Skip to main content Accessibility help
×
  • Cited by 288
Publisher:
Cambridge University Press
Online publication date:
October 2014
Print publication year:
1991
Online ISBN:
9781139878272

Book description

Soils can rarely be described as ideally elastic or perfectly plastic and yet simple elastic and plastic models form the basis for the most traditional geotechnical engineering calculations. With the advent of cheap powerful computers the possibility of performing analyses based on more realistic models has become widely available. One of the aims of this book is to describe the basic ingredients of a family of simple elastic-plastic models of soil behaviour and to demonstrate how such models can be used in numerical analyses. Such numerical analyses are often regarded as mysterious black boxes but a proper appreciation of their worth requires an understanding of the numerical models on which they are based. Though the models on which this book concentrates are simple, understanding of these will indicate the ways in which more sophisticated models will perform.

Reviews

"...an interesting book which has fully accomplished its objectives. The text is well written and clearly illustrated. The exercises at the end of each chapter provide a good teaching tool. This book can be recommended as a textbook for advanced courses in geomechanics. As well, it will be very useful as a reference for practicing geotechnical engineers and as a guide for researchers in soil mechanics." Aleksandra M. Vinogradov, Applied Mechanics Review

"A good book for graduate students and faculty interested in learning about the applicability and limitations of critical state soil mechanics in research and in engineering practice." Choice

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Adachi, T. and Oka, F. (1982), ‘Constitutive equations for normally consolidated clays based on elasto-viscoplasticity’, Soils and Foundations 22(4), 57–70.
Airey, D.W., Budhu, M, and Wood, D.M. (1985), ‘Some aspects of the behaviour of soils in simple shear’, in P.K., Banerjee and R., Butterfield (eds.), Developments in soil mechanics and geotechnical engineering - 2: Stress-strain modelling of soils (Elsevier), pp. 185–213.
Almagor, G. (1967), ‘Interpretation of strength and consolidation data from some bottom cores off Tel-Aviv, Polmakhim coast, Israel’, in A.F., Richards (ed.), Marine Geotechnique (Urbana: Univ. of Illinois Press), pp. 131–53.
Almeida, M.S.S. (1984), Stage constructed embankments on soft clays, Ph.D. thesis, Cambridge University.
Almeida, M.S.S., Britto, A.M. and Parry, R.H.G. (1986), ‘Numerical modelling of a centrifuged embankment on soft clay’, Canadian Geotechnical Journal 23, 103-14.
Al-Tabbaa, A. (1987) Permeability and stress-strain response of speswhite kaolin, Ph.D. thesis, Cambridge University.
Al-Tabbaa, A. and Wood, D.M. (1987), ‘Some measurements of the permeability of kaolin’, Géotechnique 37(4), 499–503.
Al-Tabbaa, A. and Wood, D.M. (1989), ‘An experimentally based ‘bubble’ model for clay’, in S., Pietruszczak and G.N., Pande (eds.), Numerical Models in Geomechanics NUMOG Hi (London: Elsevier), pp. 91–9.
Andresen, A., Berre, T., Kleven, A., and Lunne, T. (1979), ‘Procedures used to obtain soil parameters for foundation engineering in the North Sea’, Marine Geotechnology 3(3), 201–66.
Atkinson, J.H. (1981), Foundations and slopes. An introduction to applications of critical state soil mechanics (Maidenhead: McGraw-Hill).
Atkinson, J.H. and Bransby, P.L. (1978), The mechanics of soils. An introduction to critical state soil mechanics (Maidenhead: McGraw-Hill).
Atkinson, J.H., Evans, J.S., and Ho, E.W.L. (1985), ‘Non-uniformity of triaxial samples due to consolidation with radial drainage’, Geotechnique 35(3), 353–5.
Atterberg, A. (1911), ‘Lerornas forhållande till vatten, deras plasticitetsgränser och plasticitetsgrader’, Kungl. Lantbruks akademiens Handlingar och Tidskrift 50(2), 132–58.
Baguelin, F., Jézéquel, J.F., and Shields, D.H. (1978), The pressuremeter and foundation engineering (Clausthal: Trans Tech Publications, Series on Rock and Soil Mechanics).
Baker, J., and Heyman, J. (1969), Plastic design of frames. 1. Fundamentals (Cambridge: Cambridge University Press).
Baran, P.A., and Sweezy, P.M. (1968), Monopoly capital: An essay on the American economic and social order (Harmondsworth: Penguin Books).
Barry, A.J., and Nicholls, R.A. (1982), ‘Discussion’, in Vertical drains (London: Thomas Telford), pp. 143–6.
Been, K., Crooks, J.H.A., Becker, D.E., and Jefferies, M.G. (1986), ‘The cone penetration test in sands: Part I, state parameter interpretation’, Géotechnique 36(2), 239–49.
Been, K, and Jefferies, M.G. (1985), ‘A state parameter for sands’, Géotechnique 35(2), 99–112.
Been, K., and Jefferies, M.G. (1986), ‘Discussion: A state parameter for sands’, Géotechnique 36(1), 127–32.
Been, K., Jefferies, M.G., Crooks, J.H.A., and Rothenburg, L. (1987), ‘The cone penetrometer test in sands: Part II, general inference of state’, Géotechnique 37(3), 285–99.
Bell, A.L. (1977), A geotechnical investigation of post-glacial estuarine deposits at Kinnegar, Belfast Lough, Ph.D. thesis, Queen's University, Belfast.
Berre, T. (1975), ‘Bruk av triaksial- og direkte skjærforsøk til løsning av geotekniske problemer’, in Proc. Geoteknikermøde i København (København: Polyteknisk Forlag), pp. 199–211.
Berre, T., and Bjerrum, L. (1973), ‘Shear strength of normally consolidated clays’, in Proc. 8th Int. Conf. on Soil Mechs and Foundation Eng., Moscow (Moscow: USSR National Society for Soil Mechanics and Foundation Engineering), vol. 1.1, 39–49.
Bishop, A.W. (1958), ‘Test requirements for measuring the coefficient of earth pressure at rest’, in Proc. Brussels Conf. 58 on Earth Pressure Problems (Brussels: Belgian Group of the International Society of Soil Mechanics and Foundation Engineering), vol. 1, pp. 2–14.
Bishop, A.W. (1959), ‘The principle of effective stress’, Teknisk Ukeblad, Oslo 39 (22 10), 859–63.
Bishop, A.W., and Henkel, D.J. (1957), The measurement of soil properties in the triaxial test (London: William Arnold).
Bjerrum, L. (1954), ‘Geotechnical properties of Norwegian marine clays’, Géotechnique 4(2) 49–69.
Bjerrum, L. (1967), ‘Engineering geology of Norwegian normally consolidated marine clays as related to settlements of buildings’, 7th Rankine Lecture, Géotechnique 17(2), 81–118.
Bjerrum, L. (1972), ‘Embankments on soft ground’, in Proc. Specialty Conf. on Performance of Earth and Earth-Supported Structures, Purdue (New York: ASCE), vol. 2, pp. 1–54.
Bjerrum, L. (1973), ‘Problems of soil mechanics and construction of soft clays and structurally unstable soils’, in Proc. 8th Int. Conf. on Soil Mechs and Foundation Eng., Moscow (Moscow: USSR National Society for Soil Mechanics and Foundation Engineering), vol. 3, pp. 111–59.
Bjerrum, L., and Flodin, N. (1960), ‘The development of soil mechanics in Sweden, 1900-1925’, Géotechnique 10(1), 1–18.
Bjerrum, L., and Landva, A. (1966), ‘Direct simple-shear tests on a Norwegian quick clay’, Géotechnique 16(1), 1–20.
Bjerrum, L., and Simons, N.E. (1960), ‘Comparison of shear strength characteristics of normally consolidated clays’, in Proc. Research Conf. on Shear Strength of Cohesive Soils, Boulder, Colorado (New York: ASCE), pp. 711–26.
Bolton, M.D. (1979), A guide to soil mechanics, (London: Macmillan Press).
Bolton, M.D. (1986), ‘The strength and dilatancy of sands’, Géotechnique 36(1), 65–78.
Borsetto, M., Imperato, L., Nova, R., and Peano, A. (1983), ‘Effects of pressuremeters of finite length in soft clay’, in Proc. Int. Symp. on Soil and Rock Investigations by In Situ Testing. Paris (Organised by Comité Français de la Géologie de l'Ingénieur, Comité Français de la Mécanique des Sols, Comité Français de la Mécanique des Roches), vol. 2, pp. 211–15.
Brady, K.C. (1988), ‘Soil suction and the critical state’, Géotechnique 38(1), 117–20.
Brand, E.W. (1981), ‘Some thoughts on rain-induced slope failures’, in Proc. 10th Int. Conf. on Soil Mechs. and Foundation Eng., Stockholm (Rotterdam: A.A. Balkema), vol. 3, pp. 373–6.
British Standards Institution (1975), Methods of Test for Soils for Civil Engineering Purposes, BS1377: 1975 (London: British Standards Institution).
Britto, A.M., and Gunn, M.J. (1987), Critical state soil mechanics via finite elements (Chichester: Ellis Horwood Ltd).
Brooker, E.W., and Ireland, H.O. (1965), ‘Earth pressures at rest related to stress history’, Canadian Geotechnical Journal 2(1), 1-15.
Bryant, W.R., Cernock, P., and Morelock, J. (1967), ‘Shear strength and consolidation characteristics of marine sediments from the western Gulf of Mexico’, in A.F., Richards (ed.), Marine Géotechnique (Urbana: University of Illinois Press), pp. 41-62.
Burland, J.B. (1971), ‘A method of estimating the pore pressures and displacements beneath embankments on soft, natural clay deposits’, in R.H.G., Parry (ed.), Stress-strain behaviour of soils (Proc. Rescoe Memorial Symp., Cambridge). (Henley-on-Thames: G.T. Foulis & Co.), pp. 505–36.
Burland, J.B., and Hancock, R.J.R. (1977), ‘Underground car park at the House of Commons, London: geotechnical aspects’, The Structural Engineer 55(2), 87-100.
Calladine, C.R. (1963), ‘Correspondence: The yielding of clay’, Géotechnique 13(3), 250–5.
Calladine, C.R. (1985), Plasticity for engineers (Chichester: Ellis Horwood Ltd).
Carter, J.P. (1982), ‘Predictions of the non-homogeneous behaviour of clay in the triaxial test’, Géotechnique 32(1), 55–8.
Casagrande, A. (1932), ‘Research on the Atterberg limits of soils’, Public Roads 13(8) 121–30 and 136.
Casagrande, A. (1936), ‘Characteristics of cohesionless soils affecting the stability of slopes and earth fills’, J. Boston Soc. Civil Engineers 23(1), 13-32.
Casagrande, A. (1947), ‘Classification and identification soils’, Proc. ASCE 73(6) part 1, 783-810.
Clausen, C-J.F. (1972), Measurements of pore water pressure, settlements and lateral deformations at a test fill on soft clay brought to failure at Mastemyr, Oslo (Oslo: Norwegian Geotechnical Institute), Technical Report 11.
Clausen, C-J.F., Graham, J., and Wood, D.M. (1984), ‘Yielding in soft clay at Mastemyr, Norway’, Géotechnique 34(4), 581-600.
Coleman, J.D. (1962), ‘Correspondence: Stress/strain relations for partly saturated soils’, Géotechnique 12(4), 348–50.
Collin, A. (1846), Recherches expérimentales sur les glissements spontanés des terrains argileux (Paris: Carilian-Goeurley et Dalmont); English translation by W.R. Schriever (1956), Experimental investigation on sliding of clay slopes (Toronto: University of Toronto Press).
Collins, K., and McGown, A. (1974), ‘The form and function of microfabric features in a variety of natural soils’, Géotechnique 24(2), 223–54.
Crewdson, B.J., Ormond, A.L., and Nedderman, R.M. (1977), ‘Air-impeded discharge of fine particles from a hopper’, Powder Technology 16, 197-207.
D'Appolonia, D.J., Lambe, T.W., and Poulos, H.G. (1971), ‘Evaluation of pore pressures beneath an embankment’, Proc. ASCE J. Soil Mechs and Foundations Div. 97(SM6), 881–98.
Davis, E.H. (1968), ‘Theories of plasticity and the failure of soil masses’, in I.K., Lee (ed.), Soil mechanics – selected topics (London: Butterworths), pp. 341–80.
de Josselin de Jong, G. (1971), ‘Discussion, session 2’; in R.H.G., Parry (ed.), Stress-strain behaviour of soils (Proc. Roscoe Memorial Symp., Cambridge). (Henley-on-Thames: G.T. Foulis & Co.), pp. 258–61.
de Josselin de Jong, G. (1976), ‘Rowe's stress-dilatancy relation based on friction’, Géotechnique 26(3), 527–34.
Donaghe, R.T., Chaney, R.C., and Silver, M.L. (eds.) (1988), Advanced triaxial testing of soil and rock, STP977 (Philadelphia: American Society for Testing and Materials).
Drucker, D.C. (1954), ‘A definition of stable inelastic material’, J. Applied Mechanics, Trans. ASME 26, 101–6.
Drucker, D.C. (1966), ‘Concepts of path independence and material stability for soils’, in J., Kravtchenko and P.M., Sirieys (eds.), Proc. IUTAM Symp. on Rheology and Soil Mechanics, Grenoble (Berlin: Springer-Verlag), pp. 23-46.
Dumbleton, M.J., and West, G. (1970), The suction and strength of remoulded soils as affected by composition (Crowthorne: Road Research Laboratory), LR306.
El-Sohby, M.A. (1969), ‘Deformation of sands under constant stress ratios’, in Proc. 7th Int. Conf. on Soil Mechs and Foundation Eng., Mexico (Mexico City: Sociedad Mexicana de Mecánica de Suelos), vol. 1, pp. 111–19.
Fredlund, D.G. (1979), ‘Appropriate concepts and technology for unsaturated soils’, Canadian Geotechnical Journal 16(1), 121–39.
Gens, A. (1982), Stress-strain and strength characteristics of a low plasticity clay, Ph.D. thesis, London University.
Ghionna, V., Jamiolkowski, M., Laçasse, S., Ladd, C.C., Lancellotta, R., and Lunne, T. (1983), ‘Evaluation of self-boring pressuremeter, in Proc. Int. Symp. on Soil and Rock Investigation by In Situ Testing, Paris (Organised by Comité Français de la Géologie de l'Ingénieur, Comité Français de la Mécanique des Sols, Comité Français de la Mécanique des Roches), vol. 2, pp. 293-301.
Gibson, R.E., and Henkel, D.J. (1954), ‘Influence of duration of tests at constant rate of strain on measured “drained” strength’, Géotechnique 4(1), 6–15.
Gibson, R.E., Knight, K., and Taylor, P.W. (1963), ‘A critical experiment to examine theories of three-dimensional consolidation’, in Proc. European Conf. on Soil Mechs and Foundation Eng., Wiesbaden (Essen: Deutsche Gesellschaft fiir Erd und Grundbau e.V.), vol. 1, pp. 69-76.
Graham, J., Crooks, J.H.A., and Bell, A.L. (1983), ‘Time effects on the stress-strain behaviour of natural soft clays’, Géotechnique 33(3), 327–40.
Graham, J., and Houlsby, G.T. (1983), ‘Elastic anisotropy of a natural clay’, Géotechnique 33(2), 165–80.
Graham, J., Noonan, M.L., and Lew, K.V., (1983), ‘Yield states and stress-strain relationships in a natural plastic clay’, Canadian Geotechnical Journal 20(3), 502–16.
Hansbo, S. (1957), A new approach to the determination of the shear strength of clay by the fall-cone test (Stockholm: Royal Swedish Geotechnical Institute), Proceedings14.
Harr, M.E. (1966), Foundations of theoretical soil mechanics. (New York: McGraw-Hill).
Henkel, D.J. (1956), ‘Discussion: Earth movement affecting LTE railway in deep cutting east of Uxbridge’, in Proc. ICE, Part II, 5, 320–3.
Henkel, D.J. (1959), ‘The relationships between the strength, pore-water pressure, and volume-change characteristics of saturated clays’, Géotechnique 9(2), 119–35.
Henkel, D.J., and Skempton, A.W. (1955), ‘A landslide at Jackfield, Shropshire, in a heavily overconsolidated clay’, Géotechnique 5(2), 131–7.
Heyman, J. (1972), Coulomb's memoir on statics: an essay in the history of civil engineering (Cambridge: Cambridge University Press).
Heyman, J. (1982), Elements of stress analysis, (Cambridge: Cambridge University Press).
Hill, R. (1950), The mathematical theory of plasticity (Oxford: Clarendon Press).
Hird, CC, and Hassona, F. (1986), ‘Discussion: A state parameter for sands’, Géotechnique 36(1), 124–7.
Höeg, K., Andersland, O.B., and Rolfsen, E.N. (1969), ‘Undrained behaviour of quick clay under load tests at Åsrum’, Géotechnique 19(1), 101–15.
Höeg, K., Christian, J.T., and Whitman, R.V., (1968), ‘Settlement of strip load on elastic-plastic soil’, Proc. ASCE, Journal of the Soil Mechanics and Foundations Division 94(SM2), 431–45.
Hooke, R. (1675), A description of helioscopes, and some other instruments. (London).
Horswill, P., and Horton, A. (1976), ‘Cambering and valley bulging in the Gwash valley at Empingham, Rutland’, Phil. Trans Roy. Soc. London A283, 427–51.
Houlsby, G.T. (1979), ‘The work input to a granular material’, Géotechnique 29(3), 354–8.
Houlsby, G.T. (1982), ‘Theoretical analysis of the fall cone test’, Géotechnique 32(2), 111–18.
Hvorslev, M.J. (1937), Über die Festigkeitseigenschaften gestörter bindiger Böden (København: Danmarks Naturvidenskabelige Samfund) Ingeniørvidenskabelige Skrifter A 45. English translation (1969), Physical properties of remoulded cohesive soils (Vicksburg, Miss.: U.S. Waterways Experimental Station), no 69-5.
Iwan, W.D. (1967), ‘On a class of models for the yielding behavior of continuous and composite systems’, Trans. ASME J. Appl. Mech. 34(E3), 612–17.
Jâky, J. (1944), ‘A nyugalmi nyomâs tényezöje’ (‘The coefficient of earth pressure at rest’), Magyar Mérnök és Epitész-Egylet Közlönye (J. of the Union of Hungarian Engineers and Architects), 355-8.
Jamiolkowski, M., Ladd, C.C., Germaine, J.T., and Lancellotta, R. (1985), ‘New developments in field and laboratory testing of soils’, in Proc. 11th Int. Conf. on Soil Mechs and Foundation Eng., San Francisco (Rotterdam: A.A. Balkema), vol. 1, pp. 57-153.
Jardine, R.J., Potts, D.M., Fourie, A.B., and Burland, J.B. (1986), ‘Studies of the influence of non-linear stress-strain characteristics in soil-structure interaction’, Géotechnique 36(3), 377–96.
Jardine, R.J., Symes, M.J., and Burland, J.B. (1984), ‘The measurement of soil stiffness in the triaxial apparatus’, Géotechnique 34(3), 323–40.
Karlsson, R. (1977), Consistency limits. A manual for the performance and interpretation of laboratory investigations, part 6 (Stockholm: Statens råd för byggnadsforskning).
Kolbuszewski, J.J. (1948), ‘An experimental study of the maximum and minimum porosities of sands’, in Proc. 2nd Int. Conf. on Soil Mechs and Foundation Eng., Rotterdam 1, 158–65.
Kong, F.K., and Evans, R.H. (1975), Reinforced and prestressed concrete. (Walton-on-Thames: Nelson).
Ladd, C.C (1965), ‘Stress-strain behaviour of anisotropically consolidated clays during undrained shear’, in Proc. 6th Int. Conf. on Soil Mechs and Foundation Eng., Montreal (Toronto: University of Toronto Press), vol. 1, pp. 282–90.
Ladd, C.C. (1981), ‘Discussion on laboratory shear devices’, in R.N., Yong and F.L., Townsend (eds.), Laboratory shear strength of soil, STP740 (Philadelphia: American Society for Testing and Materials), pp. 643–52.
Ladd, C.C, and Edgers, L. (1972), Consolidated-undrained direct-simple shear tests on saturated clays (Cambridge: Massachusetts Institute of Technology), Dept. of Civil Eng. research report R72-82.
Ladd, C.C., Foott, R., Ishihara, K., Schlosser, F., and Poulos, H.G. (1977), ‘Stress-deformation and strength characteristics’, in Proc. 9th Int. Conf. on Soil Mechs and Foundation Eng., Tokyo (Tokyo: Japanese Society of Soil Mechanics and Foundation Engineering), vol. 2, pp. 421–94.
Lade, P.V. (1977), ‘Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces’, Int. J. Solids and Structures 13(11), 1019–35.
Lambe, T.W. (1964), ‘Methods of estimating settlement’, Proc. ASCE, Journal of the Soil Mechanics and Foundations Division 90(SM5), 43-67.
Lambe, T.W. (1967), ‘Stress path method’, Proc. ASCE, Journal of the Soil Mechanics and Foundations Division 93(SM6), 309–31.
Larsson, R. (1980), ‘Undrained shear strength in stability calculation of embankments and foundations on soft clays’, Canadian Geotechnical Journal 17(4), 591-602.
Larsson, R. (1981), Drained behaviour of Swedish clays (Linköping: Swedish Geotechnical Institute), Report 12.
Lee, K.L. and Seed, H.B., (1967), ‘Drained strength characteristics of sands’, in Proc. ASCE, Journal of the Soil Mechanics and Foundations Division 93(SM6), 117–41.
Leonards, G.A., and Ramiah, B.K. (1960), ‘Time effects in the consolidation of clays’, in Papers on soils, 1959 meetings; Symp. on Time Rates of Loading in Soil Testing, STP254 (Philadelphia: American Society for Testing and Materials), pp. 116–30.
Leroueil, S., Kabbaj, M., Tavenas, F., and Bouchard, R. (1985), ‘Stress-strain-strain rate relation for the compressibility of sensitive natural clays’. Géotechnique 35(2), 159–80.
Leroueil, S., Magnan, J-P., and Tavenas, F. (1985), Remblais sur argiles molles (Paris: Technique et Documentation, Lavoisier) English translation by D.M. Wood (1990) Embankments on soft clays (Chichester: Ellis Horwood Ltd.).
Leroueil, S., and Tavenas, F. (1981), ‘Pitfalls of back-analyses’, in Proc. 10th Int. Conf. on Soil Mechs and Foundation Eng., Stockholm (Rotterdam: A.A. Balkema), vol. 1, pp. 185–90.
Levadoux, J-N., and Baligh, M.M. (1980), Pore pressures during cone penetration in clays (Cambridge: Massachusetts Institute of Technology), Dept. of Civil Eng. research report R80-15.
Lewin, P.I. (1973), ‘The influence of stress history on the plastic potential’, in A.C., Palmer (ed.), Proc. Symp. on Role of Plasticity in Soil Mechanics (Cambridge: Cambridge University Engineering Department), pp. 96-105.
Livesley, R.K. (1983), Finite elements: an introduction for engineers (Cambridge: Cambridge University Press).
Love, A.E.H. (1927), A treatise on the mathematical theory of elasticity, 4th ed. (Cambridge: Cambridge University Press).
Luong, M.P. (1979), ‘Les phénomènes cycliques dans les sables’, Journée de Rhéologie: Cycles dans les sols – rupture – instabilités. (Vaulx-en-Velin: École Nationale des Travaux Publics de l'État), Publication 2.
Lupini, J.F., Skinner, A.E., and Vaughan, P.R. (1981), ‘The drained residual strength of cohesive soils’, Géotechnique 31(2), 181-213.
McClelland, B. (1967), ‘Progress of consolidation in delta front and prodelta clays of the Mississippi River’, in A.F., Richards (ed.), Marine Géotechnique (Urbana: University of Illinois Press), pp. 22-40.
Magnan, J-P., Mieussens, C, and Queyroi, D. (1983), Etude d'un remblai sur sols compressibles: Le remblai B du site expérimental de Cubzac-les-Ponts (Paris: Laboratoire Central des Ponts et Chaussées), Rapport de recherche LPC 127.
Mair, R.J., and Wood, D.M. (1987), Pressuremeter testing: Methods and interpretation, CIRIA Ground Engineering Report: In-situ testing (London and Sevenoaks: CIRIA and Butterworths).
Marachi, N.D., Chan, C.K., and Seed, H.B. (1972), ‘Evaluation of properties of rockfill materials’, Proc. ASCE, Journal of the Soil Mechanics and Foundations Division 98(SM1), 95-114.
Mayne, P.W. (1980), ‘Cam-clay predictions of undrained strength’, Proc. ASCE, Journal of the Geotechnical Engineering Division 106(GT11), 1219–42.
Mayne, P.W., and Swanson, P.G. (1981), The critical-state pore pressure parameter from consolidated-undrained shear tests, in R.N., Yong and F.C., Townsend (eds.), Laboratory shear strength of soil, STP740 (Philadelphia: American Society for Testing and Materials), 410–30.
Meigh, A.C. (1987), Cone penetration testing: Methods and interpretation, CIRIA Ground Engineering Report: In-situ testing (London and Sevenoaks: CIRIA and Butterworths).
Mesri, G. (1975), ‘Discussion: New design procedure for stability of soft clays’, Proc. ASCE, Journal of the Geotechnical Engineering Division 101(GT4), 409–12.
Mesri, G., and Godlewski, P.M. (1977), ‘Time- and stress-compressibility interrelationship’, Proc. ASCE, Journal of the Geotechnical Engineering Division 103(GT5), 417–30.
Meyerhof, G.G. (1976), ‘Bearing capacity and settlement of pile foundations’, 11th Terzaghi Lecture, Proc. ASCE, Journal of the Geotechnical Engineering Division 102(GT3), 197-228.
Mises, R. von (1913), ‘Mechanik der festen Körper im plastisch-deformablen Zustand’, Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 582–92.
Mitchell, J.K. (1976), Fundamentals of soil behaviour (New York: John Wiley & Sons).
Miura, N., Murata, H., and Yasufuku, N. (1984), ‘Stress-strain characteristics of sand in a particle crushing region’, Soils and Foundations 24(1), 77-89.
Mouratidis, A., and Magnan, J-P. (1983), Modéle élastoplastique anisotrope avecécrouissage pour le calcul des ouvrages sur sols compressibles (Paris: Laboratoire Central des Ponts et Chaussées), Rapport de recherche LPC 121.
Mróz, Z. (1967), ‘On the description of anisotropic work hardening’, J. Mech. Phys. Solids 15, 163–75.
Mróz, Z., Norris, V.A., and Zienkiewicz, O.C. (1979), ‘Application of an anisotropic hardening model in the analysis of elasto-plastic deformation of soils’, Géotechnique 29(1), 1-34.
Murayama, S. (ed.) (1985), Constitutive laws of soil, Report of ISSMFE Subcommittee on Constitutive laws of soils and Proc. discussion session 1A, 11th Int. Conf. on Soil Mechanics and Foundation Engineering, San Francisco (Tokyo: Japanese Society of Soil Mechanics and Foundation Engineering).
Nadarajah, V. (1973), Stress-strain properties of lightly overconsolidated clays, Ph.D. thesis, Cambridge University.
Namy, D.L. (1970), An investigation of certain aspects of stress-strain relationships for clay soils, Ph.D. thesis, Cornell University, Ithaca.
Norwegian Geotechnical Institute (1969), Results of direct shear, oedometer and triaxial tests on quick clay from Mastemyr (Oslo: Norwegian Geotechnical Institute), internal report F 372-3.
Oda, M., Konishi, J., and Nemat-Nasser, S. (1980), ‘Some experimentally based fundamental results on the mechanical behaviour of granular materials’, Géotechnique 30(4), 479–95.
Olsson, J. (1921), ‘Metod för undersökning av lerors hållfasthetsegenskaper, tillämpad vid de geotekniska undersökningarna vid Statens Järnvägar’, Geologiska Förening Stockholm, Förhandlingar 43(5), 502–7.
Olszak, W., and Perzyna, P. (1966), ‘On elastic/visco-plastic soils’, in J., Kravtchenko and P.M., Sirieys (eds.) Proc. IUTAM Symp. on Rheology and Soil Mechanics, Grenoble (Berlin: Springer-Verlag), pp. 47-57.
Parry, R.H.G. (1956), Strength and deformation of clay, Ph.D. thesis, London University.
Parry, R.H.G. (1958), ‘Correspondence: On the yielding of soils’, Géotechnique 8(4), 183–6.
Parry, R.H.G. (1970), ‘Overconsolidation in soft clay deposits’, Géotechnique 20(4), 442–6.
Parry, R.H.G., and Wroth, CP. (1981), ‘Shear stress-strain properties of soft clay’, in E.W., Brand and R.P., Brenner (eds.), Soft clay engineering (Amsterdam: Elsevier), pp. 309–64.
Perzyna, P. (1963), ‘The constitutive equations for rate sensitive plastic materials’, Quarterly of Applied Maths 20(4), 321–32.
Poorooshasb, H.B., Holubec, I., and Sherbourne, A.N. (1966), ‘Yielding and flow of sand in triaxial compression: Parti’, Canadian Geotechnical Journal 3(4), 179–90.
Poorooshasb, H.B., Holubec, I., and Sherbourne, A.N. (1967), ‘Yielding and flow of sand in triaxial compression: Parts II and III’, Canadian Geotechnical Journal 4(4), 376–97.
Poulos, H.G., and Davis, E.H. (1974), Elastic solutions for soil and rock mechanics (New York: John Wiley & Sons).
Prévost, J-H. (1979), ‘Undrained shear tests on clays’, Proc. ASCE, Journal of the Geotechnical Engineering Division 105(GT1), 49-64.
Quigley, R.M., and Thompson, C.D. (1966), ‘The fabric of anisotropically consolidated sensitive marine clay’, Canadian Geotechnical Journal 3(2), 61-73.
Ramanatha Iyer, T.S. (1975), ‘The behaviour of Drammen plastic clay under low effective stresses’, Canadian Geotechnical Journal 12(1), 70-83.
Randolph, M.F., Carter, J.P., and Wroth, C.P. (1979), ‘Driven piles in clay - the effects of installation and subsequent consolidation’, Géotechnique 29(4), 361–93.
Randolph, M.F., and Wroth, C.P. (1981), ‘Application of the failure state in undrained simple shear to the shaft capacity of driven piles’, Géotechnique 31(1), 143–57.
Reynolds, O. (1885), ‘On the dilatancy of media composed of rigid particles in contact, with experimental illustrations’, Phil. Mag. 20, 469–81.
Reynolds, O. (1886), ‘Experiments showing dilatancy, a property of granular material, possibly connected with gravitation’, Proc. Royal Inst, of Great Britain 11, 354–63.
Richardson, A.M., and Whitman, R.V. (1963), ‘Effect of strain-rate upon drained shear resistance of a saturated remoulded fat clay’, Géotechnique 13(4), 310–24.
Roscoe, K.H. (1953), ‘An apparatus for the application of simple shear to soil samples’, Proc. 3rd Int. Conf. on Soil Mechs and Foundation Eng., Zurich (Zurich: Organising committee ICOSOMEF), vol. 1, pp. 186–91.
Roscoe, K.H., and Burland, J.B. (1968), ‘On the generalised stress-strain behaviour of ‘wet’ clay’, in J., Heyman and F.A., Leckie (eds.), Engineering plasticity (Cambridge: Cambridge University Press), pp. 535-609.
Roscoe, K.H., and Schofield, A.N. (1963), ‘Mechanical behaviour of an idealised ‘wet’ clay’, Proc. European Conf. on Soil Mechanics and Foundation Engineering, Wiesbaden (Essen: Deutsche Gesellschaft fur Erd- und Grundbau e.V.), vol. 1, pp. 47-54.
Roscoe, K.H., Schofield, A.N., and Thurairajah, A. (1963), ‘Yielding of clays in states wetter than critical’, Géotechnique 13(3), 211–40.
Roscoe, K.H., Schofield, A.N., and Wroth, C.P. (1958), ‘On the yielding of soils’, Géotechnique 8(1), 22-52.
Rowe, P.W., (1962), ‘The stress-dilatancy relation for static equilibrium of an assembly of particles in contact’, Proc. Roy. Soc. London A269, 500–27.
Rowe, P.W. (1971), ‘Theoretical meaning and observed values of deformation parameters for soil’, in R.H.G., Parry (ed.), Stress-strain behaviour of soils (Proc. Roscoe Memorial Symp., Cambridge) (Henley-on-Thames: G.T. Foulis & Co.), pp. 143–94.
Rowe, P.W., and Barden, L. (1964), ‘Importance of free ends in triaxial testing’, Proc. ASCE, Journal of the Soil Mechanics and Foundations Division 90(SM1), 1-27.
Saada, A.S., and Bianchini, G.F. (1975), ‘Strength of one-dimensionally consolidated clays’, Proc. ASCE, Journal of the Geotechnical Engineering Division 101(GTH), 1151–64.
St. John, H.D. (1975), Field and theoretical studies of the behaviour of ground around deep excavations in London clay, Ph.D. thesis, Cambridge University.
Sangrey, D.A., Pollard, W.S., and Egan, J.A. (1978), ‘Errors associated with rate of undrained cyclic testing of clay soils’, Dynamic geotechnical testing, STP654 (Philadelphia: American Society for Testing and Materials), 280–94.
Schmertmann, J.H. (1955), ‘The undisturbed consolidation behaviour of clay’, Trans. ASCE 120, 1201–33.
Schmidt, B. (1966), ‘Discussion: Earth pressures at rest related to stress history’, Canadian Geotechnical Journal 3(4), 239–42.
Schofield, A.N. (1980), ‘Cambridge Geotechnical Centrifuge operations’, 20th Rankine Lecture, Géotechnique 30(3), 227–68.
Schofield, A.N., and Wroth, C.P. (1968), Critical state soil mechanics (London: McGraw-Hill).
Shahanguian, S. (1981), Détermination expérimentale des courbes d'état limite de l'argile organique de Cubzac-les-Ponts. (Paris: Laboratoire Central des Ponts et Chaussées), Rapport de recherche LPC 106.
Sherwood, P.T., and Ryley, M.D. (1970), ‘An investigation of a cone-penetrometer method for the determination of the liquid limit’, Géotechnique 20(2), 203–8.
Shibata, T. (1963), ‘On the volume changes of normally-consolidated clays’ (in Japanese), Disaster Prevention Research Institute Annuals, Kyoto University 6, 128–34.
Simpson, B., O'Riordan, N.J., and Croft, D.D. (1979), ‘A computer model for the analysis of ground movements in London clay’, Géotechnique 29(2), 149–75.
Skempton, A.W. (1944), ‘Notes on the compressibility of clays’, Quarterly J. Geological Soc. of London 100 (C parts 1 & 2), 119–35.
Skempton, A.W. (1953), ‘The colloidal ‘activity’ of clays’, in Proc. 3rd Int. Conf. on Soil Mechs and Foundation Eng., Zurich (Zurich: Organising Committee ICOSOMEF), vol. 1, pp. 57-61.
Skempton, A.W. (1954a), ‘The pore pressure coefficients A and BGéotechnique 4(4), 143–47.
Skempton, A.W. (1954b), ‘Discussion of the structure of inorganic soil’, Proc. ASCE, Soil Mechanics and Foundations Division 80 (Separate 478), 19-22.
Skempton, A.W. (1957), ‘Discussion: The planning and design of the new Hong Kong airport’, Proc. ICE 7, 305–7.
Skempton, A.W. (1970a), ‘The consolidation of clays by gravitational compaction’, Quarterly J. Geological Soc. of London 125(3), 373-411.
Skempton, A.W. (1970b), ‘First-time slides in over-consolidated clays’, Géotechnique 20(3), 320–4.
Skempton, A.W. (1985), ‘Residual strength of clays in landslides, folded strata and the laboratory,’ Géotechnique 35(1), 3-18.
Skempton, A.W., and Bjerrum, L. (1957), ‘A contribution to the settlement analysis of foundations on clay’, Géotechnique 7(4), 168–78.
Skempton, A.W., and Henkel, D.J. (1957), ‘Tests on London clay from deep borings at Paddington, Victoria and the South Bank’, in Proc. 4th Int. Conf. on Soil Mechs and Foundation Eng., London (London: Butterworths Scientific Publications), vol. 1, pp. 100–6.
Skempton, A.W., and Northey, R.D. (1953), ‘The sensitivity of clays’, Géotechnique 3(1), 30-53.
Spencer, A.J.M. (1980), Continuum mechanics (London: Longman).
Statens Järnvägars Geotekniska Kommission 1914-1922 (1922), Slutbetänkande avgivet till Kungl. Järnvägsstyrelsen (Stockholm: Statens Järnvägar), Geotekniska Meddelanden 2.
Stroud, M.A. (1971), The behaviour of sand at low stress levels in the simple shear apparatus, Ph.D. thesis, Cambridge University.
Tabor, D. (1951), The hardness of metals (Oxford: Clarendon Press).
Tatsuoka, F. (1972), Shear tests in a triaxial apparatus - a fundamental study of the deformation of sand (in Japanese), Ph.D. thesis, Tokyo University.
Tatsuoka, F. (1987). ‘Discussion: The strength and dilatancy of sands’, Géotechnique 37(2), 219–25.
Tatsuoka, F., and Ishihara, K. (1974a), ‘Yielding of sand in triaxial compression’, Soils and Foundations 14(2), 63-76.
Tatsuoka, F., and Ishihara, K. (1974b), ‘Drained deformation of sand under cyclic stresses reversing direction’, Soils and Foundations 14(3), 51-65.
Tavenas, F., des Rosiers, J-P., Leroueil, S., LaRochelle, P., and Roy, M. (1979), ‘The use of strain energy as a yield and creep criterion for lightly overconsolidated clays’, Géotechnique 29(3), 285-303.
Tavenas, F., and Leroueil, S. (1980), ‘The behaviour of embankments on clay foundations’, Canadian Geotechnical Journal 17(2), 236–60.
Tavenas, F., Leroueil, S., LaRochelle, P., and Roy, M. (1978), ‘Creep behaviour of an undisturbed lightly overconsolidated clay’, Canadian Geotechnical Journal 15(3), 402–23.
Taylor, D.W. (1948), Fundamentals of soil mechanics (New York: John Wiley).
Taylor, G.I., and Quinney, H. (1931), ‘The plastic distortion of metals’, Phil. Trans. Roy. Soc. A230, 323–62.
Terzaghi, K. von (1923), ‘Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen’, Akademie der Wissenschaften in Wien, Sitzungsberichte, Mathematisch-naturwissenschaftliche Klasse, Part Ha 132(3/4), 125–38.
Terzaghi, K. von (1936), ‘Stability of slopes of natural clay’, in Proc. 1st Int. Conf. on Soil Mechs and Foundation Eng., Harvard (Cambridge, Mass: Harvard University Graduate School of Engineering), vol. 1, pp. 161–5.
Terzaghi, K., and Peck, R.B. (1948), Soil mechanics in engineering practice (New York: John Wiley).
Timoshenko, S. (1934), Theory of elasticity (New York: McGraw-Hill).
Trak, B., LaRochelle, P., Tavenas, F., Leroueil, S., and Roy, M. (1980), ‘A new approach to the stability analysis of embankments on sensitive clays’, Canadian Geotechnical Journal 17(4), 526–44.
Tresca, H. (1869), ‘Mémoire sur le poinçonnage et la théorie mécanique de la déformation des métaux’, Comptes rendus hebdomadaires des Séances de l'Académie des Sciences, Paris 68, 1197–201.
United States Department of the Navy (1971), Design manual. Soil mechanics, foundations, and earth structures, NAVFAC DM-7 (Alexandria: Department of the Navy, Naval Facilities Engineering Command).
Vaid, Y.P., and Campanella, R.G. (1974), ‘Triaxial and plane strain behaviour of natural clay’, Proc. ASCE, Journal of the Geotechnical Engineering Division 100(GT3), 207–24.
Vardoulakis, I. (1978), ‘Equilibrium bifurcation of granular earth bodies’, in Advances in analysis of geotechnical instabilities (Waterloo, Ontario: University of Waterloo Press), SM study 13, Paper 3, pp. 65-119.
Vermeer, P. A. (1980), Formulation and analysis of sand deformation problems (Delft: Geotechnical Laboratory, Delft University of Technology), Report 195.
Vermeer, P.A. (1982), ‘A simple shear-band analysis using compliances’, in P.A., Vermeer and H.J., Luger (eds.), Proc. IUTAM Symp. on Deformation and Failure of Granular Materials, Delft (Rotterdam: A.A. Balkema), pp. 493–9.
Vermeer, P.A. (1984), ‘A five-constant model unifying well-established concepts’, in G., Gudehus, F., Darve, and I., Vardoulakis (eds.), Constitutive relations for soils (Rotterdam: A.A. Balkema), pp. 175–97.
Vermeer, P.A., and Borst, R. de (1984), ‘Non-associated plasticity for soils, concrete and rock’, HERON 29(3), 1-64.
Vesic, A.S., and Clough, G.W. (1968), ‘Behaviour of granular materials under high stresses’, Proc. ASCE, Journal of the Soil Mechanics and Foundations Division 94(SM3), 661–88.
Ward, W.H., and Burland, J.B. (1973), ‘The use of ground strain measurements in civil engineering’, Phil. Trans. Roy. Soc. A274, 421–8.
Watson, J.D. (1956), ‘Earth movement affecting LTE railway in deep cutting east of Uxbridge’, Proc. ICE, Part II 5, 302–31.
Winterkorn, H.F., and Fang, H-Y. (1975), Foundation engineering handbook (New York: Van Nostrand-Reinhold).
Wong, P.K.K., and Mitchell, R.J. (1975), ‘Yielding and plastic flow of sensitive cemented clay’, Géotechnique 25(4), 763–82.
Wood, D.M. (1974), Some aspects of the mechanical behaviour of kaolin under truly triaxial conditions of stress and strain, Ph.D. thesis, Cambridge University.
Wood, D.M. (1982), ‘Laboratory investigations of the behaviour of soils under cyclic loading: a review’, in G.N., Pande and O.C., Zienkiewicz (eds.), Soil mechanics - transient and cyclic loads (Chichester: John Wiley), pp. 513–82.
Wood, D.M. (1984a), ‘Choice of models for geotechnical predictions’, in C.S., Desai and R.H., Gallagher (eds.) Mechanics of engineering materials (Chichester: John Wiley & Sons), pp. 633–54.
Wood, D.M. (1984b), ‘On stress parameters’, Géotechnique 34(2), 282–7.
Wood, D.M. (1985a), ‘Some fall-cone tests’, Géotechnique 35(1), 64–8.
Wood, D.M. (1985b), ‘Index properties and consolidation history’, Proc. Uth Int. Conf. on Soil Mechanics and Foundation Engineering, San Francisco (Rotterdam: A.A. Balkema), vol. 2, pp. 703–6.
Wood, D.M., and Budhu, M. (1980), ‘The behaviour of Leighton Buzzard sand in cyclic simple shear tests’, in G.N., Pande and O.C., Zienkiewicz (eds.), Proc. Int. Symp. on Soils under Cyclic and Transient Loading, Swansea (Rotterdam: A.A. Balkema), vol. 1, pp. 9-21.
Wood, D.M., Drescher, A., and Budhu, M. (1979), ‘On the determination of the stress state in the simple shear apparatus’, Geotechnical Testing Journal, American Society for Testing and Materials 2(4), 211–22.
Wood, D.M., and Wroth, C.P. (1978), ‘The use of the cone penetrometer to determine the plastic limit of soils’, Ground Engineering 11(3), 37.
Wright, P.J.F. (1955), ‘Comments on an indirect tensile test on concrete cylinders’, Magazine of Concrete Research 7(20), 87-96.
Wroth, C.P. (1958), ‘Soil behaviour during shear - existence of critical voids ratios’, Engineering 186, 409–13.
Wroth, C.P. (1972), ‘General theories of earth pressure and deformation’, in Proc. 5th European Conf. on Soil Mechs and Foundation Eng., Madrid (Madrid: Sociedad Espanola de Mecanica del Sueloy Cimentaciones), vol. 2, pp. 33-52.
Wroth, C.P. (1975), ‘In-situ measurement of initial stresses and deformation characteristics’, in Proc. Specialty Conf. on In-Situ Measurement of Soil Properties, Raleigh, North Carolina (New York: ASCE), vol. 2, pp. 181-230.
Wroth, C.P. (1979), ‘Correlations of some engineering properties of soils’, in Proc. 2nd Int. Conf. on Behaviour of Off-Shore Structures, London (Cranfield: BHRA Fluid Engineering), vol. 1, pp. 121–32.
Wroth, C.P. (1984), ‘The interpretation of in situ soil tests’, 24th Rankine Lecture, Géotechnique 34(4), 449–89.
Wroth, C.P., and Houlsby, G.T., (1985), ‘Soil mechanics - property characterisation and analysis procedures’, in Proc. 11th Int. Conf. on Soil Mechs and Foundation Eng., San Francisco (Rotterdam: A.A. Balkema), vol. 1, pp. 1-55.
Youssef, M.S., el Ramli, A.H., and el Demery, M. (1965), ‘Relationships between shear strength, consolidation, liquid limit, and plastic limit for remoulded clays’, in Proc. 6th Int. Conf. on Soil Mechs and Foundation Eng., Montreal (Toronto: Toronto University Press), vol. 1, pp. 126–9.
Yudhbir (1973), ‘Field compressibility of soft sensitive normally consolidated clays’, Geotechnical Engineering 4(1), 31-40.
Yudhbir, (1982), ‘Collapsing behaviour of residual soils’, in I., McFeat-Smith and P., Lumb (eds.), Proc. 7th SE Asian Geotechnical Conf, Hong Kong (Hong Kong: Hong Kong Institution of Engineers and Southeast Asian Geotechnical Society), vol. 1, pp. 915–30.
Zienkiewicz, O.C. (1977), The finite element method (3rd ed.) (Maidenhead: McGraw-Hill).
Zytynski, M., Randolph, M.F., Nova, R., and Wroth, C.P. (1978), ‘On modelling the unloading-reloading behaviour of soils’, Int. J. for Numerical and Analytical Methods in Geomechanics 2, 87-94.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.