Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T04:48:47.157Z Has data issue: false hasContentIssue false

25 - Bridging the gap: a model of common neural mechanisms underlying the Fröhlich effect, the flash-lag effect, and the representational momentum effect

from Part IV - Spatial phenomena: forward shift effects

Published online by Cambridge University Press:  05 October 2010

Romi Nijhawan
Affiliation:
University of Sussex
Beena Khurana
Affiliation:
University of Sussex
Get access

Summary

Summary

In recent years, the study and interpretation of mislocalization phenomena observed with moving objects have caused an intense debate about the processing mechanisms underlying the encoding of position. We use a neurophysiologically plausible recurrent network model to explain visual illusions that occur at the start, midposition, and end of motion trajectories known as the Fröhlich, the flash-lag, and the representational momentum effect, respectively. The model implements the idea that trajectories are internally represented by a traveling activity wave in position space, which is essentially shaped by local feedback loops within pools of neurons. We first use experimentally observed trajectory representations in the primary visual cortex of cat to adjust the spatial ranges of lateral interactions in the model. We then show that the readout of the activity profile at adequate points in time during the build-up, midphase, and decay of the wave qualitatively and quantitatively explain the known dependence of the mislocalization errors on stimulus attributes such as contrast and speed. We conclude that cooperative mechanisms within the network may be responsible for the three illusions, with a possible intervention of top-down influences that modulate the efficacy of the lateral interactions.

Introduction

Localizing an object in the presence of motion is a fundamental ability for many species as a moving object often represents danger or food. In recent years, advances in neurophysiology and psychophysics have substantially increased our understanding of how the visual system calculates the present and future positions of moving objects.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeles, M. (1991). Corticonics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Baldo, M. V. C., & Caticha, N. (2005). Computational neurobiology of the flash-lag effect. Vision Res 45: 2620–2630.CrossRefGoogle ScholarPubMed
Baldo, M. V. C., & Klein, S. A. (1995). Extrapolation or attention shift? Nature 378: 565–566.CrossRefGoogle ScholarPubMed
Ben-Yishai, R., Hansel, D., & Sompolinsky, H. (1997). Traveling waves and the processing of weakly tuned inputs in a cortical network module. J Comp Neurosci 4: 57–77.CrossRefGoogle Scholar
Berry, M. J. II, Brivanlou, I. H., Jordan, T. A., & Meister, M. (1999). Anticipation of moving stimuli by the retina. Nature 398: 334–338.CrossRefGoogle ScholarPubMed
Bringuier, V., Chavane, F., Glaeser, L., & Frégnac, Y. (1999). Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283: 695–699.CrossRefGoogle ScholarPubMed
Coltheart, M. (1980). Iconic memory and visible persistence. Perception & Psychophysics 27: 183–228.CrossRefGoogle ScholarPubMed
Dayan, P., & Abbott, L. F. (2001). Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press.Google Scholar
Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. C., & Suarez, H. (1995). Recurrent excitation in neocortical circuits. Science 269: 981–985.CrossRefGoogle ScholarPubMed
Eagleman, D. M., & Sejnowski, T. J. (2000). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.CrossRefGoogle ScholarPubMed
Erlhagen, W. (2003). Internal models for visual perception. Biol Cybern 88: 409–417.CrossRefGoogle ScholarPubMed
Erlhagen, W., Bastian, A., Jancke, D., Riehle, A., & Schöner, G. (1999). The distribution of neuronal population activation (DPA) as a tool to study interaction and integration in cortical representations. J Neurosci Methods 94: 53–66.CrossRefGoogle ScholarPubMed
Erlhagen, W., & Jancke, D. (2004). The role of action plans and other cognitive factors in motion extrapolation: a modelling study. Vis Cogn 11(2/3): 315–340.CrossRefGoogle Scholar
Fitzpatrick, D. (2000). Seeing beyond the receptive field in primary visual cortex. Curr Opin Neurobiol 10: 438–443.CrossRefGoogle ScholarPubMed
Freyd, J. J., & Finke, R. A. (1984). Representational momentum. J Exp Psych Learn Mem Cogn 10: 126–132.CrossRefGoogle Scholar
Fröhlich, F. W. (1923). Über die Messung der Empfindungszeit. Zeitschrift für Sinnesphysiologie 54: 58–78.Google Scholar
Fu, Y., Shen, Y., & Yang, D. (2001). Motion-induced perceptual extrapolation of blurred visual targets. J Neurosci 21 (RC 172): 1–5.CrossRefGoogle ScholarPubMed
Giese, M., & Xie, X. (2002). Exact solution of the nonlinear dynamics of recurrent neural mechanisms for direction selectivity. Neurocomp 44–46: 417–422CrossRefGoogle Scholar
Gilbert, S. D. (1995). Dynamic properties of adult visual cortex. In M., Gazzaniga (ed.), The Cognitive Neurosciences (73–90). Cambridge: MIT Press.Google Scholar
Grinvald, A., Lieke, E., Frostig, R., & Hildesheim, R. (1994). Real-time optical imaging of naturally evoked electrical activity in intact frog brain. J Neurosci 14: 2545–2568.CrossRefGoogle Scholar
Grossberg, S. (1988). Nonlinear neural networks: principles, mechanisms, and architectures. Neural Networks 1: 17–61.CrossRefGoogle Scholar
Hahnloser, R., Douglas, R. J., Mahowald, M., & Hepp, K. (1999). Feedback interactions between neuronal pointers and maps for attentional processing. Nat Neurosci 2(8): 746–752.CrossRefGoogle ScholarPubMed
Hubbard, T. L. (1990). Cognitive representation of linear motion: possible direction and gravity effects in judged displacement. Memory & Cognition 18(3): 299–309.CrossRefGoogle ScholarPubMed
Hubbard, T. L., & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Perception & Psychophysics 44: 211–221.CrossRefGoogle ScholarPubMed
Hubbard, T. L., & Motes, M. A. (2002). Does representational momentum reflect a distortion of the length or the endpoint of a trajectory? Cognition 82: B89–B99.CrossRefGoogle ScholarPubMed
Jancke, D., Chavane, F., Naaman, S., & Grinvald, A. (2004a). Imaging correlates of visual illusion in early visual cortex. Nature 428: 423–426.CrossRefGoogle ScholarPubMed
Jancke, D., Erlhagen, W., Dinse, H. R., Akhavan, A. C., Giese, M., Steinhage, A., et al. (1999). Parametric population representation of retinal location: neuronal interaction dynamics in cat primary visual cortex. J Neurosci 19: 9016–9028.CrossRefGoogle ScholarPubMed
Jancke, D., Erlhagen, W., Schöner, G., & Dinse, H. R. (2004b). Shorter latencies for motion trajectories for flashes in population responses of cat visual cortex. J Physiol 556.3: 971–982.CrossRefGoogle Scholar
Khurana, B., & Nijhawan, R. (1995). Extrapolation or attentional shift? Nature 378: 565–566.CrossRefGoogle Scholar
Kirschfeld, K., & Kammer, T. (1999). The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast. Vis Res 39: 3702–3709.CrossRefGoogle ScholarPubMed
Kreegipuu, K., & Allik, J. (2003). Perceived onset time and position of a moving stimulus. Vision Res 43: 1625–1635.CrossRefGoogle ScholarPubMed
Krekelberg, B., & Lappe, M. (2000). A model of the perceived relative positions of moving objects based upon a slow averaging process. Vision Res 40: 201–215.CrossRefGoogle ScholarPubMed
Krekelberg, B., & Lappe, M. (2001). Neuronal latencies and the position of moving objects. TINS 24: 335–339.Google ScholarPubMed
Lamme, V. A. F., & Roelfsema, R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. TINS 23: 571–579.Google ScholarPubMed
Lennie, P. (1981). The physiological basis of variations of visual latency. Vision Res. 21: 815–824.CrossRefGoogle ScholarPubMed
Li, W., Piëch, V., & Gilbert, C. D. (2004). Perceptual learning and top-down influences in primary visual cortex. Nat Neurosci 7(6): 651–657.CrossRefGoogle ScholarPubMed
Maiche, A., Budelli, R., & Gómez-Sena, L. (2007). Spatial facilitation is involved in the flash-lag effect. Vision Res 47: 1655–1661.CrossRefGoogle ScholarPubMed
Metzger, W. (1932). Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit. Psychologische Forschung 16: 176–200.CrossRefGoogle Scholar
Müsseler, J., & Aschersleben, G. (1998). Localizing the first position of a moving stimulus: The Fröhlich effect and an attention-shifting explanation. Perception & Psychophysics 60: 683–695.CrossRefGoogle ScholarPubMed
Müsseler, J., Stork, S., & Kerzel, D. (2002). Comparing mislocalizations with moving stimuli: The Fröhlich effect, the flash-lag, and representational momentum. Vis Cog 9(1/2): 120–138.CrossRefGoogle Scholar
Nijhawan, R. (1994). Motion extrapolation in catching. Nature 370: 256–257.CrossRefGoogle ScholarPubMed
Nijhawan, R., Watanabe, K., Khurana, B., & Shimojo, S. (2004). Compensation of neural delays in visual-motor behaviour: no evidence for shorter afferent delays for visual motion. Vis Cog 11(2/3): 275–298.CrossRefGoogle Scholar
Purushothaman, G., Patel, S. S., Bedell, H. E., & Öğmen, H. (1998). Moving ahead through differential visual latency. Nature 396: 424.CrossRefGoogle ScholarPubMed
Salinas, E., & Abbott, L. F. (1994). Vector reconstruction from firing rates. J Comput Neurosci 1: 89–107.CrossRefGoogle ScholarPubMed
Thornton, I. M. (2002). The onset repulsion effect. Spatial Vision 15: 219–243.CrossRefGoogle ScholarPubMed
Whitney, D. (2002). The influence of visual motion on perceived position. TICS 6: 211–216.Google ScholarPubMed
Whitney, D., Cavanagh, P., & Murakami, I. (2000). Temporal facilitation for moving stimuli is independent of changes in direction. Vision Res 40: 3829–3839.CrossRefGoogle ScholarPubMed
Whitney, D., Murakami, I., & Cavanagh, P. (2000). Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vision Res 40: 137–149.CrossRefGoogle ScholarPubMed
Wilson, H. R., & Cowan, J. D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik (Biol Cybern) 13: 55–80.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×