Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-11T07:38:17.696Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 August 2015

Teo Mora
Affiliation:
University of Genoa
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aho, A.V., Hopcroft, J.E., Ullman, J.D., The Design and Analysis of Computer Algorithms, Addison–Wesley (1974).
Alonso, M.E., Becker, E., Roy, M.-F., Wörmann T., Zeroes, multiplicities and idempotents for zero dimensional systems, in Prog. Math. 143 (1996), pp. 1–16, Birkhäuser.Google Scholar
Ampère, A.-M., Fonctions Interpolaires, Annales de M. Gergonne (1826).
Arnaudiès, J.M., Valibouze, A., Résolventes de Lagrange, Report LIPT 93.61 (1993),
Arnaudiès, J.M., Valibouze, A., Lagrange resolvents, J. Pure Appl. Algebra 117–118 (1996), 23–40.Google Scholar
Aubry, P., Moreno Maza, M., Triangular set for solving polynomial systems: a comparative implementation of four methods, J. Symb. Comp. 28 (1999), 125–154.Google Scholar
Aubry, P., Valibouze, A., Using Galois ideals for computing relative resolvents, J. Symb. Comp. 30 (2000), 635–651.Google Scholar
Aubry, P., Lazard, D., Moreno Maza, M., On the theories of triangular sets, J. Symb. Comp. 28 (1999), 105–124.Google Scholar
Auzinger, W., Stetter, H.J., An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations, in I.S.N.M. 86 (1988), pp. 11–30, Birkhäuser.Google Scholar
Becker, E., Cardinal, J.-P., Roy, M.-F., Szafraniec, Z., Multivariate Bezoutians, Kronecker symbol and Eisenbud–Levin formula, in Prog. Math. 143 (1996), pp. 79–104, Birkhäuser.Google Scholar
Bézout, E., Recherches sur le degré des équations résultantes de l'évanouissement des inconnues, et sur les moyens qu'il convient d'employer pour trouver ses équations, Mém. Acad. Roy. Sci. Paris (1764), 288–233.Google Scholar
Bézout, E., Théorie Generale des Èquations Algébriques, Pierres, Paris (1771).
Bini, D., Pan, V., Polynomial and Matrix Computations, Birkhäuser (1994).
Bostajn, A., Salvy, B., Schost, E., Fast algorithm for zero-dimensional polynomial systems using duality, J. AAECC 14 (2003), 239–272.Google Scholar
Bürgisser, P., Clausen, M., Shorolahi, M.A., Algebraic Complexity Theory, Springer (1997).
Burnside, W., Theory of Groups of Finite Order, Cambridge University Press (1911).
Canny, J., Generalized characteristic polynomials, in L. N. Comp. Sci. 358 (1988), pp. 293–299, Springer.Google Scholar
Canny, J., An effective algorithm for the sparse mixed resultant, in L. N. Comp. Sci. 673 (1993), pp. 89–104, Springer.Google Scholar
Cardinal, J.P., Dualité et algorithms itératifs pour la résolution de systémes polynomiaux, Ph.D.thesis, University of Rennes I (1993).
Cardinal, J.P., Mourrain, B., Algebraic approach of residues and applications, in L. N. Appl. Math. 32 (1999), American Mathematical Society Press.Google Scholar
Cauchy, A., Usage des fonctions interpolaires dans ls determination des fonctions symmetriques des racines d'une équation algébrique donnée, C.R. Acad. Sci. Paris 11 (1840), 933.Google Scholar
Cauchy, A., Oeuvres t. V, Gauthier–Villars, Paris, (1882).
Cayley, A., On the theory of elimination, Camb. Dublin Math. J. III (1848), 116–120.Google Scholar
Cayley, A., Note sur la méthode d'élimination de Bezout, J. Reine Ang. Math. LIII (1857), 366–367.Google Scholar
Cayley, A., A fourth memoir upon quantics, Phil. Trans. Royal Soc. London CXLVIII (1858), 415–427.Google Scholar
Charden, M., Un algorithm pour les calcul des resultants, in Prog. Math. 94 (1990), pp. 47–62, Birkhäuser.Google Scholar
Charden, M., The resultant via a Koszul complex, Prog. Math. 109 (1993), pp. 29–40, Birkhäuser.Google Scholar
Chen, C., Golubitsky, O., Lemaire, F., Moreno Maza, M., Comprehensive triangular decomposition, in Proc. CASC 2007 (2007), pp. 73–101.Google Scholar
Dahan, X., Sur la complexité des représentations des systèmes polynomiaux: triangulation, méthodes modulaires, évaluation dynamique, Ph.D. thesis, École Polytechnique (2006).
Dahan, X., Schost, E., Sharp estimates for triangular sets, in Proc. ISSAC'04 (2004), pp. 103–110, Association for Computing Machinery.
Dahan, X., Moreno Maza, M., Schost, E., Wu, W., Xie, Y., Lifting techniques for triangular decomposition, in Proc. ISSAC'05 (2005), pp. 108–115.Google Scholar
Delassus, E., Sur les systèmes algébriques et leurs relations avec certains systèmes d'equations aux dérivées partielles. Ann. Éc. Norm. 3e série 14 (1897), 21–44.Google Scholar
Dixon, A.L., On a form of the eliminant of two quantics, Proc. London Math. Soc. 6 (1908a), 468–478.Google Scholar
Dixon, A.L., The eliminant of three quantics in two independent variables, Proc. London Math. Soc. 7 (1908b), 49–69.Google Scholar
Dixon, A.L., Some results in the theory of elimination, Proc. Roy. Soc. London 82 (1909), 468–478.Google Scholar
Euler, L., Introductio in Analysin Infinitorum, Tom. 2, Lausanne, (1748).
Felszeghy, B., Ráth, B., Rónyai, L., The lex game and some applications, J. Symb. Comp. 41 (2006), 663–681.Google Scholar
Gallo, G., Mishra, B., Effective algorithms and bounds for Wu–Ritt characteristic sets, in Prog. Math. 94 (1990), pp. 119–142, Birkhäuser.Google Scholar
Gallo, G., Mishra, B., A solution to Kronecker's problem, J. AAECC 5 (1994), 343–370.Google Scholar
Gallo, G., Mishra, B., Olivier, F., Some constructions in rings of differential polynomials, in L. N. Comp. Sci. 539 (1991), pp. 171–182, Springer.Google Scholar
Gianni, P., Properties of GrÖbner bases under specialization, in L. N. Comp. Sci. 378 (1987), pp. 293–297, Springer.Google Scholar
Giusti, M., Heintz, J., Algorithmes – disons rapides – pour la décomposition d'une variété algébrique en composantes irréductibles, in Prog. Math. 94 (1990), pp. 169–194, Birkhäuser.Google Scholar
Giusti, M., Heintz, J., La detérmination des point isolés et de la dimension d'une variété algébrique peut se faire en temps polynomial, in Symp. Math. 34 (1993), pp. 216–256, Cambridge University Press.Google Scholar
Giusti, M., Schost, E., Solving some overdetermined polynomial systems, in Proc. ISSAC'99 (1999), pp. 1–8, Association for Computing Machinery.Google Scholar
Giusti, M., Heintz, J., Morais, J.E., Pardo, L.M., When polynomial equation systems can be “solved” fast?, in L. N. Comp. Sci. 948 (1995), pp. 205–231, Springer.Google Scholar
Giusti, M., Heintz, J., Hägele, K., Morais, J.E., Pardo, L.M., Montaña, J.M., Lower bounds for diophantine approximation, J. Pure Appl. Algebra 117–118 (1997a), 277–311.Google Scholar
Giusti, M., Heintz, J., Morais, J.E., Pardo, L.M., Le rôle des structures de données dans les problèmes d'élimination, C.R. Acad. Sci. Paris 325 (1997b), 1223–1228.Google Scholar
Giusti, M., Heintz, J., Morais, J.E., Morgensten, J., Pardo, L.M., Straight-line programs in geometric elimination theory, J. Pure Appl. Algebra 124 (1998), 101–146.Google Scholar
Giusti, M., Hägele, K., Lecerf, G., Marchand, J., Salvy, B., The projective Noether maple package: computing the dimension of a projective variety, J. Symb. Comp. 30 (2000), 291–307.Google Scholar
Giusti, M., Lecerf, G., Salvy, B., A Gröbner free alternative for polynomial system solving, J. Complexity 17 (2001), 154–211.Google Scholar
Gonzalez-Vega, L., Rouiller, F., Roy, M.-F., Symbolic recipes for polynomial system solving, in Some Tapas of Computer Algebra, ed. A., Cohen, (1997), Springer.
Gunther, N., Sur la forme canonique des systèmes équations homogènes (in Russian)(Journal de l'Institut des Ponts et Chaussées de Russie), Izdanie Inst. In?z. Putej Soob?s?cenija Imp. Al. I. 84 (1913).Google Scholar
Gunther, N., Sur les caractéristiques des systémes d'équations aux dérivées partialles, C.R. Acad. Sci. Paris 156 (1913), 1147–1150.Google Scholar
Gunther, N., Sur la forme canonique des equations algébriques, C.R. Acad. Sci. Paris 157 (1913), 577–80.Google Scholar
Hägele, K., Morais, J.E., Pardo, L.M., Sombra, M., On the intrinsic complexity of the arithmetic Nullstellensatz, J. Pure Appl. Algebra 146 (2000), 103–183.Google Scholar
Hashemi, A., Structure et Complexité des bases de Gröbner, J. Symb. Comp. 45 (2010), 1330–1340.Google Scholar
Hashemi, A., Lazard, D., Sharper complexity bounds for zero-dimensional Gröbner bases and polynomial system solving, Int. J. Algebra Comp. 21 (2011), 705–713.Google Scholar
Jacobi, C.G.I., De eliminatione variabilis e duabus aequationibus algebraicas, J. Reine Ang. Math. XV (1836) 101–124.Google Scholar
Jouanoulou, J.-P., Le formalisme du résultant, Adv. Math. 90 117–263.
Kalkbrener, M., Solving systems of algebraic equations by using Gröbner bases, in L. N. Comp. Sci. 378 (1987), pp. 282–292, Springer.Google Scholar
Kalkbrener, M., Three contributions to elimination theory, Ph.D. thesis, Linz University (1991).
Kalkbrener, M., A generic euclidean algorithm for computing triangular representations of algebraic varieties, J. Symb. Comp. 15 (1993), 153–167.Google Scholar
Kalkbrener, M., On the stability of Gröbner bases under specialization, J. Symb. Comp. 24 (1997), 51–58.Google Scholar
Kapur, D., Cai, Y., An algorithm for computing a Gröbner basis of a polynomial ideal over a ring with zero divisors, Math. Comput. Sci. 2 (2009), 601–634.Google Scholar
Kapur, D., Chtcherba, A.D., Conditions for exact resultants using the Dixon resultant formulation, in Proc. ISSAC 2000 (2000), pp. 62–70, Association for Computing Machinery.Google Scholar
Kapur, D., Chtcherba, A.D., On the efficiency and optimality of Dixon-based resultant method, in Proc. ISSAC 2002 (2002), pp. 29–36, Association for Computing Machinery.Google Scholar
Kapur, D., Saxena, T., Yang, L., Algebraic and geometric reasoning using Dixon resultants, in Proc. ISSAC 94 (1994), pp. 99–136, Association for Computing Machinery.Google Scholar
Kapur, D., Saxena, T., Extraneous factors in the Dixon resultant formulation, in Proc. ISSAC 97 (1997), pp. 141–148, Association for Computing Machinery.Google Scholar
Kobayashi, H., Moritsugu, S., Hogan, R.W., On radical zero-dimensional ideals, J. Symb. Comp. 8 (1989), 545–552.Google Scholar
Kratzer, M., Computing the dimension of a polynomial ideal and membership in lowdimensional ideals. Master's thesis, Technische Universität München (2008).
Krick, T., Pardo, L.M., Une approache informatique pour l'approximation diophantienne, C.R. Acad. Sci. Paris 318 (1994), 407–412.Google Scholar
Krick, T., Pardo, L.M., A computational method for Diphantine approximation, in Prog. Math. 143 (1996), pp. 193–254, Birkhäuser.Google Scholar
Lakshman|Y.N., Lazard, D., On the complexity of zero-dimensional algebraic systems, in Prog. Math. 94 (1990), pp. 217–226, Birkhäuser.Google Scholar
Lazard, D., Algèbre linéaire sur K[X1, …, Xn] et élimination, Bull. Soc. Math. France 105 (1977), 165–190.Google Scholar
Lazard, D., Systems of algebraic equations, in L. N. Comp. Sci. 72 (1979), pp. 88–94, Springer.Google Scholar
Lazard, D., Resolution des systemes d'equations algebriques, Theoret. Comput. Sci. 15 (1981), 77–110.Google Scholar
Lazard, D., A new method for solving algebraic systems of positive dimension, Disc. Appl. Math. 33 (1991), 147–160.Google Scholar
Lazard, D., Solving zero-dimensional algebraic systems, J. Symb. Comp. 15 (1992), 117–132.Google Scholar
Lazard, D., Systems of algebraic equations (algorithms and complexity), Symp. Math. 34 (1993), 84–106, Cambridge University Press.Google Scholar
Lazard, D., Resolution of polynomial systems, in Proc. ASCM 2000 (2000), pp. 1–8, World Scientific.Google Scholar
Lazard, D., On the specification for solvers of polynomial systems, in Proc. ASCM 2001 (2001), pp. 1–10, World Scientific.Google Scholar
Lazard, D., Thirty years of polynomial system solving, and now?, J. Symb. Comp. 44 (2009), 222–239.Google Scholar
Lazard, D., Rouillier, F., Solving parametric polynomial systems, J. Symb. Comp. 42 (2007), 636–667.Google Scholar
Lecerf, G., Une alternative aux méthodes de réécriture pour résolution des systémes algébriques, Ph.D. thesis, École Polytechnique (2001).
Lundqvist, S., Complexity of comparing monomials and two improvements of the BMalgorithm, in L. N. Comp. Sci. 5393 (2008), pp. 105–125, Springer.Google Scholar
Lundqvist, S., Vector space bases associated to vanishing ideals of points, J. Pure Appl. Algebra 214 (2010), 309–321.Google Scholar
Macaulay, F. S., Some formulae in elimination, Proc. London Math. Soc. (1) 35 (1903), 3–27.Google Scholar
Macaulay, F. S., The Algebraic Theory of Modular Systems, Cambridge University Press (1916).
Malle, G., Trinks, W., Zur Behandlung algebraischer Gleichungssysteme mit dem Computer, preprint (1985).
Manocha, D., Cannon, J.F., Multipolynomial resultant algorithms, J. Symb. Comp. 15 (1993), 99–122.Google Scholar
Möller, H.M., Systems of algebraic equations solved by means of endomorphisms, in L. N. Comp. Sci. 673 (1993a), pp. 43–56, Springer.Google Scholar
Möller, H.M., On decomposing systems of polynomial equations with finitely many solutions, J. AAECC 4 (1993b), 217–230.Google Scholar
Möller, M., Stetter, H., Multivariate polynomial equations with multiple zeros solved by matrix eigenproblems, Num. Math. 70 (1995), 311–325.Google Scholar
Monico, C., Computing the primary decomposition of zero-dimensional ideals, J. Symb. Comp. 34 (2002), 451–459.Google Scholar
Morais, J.E., Resolución eficaz de systemas de ecuaciones polinomiales, Ph. D. thesis, University of Cantabria, Santander (1997).
Moreno Maza, M., Rioboo, R., Polynomial gcd computation over tower of algebraic extension, in L. N. Comp. Sci. 948 (1995), pp. 365–382, Springer.Google Scholar
Moritzugu, S., Kuriyama, K., On multiple zeros of systems of algebraic equations, in Proc. ISSAC'99 (1999), pp. 23–30, Association for Computing Machinery.Google Scholar
Mourrain, B., Computing the isolated roots by matrix methods, J. Symb. Comp. 26 (1998), 715–738.Google Scholar
Mourrain, B., A new criterion for normal form algorithms, in L. N. Comp. Sci. 1719 (1999), pp. 430–443, Springer.Google Scholar
Mourrain, B., Bezoutian and quotient ring structure, J. Symb. Comp. 39 (2005), 397–415.Google Scholar
Mourrain, B., Pan, Y.V., Multivariate polynomials, duality and structured matrices, J. Complexity 16 (2000), 110–180.Google Scholar
Mourrain, B., Ruatta, O., Relation between roots and coefficients, interpolation and application to system solving, J. Symb. Comp. 33 (2002), 679–699.Google Scholar
Mourrain, B., Trebuchet, P., Solving projective complete intersection faster, in Proc. ISSAC'00 (2000), pp. 234–241, Association for Computing Machinery.Google Scholar
Muir, T., The Theory of Determinants in the Historical Order of Development, MacMillan (1906).
Netto, E., Vorlesungen über Algebra, Zweiter Band Teubner (1900).
Pardo, L.M., How lower and upper complexity bounds meet in elimination, in L. N. Comp. Sci. 948 (1995), pp. 33–69, Springer.Google Scholar
Pierce, R.S., Modules over commutaive regular rings, Mem. A.M.S. 70 (1967).Google Scholar
Pohst, M., Yun, D., On solving systems of algebraic equations via ideal bases and elimination, in Proc. 1981 SymSAC (1981), pp. 206–211, Association for Computing Machinery.Google Scholar
Poisson, S.D.Mémoire sur l'élimination dans les équations algébriques, J. École Polytechnique t. IV (1802), 199–203.Google Scholar
Rennert, N., Valibouze, A., Calcule de résolventes avec les modules de Cauchy, Exp. Math. 8 (1999), 351–366.Google Scholar
Riordan, J., Combinatorial Identities, Wiley, (1968).
Ritt, J.F., Prime and composite polynomials, Trans. A.M.S. 23 (1922), 51–366.Google Scholar
Ritt, J.F., Differential Equations from the Algebraic Standpoint, A.M.S. Colloquium Publications 14 (1932).
Ritt, J.F., Differential Algebra, A.M.S. Colloquium Publications 33 (1950).
Robinson, L.B., Sur les systémes d'équations aux dérivées partialles, C.R. Acad. Sci. Paris 157 (1913), 106–108.
Rouillier, F., Algorithmes efficaces pour l'étude des zéros réels des systèmes polynomiaux, Ph.D. thesis, University of Rennes I (1996).
Rouillier, F., Solving zero-dimensional systems through the Rational Univariate Representation, J. AAECC 9 (1999), 433–461.Google Scholar
Salmon, G., Lessons Introductory to the Modern Higher Algebra, Fifth Edn., Chelsea (1885).
Sims, C., Computation with Finitely Presented Groups, Cambridge University Press (1994).
Stetter, H., Matrix eigenprobelms are at the heart of polynomial system solving, SIGSAM Bull. 30 (1996), 22–25.Google Scholar
Stetter, H., Numerical Polynomial Algebra, Tutorial Notes at ISSAC'98, Rostock (1998).
Stetter, H., Numerical Polynomial Algebra, SIAM (2004).
Sylvester, J.J., A method of determining by mere inspection the derivatives from two equations of any degree, Phil. Mag. XVI (1840), 132–135.Google Scholar
Sylvester, J.J., Memoir on the dialytic method of elimination. Part I.Phil. Mag. XXXI (1842), 534–539.Google Scholar
Sylvester, J.J., On a theory of the syzygietic relations of two rational integral functions, comprising an application to the theory of Sturm's functions, and that of the greatest algebraic common measure, Phil. Trans. Royal Soc. London CXLIII (1853), 407–548.Google Scholar
Trinks, W., über, B.Buchberger Verfahren, Systeme algebraischer Gleichungen zu lösen, J. Numb. Theory 10 (1978), 475–488.Google Scholar
Valibouze, A., Resolutions et functions symmetriques, in Proc. ISSAC'89 (1989), pp. 390–399, Association for Computing Machinery.Google Scholar
Valibouze, A., Computation of the Galois groups of the resolvent factors for the direct and inverse Galois problems, in L. N. Comp. Sci. 948 (1995), pp. 456–468, Springer.Google Scholar
Valibouze, A., Étude des relations algébriques entre les racines d'un polynôme d'une variable, Bull. Belg. Math. Soc. Simon Stevin 6 (1999), 507–535.Google Scholar
Valibouze, A., Théorie de Galois constructive, Mémoir d'Habilitation, Paris (1998).
Wang, D.-M., An elimination method for polynomial systems, J. Symb. Comp. 16 (1993), 83–114.Google Scholar
Wang, D.-M., Decomposing polynomial systems into simple systems, J. Symb. Comp. 25 (1998), 295–314.Google Scholar
Wimmer, H.K., On the history of the Bezoutian and the resultant matrix, Linear Algebra Appl. 128 (1990), 27–34.Google Scholar
Wu, W.-T., On the decision problem and the mechanization of the theorem-proving in elementary geometry, Scinetia Sinica 21 (1978), 159–172.Google Scholar
Wu, W.-T., Basic principles of mechanical theorem proving in elementary geometry, J. Sys. Sci. & Math. Sci. 4 (1984), 207–235.Google Scholar
Wu, W.-T., On the decision problem and the mechanization of the theorem-proving in elementary geometry, in Contemp. Math. 29 (1984), pp. 213–234, American Mathematical Society.Google Scholar
Wu, W.-T., Some recent advances in mechanical theorem-proving of geometry, (reprinted) in Contemp. Math. 29 (1984), pp. 235–241, American Mathematical Society.Google Scholar
Wu, W.-T., A zero structure theorem for polynomial equations solving, M.M. Research Preprints 1 (1987), 2–12.Google Scholar
Wißmann, D., Anwendung von Rewriting-Techniken in polyzyklischen Gruppen, Dissertation, Kaiserslautern (1989).
Yokoyama, K., Noro, M., Takeshima, T., Solutions of systems of algebraic equations and linear maps on residue class rings, J. Symb. Comp. 14 (1992), 399–417.Google Scholar
Zariski, O., Samuel, P., Commutative Algebra, Van Nostrand (1958).

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Teo Mora, University of Genoa
  • Book: Solving Polynomial Equation Systems III
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139015998.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Teo Mora, University of Genoa
  • Book: Solving Polynomial Equation Systems III
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139015998.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Teo Mora, University of Genoa
  • Book: Solving Polynomial Equation Systems III
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139015998.011
Available formats
×