of odor identification in schizophrenia. Psychiatry Research, 82, 53–61.Google Scholar
Mathalon, D. H., Sullivan, E. V., Lim, K. O., & Pfefferbaum, A. (2001). Progressive brain volume changes and the clinical course of schizophrenia in men: A longitudinal magnetic resonance imaging study. Archives of General Psychiatry, 58(2), 148–57.Google Scholar
May, P. R., Tuma, A. H., & Dixon, W. (1981). Schizophrenia – a follow-up study of the results of five forms of treatment. Archives of General Psychiatry, 38, 776–84.Google Scholar
Menon, R. R., Barta, P. E., Aylward, E. H., et al. (1995). Posterior superior temporal gyrus in schizophrenia: Grey matter changes and clinical correlates. schizophrenia Research, 16, 127–35.Google Scholar
Mitter, P., Reeves, S., Romero-Rubiales, F., et al. (2005). Migrant status, age, gender, and social isolation in very late onset schizophrenia like psychosis. International Journal of Geriatric Psychiatry, 20, 1046–51.Google Scholar
Molina, V., Sanchez, J., Reig, S., et al. (2005). N-acetyl-aspartate levels in the dorsolateral prefrontal cortex in the early years of schizophrenia are inversely related to disease duration. Schizophrenia Research, 73(2–3), 209–19.Google Scholar
Mueser, K. T., Bellack, A. S., Morrison, R. L., & Wixted, J. T. (1990a). Social competence in schizophrenia: Premorbid adjustment. Social skill and domains of functioning. Journal of Psychiatric Research, 24, 51–63.Google Scholar
Mueser, K. T., Yarnold, P. R., Levinson, D. F., et al. (1990b). Prevalence of substance abuse in schizophrenia: Demographic and clinical correlates. Schizophrenia Bulletin, 16, 31–56.Google Scholar
Pettegrew, J. W., Keshavan, M. S., Panchalingam, K., et al. (1991). Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naïve schizophrenics. A pilot study of the dorsal prefrontal cortex by in vivo phosphorous 31 nuclear magnetic resonance spectroscopy. Archives of General Psychiatry, 48, 563–8.Google Scholar
Pharoah, F. M., Mari, J. J., & Streiner, D. (2003). Family intervention for schizophrenia. Cochrane Database of Systematic Reviews, (Online); (4):CD000088.
Pilling, S., Bebbington, P., Kuipers, E., et al. (2002). Psychological treatments in schizophrenia: I. Meta-analysis of family intervention and cognitive behaviour therapy. Psychological Medicine, 32(5), 763–82.Google Scholar
Pitlschel-Walz, G., Leuct, S., Bauml, J., et al. (2001). The effect of family interventions on relapse and rehospitalisation in schizophrenia – a meta-analysis. Schizophrenia Bulletin, 27, 73–92.Google Scholar
Ragland, J. D., Gur, R. C., Glahn, D. C., et al. (1998). Frontotemporal cerebral blood flow change during executive and declarative memory tasks in schizophrenia: A positron emission tomography study. Neuropsychology, 12, 399–413.Google Scholar
Razali, S. M. and Najib, M. A. (2000). Help-seeking pathways among Malay psychiatric patients. International Journal of Social Psychiatry, 46(4), 281–9.Google Scholar
Schneider, K. (1957). Primary & secondary symptoms in schizophrenia. Fortschritte der Neurologie-Psychiatrie, 25(9), 487–90.Google Scholar
Selemon, L. D. (2004). Increased cortical neuronal density in schizophrenia. American Journal of Psychiatry, 161(9), 1564.Google Scholar
Sharpley, M., Hutchinson, G., McKenzie, K., & Murray, R. M. (2001). Understanding the excess of psychosis among the African-Caribbean population in England. Review of current hypotheses. British Journal of Psychiatry, 40, s60–s88.Google Scholar
Shenton, M. E., Kikinis, R., Jolesz, F. A., et al. (1992). Abnormalities of the left temporal lobe and thought disorder in schizophrenia – A quantitative magnetic resonance imaging study. New England Journal of Medicine, 327, 604–12.Google Scholar
Silverstein, M. L., Mavrolefteros, G., & Turnbull, A. (2003). Premorbid factors in relation to motor, memory, and executive function deficits in adult schizophrenia. Schizophrenia Research, 61, 271–80.Google Scholar
Suddath, R. L., Casanova, M. F., Goldberg, T. E., et al. (1989). Temporal lobe pathology in schizophrenia: A quantitative magnetic resonance imaging study. American Journal of Psychiatry, 146, 464–72.CrossRefGoogle Scholar
Suddath, R. L., Christison, G. W., Torrey, E. F., & Weinberger, D. R. (1990). Cerebral anatomical abnormalities in monozygotic twins discordant for schizophrenia. New England Journal of Medicine, 322, 789–94.Google Scholar
Sullivan, E. V., Mathalon, D. H., Lim, K. O., Marsh, L., & Pfefferbaum, A. (1998). Patterns of regional cortical dysmorphology distinguishing schizophrenia and chronic alcoholism. Biological Psychiatry, 43, 118–31.Google Scholar
Sweeney, J. A., Luna, B., Srinivasagam, N. M., et al. (1998). Eye tracking abnormalities in schizophrenia: Evidence for dysfunction in the frontal eye fields. Biological Psychiatry, 44, 698–708.Google Scholar
Tarrier, N., Lewis, S., Haddock, G., et al. (2004). 18 month follow-up of a randomized, controlled trial of cognitive-behaviour therapy in first episode and early schizophrenia. British Journal of Psychiatry, 184, 231–9.Google Scholar
Kammen, D. P., Kelley, M. E., Yao, J. K., et al. (1996). Predicting haloperidol treatment response in chronic schizophrenia. Psychiatry Research, 64, 47–58.Google Scholar
Oel, C. J., Sitskoorn, M. M., Cremer, M. P., & Kahn, R. S. (2002). School performance as a premorbid marker for schizophrenia: A twin study. Schizophrenia Bulletin, 28, 401–14.Google Scholar
Vanderploeg, R. D., Schinka, J. A., & Axelrod, B. N. (1996). Estimation of WAIS-R premorbid intelligence: Current ability and demographic data used in a best-performance fashion. Psychological Assessment, 8, 404–11.Google Scholar
Walker, E. F., Lewine, R. R., & Neumann, C. (1996). Childhood behavioral characteristics and adult brain morphology in schizophrenia. Schizophrenia Research, 22, 93–101.Google Scholar
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660–69.Google Scholar
Weinberger, D. R., Berman, K. F., Suddath, R., & Torrey, E. F. (1992). Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: A magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. American Journal of Psychiatry, 149, 890–97.Google Scholar
Wykes, T., Reeder, C., Williams, C., et al. (2003). Are the effects of cognitive remediation therapy (CRT) durable? Results from an exploratory trial in schizophrenia. Schizophrenia Research, 61(2–3), 163–74.Google Scholar
Zygmunt, A., Olfson, M., Boyer, C. A., & Mechanic, D. (2002). Interventions to improve medication adherence in schizophrenia. American Journal of Psychiatry, 159(10), 1653–64.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×