Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T10:12:12.660Z Has data issue: false hasContentIssue false

5 - Contemporary solute and sedimentary fluxes in Arctic and subarctic environments: current knowledge

from Part III - Solute and sedimentary fluxes in subarctic and Arctic environments

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, M. F. (1990a). Geomorphic impact of spring avalanches in northwest Spitsbergen (79°N). Permafrost and Periglacial Processes, 1, 97110.CrossRefGoogle Scholar
André, M. F. (1990b). Frequency of debris flows and slush avalanches in Spitsbergen: a tentative evaluation from lichenometry. Polish Polar Research, 11, 345363.Google Scholar
Arnborg, L. B., Walker, H. J., and Peippo, J. (1967). Suspended load in the Colville River, Alaska, 1962. Geografiska Annaler, 49A, 131144.CrossRefGoogle Scholar
Barsch, D. and Caine, N. (1984). The nature of mountain geomorphology. Mountain Research and Development, 4, 287298.CrossRefGoogle Scholar
Barsch, D., Gude, M., Maüsbacker, R., Schukraft, G., and Schulte, A. (1994). Recent fluvial sediment budgets in glacial and periglacial environments, NW Spitsbergen. Zeitschrift für Geomorphologie, (Suppl. 97), S111–S122.Google Scholar
Beylich, A. A. (2000). Geomorphology, sediment budget, and relief development in Austdalur, Austfirdir, east Iceland. Arctic, Antarctic and Alpine Research, 32, 466477.CrossRefGoogle Scholar
Beylich, A. A. (2003). Present morphoclimates and morphodynamics of Latnjavagge, northern Swedish Lapland and Austdalur, east Iceland. Jӧkul, 52, 3354.Google Scholar
Beylich, A. A. (2008). Mass transfers, sediment budget and relief development in the Latnjavagge catchment, Arctic-oceanic Swedish Lapland. Zeitschrift für Geomorphologie, 52, 149197.CrossRefGoogle Scholar
Beylich, A. A. (2011). Mass transfers, sediment budgets and relief development in cold environments: results of long-term geomorphologic drainage basin studies in Iceland, Swedish Lapland and Finnish Lapland. Zeitschrift für Geomorphologie, 55, 145174.CrossRefGoogle Scholar
Beylich, A. A. (2012). Major controls of mass transfers and relief development in four cold-climate catchment systems in eastern Iceland, Swedish Lapland and Finnish Lapland: Synthesis paper. In Abstracts and Proceedings of the Geological Society of Norway. No. 1. 86–123.Google Scholar
Beylich, A. A. and Kneisel, C. H. (2009). Sediment budget and relief development in Hrafndalur, subarctic oceanic eastern Iceland. Arctic, Antarctic and Alpine Research, 41, 317.CrossRefGoogle Scholar
Beylich, A. A., Schmidt, K. H., Neuvonen, S., Forbrich, I., and Schildt, A. (2006). Solute fluxes in the Kidisjoki catchment subarctic Finnish Lapland. Geomorphologie: relief, processus, environment, 3, 205212.Google Scholar
Bogen, J., and Bønsnes, T. E. (2003). Erosion and sediment transport in High Arctic Rivers, Svalbard. Polar Research, 22, 175189.CrossRefGoogle Scholar
Büdel, J. (1963). Climatic Geomorphology. Translated by Fischer, L. and Busche, D. Princeton, NJ: Princeton University Press.Google Scholar
Caine, N. (2001). Geomorphic systems of Green Lakes Valley. In Bowman, W. D. and Seastedt, T. R., eds., Structure and Function of an Alpine Ecosystem: Niwot Ridge, Colorado. Oxford: Oxford University Press, pp. 4574.Google Scholar
Caine, N. (2004). Mechanical and chemical denudation in mountain systems. In Owens, P. N. and Slaymaker, O., eds., Mountain Geomorphology. London: Edward Arnold, pp. 132152.Google Scholar
Caine, N., and Swanson, F. J. (1989). Geomorphic coupling of hillslope and channel systems in two small mountain basins. Zeitschrift für Geomorphology, 33, 189203.CrossRefGoogle Scholar
Christiansen, H. H. (1998). Nivation forms and processes in unconsolidated sediments, NE Greenland. Earth Surface Processes and Landforms, 23, 751760.3.0.CO;2-A>CrossRefGoogle Scholar
Christiansen, H. H., Sigsgaard, C., Humlum, O., Rasch, M., and Hansen, B. U. (2008). Permafrost and periglacial geomorphology at Zackenberg. Advances in Ecological Research, 40, 151174.CrossRefGoogle Scholar
Church, M. (1974). On the quality of some waters on Baffin Island, Northwest Territories. Canadian Journal of Earth Sciences, 11, 16761688.CrossRefGoogle Scholar
Church, M., and Ryder, J. M. (1972). Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Bulletin of the Geological Society of America, 83, 30593067.CrossRefGoogle Scholar
Clark, M. J. (1988). Periglacial hydrology. In Clark, M. J., ed., Advances in Periglacial Geomorphology. Chichester: John Wiley and Sons, pp. 415462.Google Scholar
Dixon, J. C. (in press). A contemporary assessment of sediment and solute transfers in Kärkevagge, Swedish Lapland. In A. A. Beylich, J. C. Dixon, and Z. Zwolinski, eds., Source to Sink Fluxes in Undisturbed Cold Environments. Cambridge: Cambridge University Press.Google Scholar
Etzelmüller, B., Odegard, R. S., Vatne, G., Mysterud, R. S., Tonning, T., and Sollid, J. L. (2000). Glacier characteristics and sediment transfer system of Longyearbreen and Larsbreen, western Spitsbergen. Norsk Geografisk Tidsskrift, 54, 157168.CrossRefGoogle Scholar
Forbes, D. L. (1975). Sedimentary processes and sediments, Babbage River Delta, Yukon coast. Geological Survey of Canada Paper, 75–1, 157160.Google Scholar
Forland, E., and Hanssen-Bauer, I. (2000). Increased precipitation in the Norwegian Arctic: true or false? Climate Change, 46, 485509.CrossRefGoogle Scholar
Hansen, B. U., Sigsgaard, C., Rasmussen, L., Cappelen, J., Hinkler, J., Mernild, S. H., Petersen, D., Tamstorf, M. P., Rasch, M., and Hasholt, B. (2008). Present day climate at Zackenberg. Advances in Ecological Research, 40, 111149.CrossRefGoogle Scholar
Hasholt, B. (1976). Hydrology and transport of material in the Sermilik area 1972. Geografisk Tidsskrift, 75, 3039.CrossRefGoogle Scholar
Hasholt, B. (1996). Sediment transport in Greenland. In Walling, D. E. and Webb, B. W., eds., Erosion and Sediment Yield: Global and Regional perspectives. IAHS Publication 236, Wallingford, IAHS Press, pp. 105114.Google Scholar
Hasholt, B., and Mernild, S. H. (2006). Glacial erosion and sediment transport in the Mittivakkat Glacier catchment, Ammassalik Island, southeast Greenland. IAHS Publication 306: 4556.Google Scholar
Hasholt, B., Mernild, S. H., Sigsgaard, C., Elberling, B., Petersen, D., Jakobsen, B. H., Hansen, B. U., Hinkler, J., and Søgaard, H. (2008). Hydrology and transport of sediment and solutes at Zackenberg. Advances in Ecological Research, 40, 197220.CrossRefGoogle Scholar
Hellden, D. (1973). Limestone solution intensity in a karst area in Lapland, northern Sweden. Geografiska Annaler, 55A, 185196.CrossRefGoogle Scholar
Hodgkins, R., Cooper, R., Wadham, J., and Tranter, M. (2003). Suspended sediment fluxes in a high-Arctic glacierised catchment: implications for fluvial sediment storage. Sedimentary Geology, 162, 105117.CrossRefGoogle Scholar
Hodgkins, R., Tranter, M., and Dowdeswell, J. A. (1997). Solute provenance, transport and denudation in a high arctic glacierized catchment. Hydrological Processes, 11, 18131832.3.0.CO;2-C>CrossRefGoogle Scholar
Humlum, O. (1997). Active layer thermal regime at three rock glaciers in Greenland. Permafrost and Periglacial Processes, 8, 383408.3.0.CO;2-V>CrossRefGoogle Scholar
Humlum, O. (1998). The climatic significance of rock glaciers. Permafrost and Periglacial Processes, 9, 375395.3.0.CO;2-0>CrossRefGoogle Scholar
Jäckli, H. (1957). Gegenwartsgeologie des Bundnerischen Rheingebietes Beitrag zur Geologischen Karte der Schweiz, Geotechn. Serie, 36.Google Scholar
Jakobsen, B. H. (1992). Preliminary studies of soils in North-East Greenland between 74o and 75o Northern latitude. Geografisk Tidskrift, 92, 111115.CrossRefGoogle Scholar
Kostrzewski, A., Kanecki, A., Kapuschinski, J., Klimczak, R., Stach, A., and Zwolinski, Z. (1989). The dynamics and rate of denudation of glaciated and non-glaciated catchments in central Spitsbergen. Polish Polar Research, 10, 317367.Google Scholar
Lewkowicz, A. G. (1983). Erosion by overland flow, central Banks Island, western Canadian Arctic. Proceedings of the Fourth International Permafrost Conference. Washington DC: National Academy Press. 701706.Google Scholar
Lisitsyna, K. N., and Aleksandrova, V. I. (1972). Sediment load of rivers in the European USSR. Soviet Hydrology: Selected Papers, 2, 69100.Google Scholar
McCann, S. B., and Cogley, J. G. (1972). Hydrologic observations on a small arctic catchment, Devon Island. Canadian Journal of Earth Sciences, 9, 361365.CrossRefGoogle Scholar
McCloy, J. M. (1970). Hydrometeorological relationships and their effects upon the levees of a small arctic delta. Geografiska Annaler, 52A, 223241.CrossRefGoogle Scholar
McDonald, B. C., and Lewis, C. P. (1973). Geomorphological and sedimentologic processes of rivers and coast, Yukon coastal plain. Environmental-Social Committee Northern Pipelines (Canada). Report 73–39.Google Scholar
Nilsson, B. (1971). Sediment transport in Swedish rivers. IHD project part 2: Catchment Areas, Stations and Results 1967–69. Uppsala Universitets Naturgeografiska Institution, Rapport 16.Google Scholar
Peltier, L. C. (1950). The geographic cycle in periglacial regions as it is related to climatic geomorphology. Annals of the Association of American Geographers, 40, 214236.CrossRefGoogle Scholar
Rachlewicz, G. (2009). Contemporary sediment fluxes and relief changes in high Arctic glacierized valley systems (Billefjorden, central Spitsbergen). Poznań: Uniwersytet im Adama Mickiewicza W Poznaniu. Seria Geografia, 87.Google Scholar
Rachlewicz, G., Szczuciński, W., and Ewertowski, M. (2007). Post-“Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen, Svalbard. Polish Polar Research, 28, 159186.Google Scholar
Rapp, A. (1960). Recent development of mountain slopes Kärkevagge and surroundings, northern Scandinavia. Geografiska Annaler, 42A, 71200.Google Scholar
Rasch, M., Elberling, B., Jakobsen, B. H., and Hasholt, B. (2000). High-resolution measurements of water discharge, sediment, and solute transport in the river Zackenbergelven, northeast Greenland. Arctic, Antarctic, and Alpine Research, 32, 336345.CrossRefGoogle Scholar
Rehn, J., Stoertz, M., and Strömquist, L. (1982). Geomorphological investigations on erosion, sediment production, and fluvial transport along road 98, Kiruna-Riksgransen. Swedish Environmental Protection Board Publication 1522. 91p (in Swedish).Google Scholar
Ritchie, W., and Walker, H. J. (1974). River in the frozen north. Geographical Magazine, 46, 634640.Google Scholar
Slaymaker, O. (2004). Mass balances of sediments, solutes and nutrients: the need for greater integration. Journal of Coastal Research, Special Issue, 43, 109123.Google Scholar
Slaymaker, O. (2008). Sediment budget and sediment flux studies under accelerating global change in cold climates. Zeitschrift für Geomorphologie, 52, 123148.CrossRefGoogle Scholar
Slaymaker, O. (2009). Proglacial, periglacial or paraglacial? In Knight, J. and Harrison, S., eds., Periglacial and paraglacial Processes and Environments. Special Publication 320. London: Geological Society of London, 7184.Google Scholar
Strömquist, L. (1983). Gelifluction and surface wash, their importance and interaction on a periglacial slope. Geografiska Annaler, 65A, 245254.CrossRefGoogle Scholar
Szpikowski, J., Szpikowska, G., Zwolińki, Z., Rachlewicz, G., Kostrzewski, A., Marciniak, M., and Dragon, K. (2014). Geomorphology, 218, 52–62.CrossRefGoogle Scholar
Thomasson, H. (1990). Glacial and volcanic shore interaction. Part 1. On land. In Sigbjarnarsson, G., ed., Icelandic Coastal and River Symposium Proceedings. Reykjavik: Icelandic National Energy Authority, pp. 718.Google Scholar
Thomasson, H. (1991). Glaciofluvial sediment transport and erosion. In Hagen, J. O. and Hassel, K. A., eds., Arctic Hydrology, Present and Future Tasks. Oslo: Norwegian National Committee for Hydrology. Report. 23/91. pp. 2736.Google Scholar
Thorn, C. E., Schlyter, P. L., Darmody, R. G., and Dixon, J. C. (1999). Statistical relationships between daily and monthly air and shallow-ground temperatures in Karkevagge, Swedish Lapland. Permafrost and Periglacial Processes, 10, 317330.3.0.CO;2-S>CrossRefGoogle Scholar
Threlfall, J. L. (1986). Sediment source and discharge variability in small subarctic nival catchments. Unpublished Ph.D. thesis, University of Southampton, U.K.Google Scholar
Tricart, J., and Cailleux, A. (1965). Introduction to Climatic Geomorphology. Translated by de Jong, C. J. K., London: Longman.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×