Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-10T12:06:57.233Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2015

Pekka Koskela
Affiliation:
University of Jyväskylä, Finland
Nageswari Shanmugalingam
Affiliation:
University of Cincinnati
Jeremy T. Tyson
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Sobolev Spaces on Metric Measure Spaces
An Approach Based on Upper Gradients
, pp. 412 - 426
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Adams, D. R. and Hedberg, L. I. 1996. Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften, vol. 314. Berlin: Springer-Verlag.
[2] Adams, R. A. 1975. Sobolev Spaces. Pure and Applied Mathematics, vol. 65. New York/London: Academic Press, Harcourt Brace Jovanovich.
[3] Aikawa, H. and Essén, M. 1996. Potential Theory – Selected Topics. Lecture Notes in Mathematics, vol. 1633. Berlin: Springer-Verlag.
[4] Aikawa, H. and Ohtsuka, M. 1999. Extremal length of vector measures. Ann. Acad. Sci. Fenn. Math., 24(1), 61–88.Google Scholar
[5] Alexander, S., Kapovitch, V., and Petrunin, A.Alexandrov Geometry. Book in preparation. Draft available at www.math.psu.edu/petrunin/papers/alexandrov-geometry.
[6] Ambrosio, L. 1990. Metric space valued functions of bounded variation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 17(3), 439–478.Google Scholar
[7] Ambrosio, L. and Tilli, P. 2000. Selected Topics on “Analysis in Metric Spaces”. Appunti dei Corsi Tenuti da Docenti della Scuola, Scuola Normale Superiore, Pisa.
[8] Ambrosio, L. and Tilli, P. 2004. Topics on Analysis in Metric Spaces. Oxford Lecture Series in Mathematics and its Applications, vol. 25. Oxford: Oxford University Press.
[9] Ambrosio, L., Gigli, N., and Savaré, G. Bakry–Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Preprint, 2012. Available at lanl.arxiv.org/abs/1209.5786.
[10] Ambrosio, L., Mondino, A., and Savaré, G. On the Bakry–Émery condition, the gradient estimates and the local-to-global property of RCD(K, N) metric measure spaces. Preprint, 2013. Available at lanl.arxiv.org/abs/1309.4664.
[11] Ambrosio, L., Di Marino, S., and Savaré, G. On the duality between p-modulus and probability measures. Preprint, 2013. Available at cvgmt.sns.it/paper/2271/.
[12] Ambrosio, L., Colombo, M., and Di Marino, S. Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope. Preprint, 2012. Available at http://cvgmt.sns.it/media/doc/paper/2055.
[13] Ambrosio, L., Miranda, Jr., M., and Pallara, D. 2004. Special functions of bounded variation in doubling metric measure spaces, pp. 1–45 in: Calculus of Variations: Topics from the Mathematical Heritage of E. De Giorgi, Quad. Mat., vol. 14. Dept Math., Seconda Univ. Napoli.
[14] Ambrosio, L., Gigli, N., and Savaré, G. 2008. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Second edn. Lectures in Mathematics, ETH Zürich. Basel: Birkhäuser Verlag.
[15] Ambrosio, L., Gigli, N., and Savaré, G. 2012. Heat flow and calculus on metric measure spaces with Ricci curvature bounded below – the compact case. Boll. Unione Mat. Ital. (9), 5(3), 575–629.Google Scholar
[16] Ambrosio, L., Gigli, N., and Savaré, G. 2013. Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam., 29(3), 969–996.Google Scholar
[17] Armitage, D. H. and Gardiner, S. J. 2001. Classical Potential Theory. Springer Monographs in Mathematics. London: Springer-Verlag London Ltd.
[18] Assouad, P. 1983. Plongements lipschitziens dansRn. Bull. Soc. Math. France, 111(4), 429–448.Google Scholar
[19] Auscher, P., Coulhon, Th., and Grigor'yan, A. (eds.). 2003. Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces. Contemporary Mathematics, vol. 338. Providence, RI: American Mathematical Society.
[20] Balogh, Z. M. and Buckley, S. M. 2005. Sphericalization and flattening. Conform. Geom. Dynam., 9, 76–101.Google Scholar
[21] Banach, S. 1955. Théorie des Óperations Linéaires. New York: Chelsea.
[22] Barlow, M. T., Bass, R. F., Kumagai, T., and Teplyaev, A. 2010. Uniqueness of Brownian motion on Sierpiński carpets. J. Eur. Math. Soc., 12(3), 655–701.Google Scholar
[23] Barvinok, A. 2002. A Course in Convexity. Graduate Studies in Mathematics, vol. 54. Providence, RI: American Mathematical Society.
[24] Bates, D. and Speight, G. 2013. Differentiability, porosity and doubling in metric measure spaces. Proc. Amer. Math. Soc., 141(3), 971–985.Google Scholar
[25] Baudoin, F. and Garofalo, N. 2011. Perelman's entropy and doubling property on Riemannian manifolds. J. Geom. Anal., 21(4), 1119–1131.Google Scholar
[26] Benyamini, Y. and Lindenstrauss, J. 2000. Geometric Nonlinear Functional Analysis, Volume I. Colloquium Publications, vol. 48. American Mathematical Society.
[27] Beurling, A. 1989. The Collected Works of Arne Beurling. Vol. 1. Contemporary Mathematicians. Boston, MA: Birkhäuser.
[28] Beurling, A. and Deny, J. 1959. Dirichlet spaces. Proc. Nat. Acad. Sci. USA, 45, 208–215.
[29] Billingsley, P. 1999. Convergence of Probability Measures. Second edn. Wiley Series in Probability and Statistics. New York: John Wiley & Sons.
[30] Bishop, C. and Hakobyan, H. Frequency of dimension distortion under quasisymmetric mappings. Preprint, 2013.
[31] Björn, A. and Björn, J. 2011. Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, vol. 17. Zürich: European Mathematical Society.
[32] Björn, A., Björn, J., and Shanmugalingam, N. 2003a. The Dirichlet problem for p-harmonic functions on metric spaces. J. Reine Angew. Math., 556, 173–203.Google Scholar
[33] Björn, A., Björn, J., and Shanmugalingam, N. 2003b. The Perron method for p-harmonic functions in metric spaces. J. Differential Equations, 195(2), 398–429.Google Scholar
[34] Björn, A., Björn, J., and Shanmugalingam, N. 2008. Quasicontinuity of Newton– Sobolev functions and density of Lipschitz functions on metric spaces. Houston J. Math., 34(4), 1197–1211.Google Scholar
[35] Björn, J. 2006. Wiener criterion for Cheeger p-harmonic functions on metric spaces, pp. 103–115 in: Adv. Stud. Pure Math., vol. 44. Tokyo: Mathematical Society of Japan.
[36] Björn, J., MacManus, P., and Shanmugalingam, N. 2001. Fat sets and pointwise boundary estimates for p-harmonic functions in metric spaces. J. Anal. Math., 85, 339–369.Google Scholar
[37] Bobkov, S. G. and Houdré, Ch. 1997. Some connections between isoperimetric and Sobolev-type inequalities. Mem. Amer. Math. Soc., 129(616).Google Scholar
[38] Bogachev, V. I. 1998. Gaussian Measures. Mathematical Surveys and Monographs, vol. 62. Providence, RI: American Mathematical Society.
[39] Bonk, M. 2006. Quasiconformal geometry of fractals, pp. 1349–1373 in: Proc. Int. Congress of Mathematicians. Vol. II. Zürich: European Mathematical Society.
[40] Bonk, M. and Kleiner, B. 2002. Quasisymmetric parametrizations of two-dimensional metric spheres. Invent. Math., 150(1), 127–183.Google Scholar
[41] Bonk, M. and Kleiner, B. 2005. Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary. Geom. Topol., 9, 219–246.Google Scholar
[42] Bourdon, M. and Kleiner, B. 2013. Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups. Groups Geom. Dyn., 7(1), 39–107.Google Scholar
[43] Bourdon, M. and Pajot, H. 1999. Poincaré inequalities and quasiconformal structure on the boundaries of some hyperbolic buildings. Proc. Amer. Math. Soc., 127(8), 2315–2324.Google Scholar
[44] Brelot, M. 1971. On Topologies and Boundaries in Potential Theory. Lecture Notes in Mathematics, vol. 175. Berlin: Springer-Verlag. Enlarged edition of a course of lectures delivered in 1966.
[45] Bridson, M. R. and Haefliger, A. 1999. Metric Spaces of Non-Positive Curvature. Grundlehren der Mathematischen Wissenschaften, vol. 319. Berlin: Springer-Verlag.
[46] Bruckner, A., Bruckner, J., and Thomson, B. 1997. Real Analysis. New Jersey: Prentice-Hall.
[47] Buckley, S. M. 1999. Is the maximal function of a Lipschitz function continuous?Ann. Acad. Sci. Fenn. Math., 24(2), 519–528.Google Scholar
[48] Buckley, S. M., Herron, D. A., and Xie, X. 2008. Metric space inversions, quasihyperbolic distance, and uniform spaces. Indiana Univ. Math. J., 57(2), 837–890.Google Scholar
[49] Burago, D., Burago, Yu., and Ivanov, S. 2001. A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33. Providence, RI: American Mathematical Society.
[50] Burago, Yu., Gromov, M., and Perel'man, G. 1992. A. D., Aleksandrov spaces with curvatures bounded below. Uspekhi Mat. Nauk, 47 3–51, 222.
[51] Buser, P. 1982. A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4), 15, 213–230.Google Scholar
[52] Capogna, L., Danielli, D., Pauls, S. D., and Tyson, J. T. 2007. An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem. Progress in Mathematics, vol. 259. Basel: Birkhäuser Verlag.
[53] Cheeger, J. 1999. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal., 9, 428–517.Google Scholar
[54] Cheeger, J. and Kleiner, B. 2006a. Generalized differential and bi-Lipschitz nonembedding in L1. C. R. Math. Acad. Sci. Paris, 343(5), 297–301.Google Scholar
[55] Cheeger, J. and Kleiner, B. 2006b. On the differentiability of Lipschitz maps from metric measure spaces to Banach spaces, pp. 129–152 in: Inspired by S. S. Chern, Nankai Tracts in Mathematics, vol. 11. Hackensack, NJ: World Science Publishers.
[56] Cheeger, J. and Kleiner, B. 2009. Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon–Nikodým property. Geom. Funct. Anal., 19(4), 1017–1028.Google Scholar
[57] Cheeger, J. and Kleiner, B. 2010a. Differentiating maps into L1, and the geometry of BV functions. Ann. Math. (2), 171(2), 1347–1385.Google Scholar
[58] Cheeger, J. and Kleiner, B. 2010b. Metric differentiation, monotonicity and maps to L1. Invent. Math., 182(2), 335–370.Google Scholar
[59] Cheeger, J. and Kleiner, B. 2013. Realization of metric spaces as inverse limits, and bilipschitz embedding in L1. Geom. Funct. Anal., 23(1), 96–133.Google Scholar
[60] Cheeger, J., Kleiner, B., and Naor, A. 2011. Compression bounds for Lipschitz maps from the Heisenberg group to L1. Acta Math., 207(2), 291–373.Google Scholar
[61] Clarkson, J. A. 1936. Uniformly convex spaces. Trans. Amer. Math. Soc., 40, 396–414.Google Scholar
[62] Coifman, R. R. and de Guzmán, M. 1970/1971. Singular integrals and multipliers on homogeneous spaces. Rev. Univ. Mat. Argentina, 25, 137–143.Google Scholar
[63] Coifman, R. R. and Weiss, G. 1971. Analyse Harmonique Non-commutative sur Certains Espaces Homogènes. Lecture Notes in Mathematics, vol. 242. Berlin: Springer-Verlag.
[64] Coifman, R. R. and Weiss, G. 1977. Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc., 83(4), 569–645.Google Scholar
[65] Colding, T. H. and Minicozzi, W. P., II. 1997. Harmonic functions on manifolds. Ann. Math. (2), 146, 725–747.Google Scholar
[66] Cucuringu, M. and Strichartz, R. S. 2008. Infinitesimal resistance metrics on Sierpinski gasket type fractals. Analysis (Munich), 28(3), 319–331.Google Scholar
[67] Danielli, D., Garofalo, N., and Marola, N. 2010. Local behavior of p-harmonic Green's functions in metric spaces. Potential Anal., 32(4), 343–362.Google Scholar
[68] David, G. and Semmes, S. 1990. Strong A∞ weights, Sobolev inequalities and quasiconformal mappings, pp. 101–111 in: Analysis and Partial Differential Equations. Lecture Notes in Pure and Applied Mathematics, vol. 122. Marcel Dekker.
[69] David, G. and Semmes, S. 1997. Fractured Fractals and Broken Dreams: Self-Similar Geometry Through Metric and Measure. Oxford Lecture Series in Mathematics and its Applications, vol. 7. Clarendon Press/Oxford University Press.
[70] Day, M. M. 1941. Reflexive Banach spaces not isomorphic to uniformly convex spaces. Bull. Amer. Math. Soc., 47, 313–317.Google Scholar
[71] DeJarnette, N. 2013. Self-improving Orlicz–Poincaré inequalities. Ph.D. thesis, University of Illinois at Urbana-Champaign.
[72] Deny, J. 1995. Formes et espaces de Dirichlet. pp. Exp. No. 187, 261–271 in: Séminaire Bourbaki, Vol. 5. Paris: Mathematical Society of France.
[73] Deny, J. and Lions, J. L. 1955. Les espaces du type de Beppo Levi. Ann. Inst. Fourier, Grenoble (5), 5, 305–370.Google Scholar
[74] Diestel, J. 1984. Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, vol. 92. New York: Springer-Verlag.
[75] Diestel, J. and Uhl, J. J. 1977. Vector Measures. Mathematical Surveys, vol. 15. Providence, R.I.: American Mathematical Society. With a foreword by B. J. Pettis.
[76] Doob, J. L. 1984. Classical Potential Theory and its Probabilistic Counterpart. Grundlehren der Mathematischen Wissenschaften, vol. 262. New York: Springer-Verlag.
[77] Dunford, N. and Schwartz, J. T. 1988. Linear Operators. Part I. Wiley Classics Library. New York: John Wiley & Sons.
[78] Durand-Cartagena, E. and Shanmugalingam, N. Geometric characterizations of ∞-Poincaré and p-Poincaré inequalities in the metric setting. Preprint, 2014.
[79] Durand-Cartagena, E., Jaramillo, J. A., and Shanmugalingam, N. 2012. The ∞-Poincaré inequality in metric measure spaces. Michigan Math. J., 61(1), 63–85.Google Scholar
[80] Durand-Cartagena, E., Shanmugalingam, N., and Williams, A. 2012. p-Poincaré inequality versus ∞-Poincaré inequality: some counterexamples. Math. Z., 271(1–2), 447–467.Google Scholar
[81] Evans, L. C. and Gariepy, R. F. 1992. Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. Boca Raton, FL: CRC Press.
[82] Fabes, E. B., Kenig, C. E., and Serapioni, R. 1982. The local regularity of solutions to degenerate elliptic equations. Comm. PDE, 7, 77–116.Google Scholar
[83] Federer, H. 1969. Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, vol. 153. New York: Springer-Verlag.
[84] Federer, H. and Ziemer, W. P. 1972/73. The Lebesgue set of a function whose distribution derivatives are pth power summable. Indiana Univ. Math. J., 22, 139–158.Google Scholar
[85] Fitzsimmons, P. J., Hambly, B. M., and Kumagai, T. 1994. Transition density estimates for Brownian motion on affine nested fractals. Comm. Math. Phys., 165(3), 595–620.Google Scholar
[86] Folland, G. B. 1984. Real Analysis. Pure and Applied Mathematics. John Wiley & Sons.
[87] Franchi, B., Hajłasz, P., and Koskela, P. 1999. Definitions of Sobolev classes on metric spaces. Ann. Inst. Fourier (Grenoble), 49(6), 1903–1924.Google Scholar
[88] Fréchet, M. 1909–10. Les dimensions d'un ensemble abstrait. Math. Ann., 68, 145–168.Google Scholar
[89] Fuglede, B. 1957. Extremal length and functional completion. Acta Math., 98, 171–219.Google Scholar
[90] Fukushima, M., Ōshima, Y., and Takeda, M. 1994. Dirichlet Forms and Symmetric Markov Processes. Berlin: Walter de Gruyter & Co.
[91] Ghys, E. and de la Harpe, P. 1990. Sur les Groupes Hyperboliques d'après Mikhael Gromov. Progress in Mathematics. Boston/Basel/Berlin: Birkhäuser.
[92] Giaquinta, M. and Giusti, E. 1982. On the regularity of the minima of variational integrals. Acta Math., 148, 31–46.Google Scholar
[93] Giaquinta, M. and Giusti, E. 1984. Quasiminima. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1(2), 79–107.
[94] Gigli, N., Kuwada, K., and Ohta, S.-I. 2013. Heat flow on Alexandrov spaces. Comm. Pure Appl. Math., 66(3), 307–331.Google Scholar
[95] Giusti, E. 1969. Precisazione delle funzioni di H1, p e singolarità delle soluzioni deboli di sistemi ellittici non lineari. Boll. Un. Mat. Ital. (4), 2, 71–76.Google Scholar
[96] Gol'dshtein, V. and Troyanov, M. 2001. Axiomatic theory of Sobolev spaces. Expo. Math., 19(4), 289–336.Google Scholar
[97] Gol'dshtein, V. and Troyanov, M. 2002a. Axiomatic Sobolev spaces on metric spaces. pp. 333–343 in: Proc. Conf. on Function Spaces, Interpolation Theory and Related Topics (Lund, 2000). Berlin: de Gruyter.Google Scholar
[98] Gol'dshtein, V. and Troyanov, M. 2002b. Capacities in metric spaces. Integral Eq. Operator Theory, 44(2), 212–242.Google Scholar
[99] Gong, J. The Lip–lip condition on metric measure spaces. Preprint, 2012. Available at arxiv.org/abs/1208.2869.
[100] Gong, J. Measurable differentiable structures on doubling metric spaces. Preprint, 2012. Available at arxiv.org/abs/1110.4279.
[101] Gong, J. 2012 Rigidity of derivations in the plane and in metric measure spaces. Illinois J. Math., 56(4), 1109–1147.Google Scholar
[102] Gong, J. 2007. Derivatives and currents on metric (measure) spaces. Real Anal. Exchange, 217–223.Google Scholar
[103] Grigor'yan, A. 1995. Heat kernel of a noncompact Riemannian manifold, pp. 239–263 in: Stochastic Analysis (Ithaca, NY, 1993), Proc. Sympos. Pure Math., vol. 57. Providence, RI: American Mathematical Society.
[104] Grigor'yan, A. 1999. Analytic and geometric background of recurrence and non-explosion of Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. (NS), 36(2), 135–249.Google Scholar
[105] Gromov, M. 1987. Hyperbolic groups, pp. 75–265 in: Essays in Group Theory. MSRI Publications, Springer-Verlag.
[106] Gromov, M. 1996. Carnot–Carathéodory spaces seen from within, pp. 79–323 in: Sub-Riemannian Geometry, Progress in Mathematics, vol. 144. Basel: Birkhäuser.
[107] Gromov, M. 1999. Metric Structures for Riemannian and Non-Riemannian spaces. Progress in Mathematics, vol. 152. Boston, MA: Birkhäuser Boston. Based on the 1981 French original, with appendices by M., Katz, P., Pansu, and S., Semmes; translated from the French by Sean Michael Bates.
[108] Hajłasz, P. 1996. Sobolev spaces on an arbitrary metric space. Potential Anal., 5, 403–415.Google Scholar
[109] Hajłasz, P. 2003. Sobolev spaces on metric-measure spaces, pp. 173–218 in: Proc. Conf. on Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002). Contemp. Math., vol. 338. Providence, RI: American Mathematical Society.Google Scholar
[110] Hajłasz, P. 2007. Sobolev mappings: Lipschitz density is not a bi-Lipschitz invariant of the target. Geom. Funct. Anal., 17(2), 435–467.Google Scholar
[111] Hajłasz, P. 2009a. Density of Lipschitz mappings in the class of Sobolev mappings between metric spaces. Math. Ann., 343(4), 801–823.Google Scholar
[112] Hajłasz, P. 2009b. Sobolev mappings between manifolds and metric spaces, pp. 185–222 in: Sobolev Spaces in Mathematics. Vol. I. Int. Math. Ser. (NY), vol. 8. New York: Springer.
[113] Hajłasz, P. and Koskela, P. 1995. Sobolev meets Poincaré. C. R. Acad. Sci. Paris Sér. I Math., 320, 1211–1215.Google Scholar
[114] Hajłasz, P. and Koskela, P. 2000. Sobolev met Poincaré. Mem. Amer. Math. Soc., 145(688).Google Scholar
[115] Hakobyan, H. 2010. Conformal dimension: Cantor sets and Fuglede modulus. Int. Math. Res. Not. IMRN, 87–111.Google Scholar
[116] Hambly, B. M. and Kumagai, T. 1999. Transition density estimates for diffusion processes on post critically finite self-similar fractals. Proc. London Math. Soc. (3), 78(2), 431–458.Google Scholar
[117] Hanson, B. and Heinonen, J. 2000. An n-dimensional space that admits a Poincaré inequality but has no manifold points. Proc. Amer. Math. Soc., 128(11), 3379–3390.Google Scholar
[118] Hebey, E. 1999. Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. Courant Lecture Notes in Mathematics, vol. 5. New York: Courant Institute of Mathematical Sciences.
[119] Heinonen, J. 1995. A capacity estimate on Carnot groups. Bull. Sci. Math., 119, 475–484.Google Scholar
[120] Heinonen, J. 2001. Lectures on Analysis on Metric Spaces. New York: Springer-Verlag.
[121] Heinonen, J. 2003. Geometric embeddings of metric spaces. Report, University of Jyväskylä Department of Mathematics and Statistics, vol. 90. University of Jyväskylä.
[122] Heinonen, J. 2007. Nonsmooth calculus. Bull. Amer. Math. Soc. (NS), 44(2), 163–232.
[123] Heinonen, J. and Koskela, P. 1995. Definitions of quasiconformality. Invent. Math., 120, 61–79.Google Scholar
[124] Heinonen, J. and Koskela, P. 1996. From local to global in quasiconformal structures. Proc. Nat. Acad. Sci. USA, 93, 554–556.Google Scholar
[125] Heinonen, J. and Koskela, P. 1998. Quasiconformal maps in metric spaces with controlled geometry. Acta Math., 181, 1–61.Google Scholar
[126] Heinonen, J. and Koskela, P. 1999. A note on Lipschitz functions, upper gradients, and the Poincaré inequality. New Zealand J. Math., 28, 37–42.Google Scholar
[127] Heinonen, J. and Wu, J.-M. 2010. Quasisymmetric nonparametrization and spaces associated with the Whitehead continuum. Geom. Topol., 14(2), 773–798.Google Scholar
[128] Heinonen, J., Kilpeläinen, T., and Martio, O. 1993. Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Science Publications. New York: The Clarendon Press, Oxford University Press.
[129] Heinonen, J., Koskela, P., Shanmugalingam, N., and Tyson, J. T. 2001. Sobolev classes of Banach space-valued functions and quasiconformal mappings. J. Anal. Math., 85, 87–139.Google Scholar
[130] Herman, P. E., Peirone, R., and Strichartz, R. S. 2004. p-energy and p-harmonic functions on Sierpinski gasket type fractals. Potential Anal., 20(2), 125–148.Google Scholar
[131] Herron, D. A. Gromov–Hausdorff distance for pointed metric spaces. Preprint, 2011.
[132] Herron, D. A. 2011. Uniform metric spaces, annular quasiconvexity and pointed tangent spaces. Math. Scand., 108(1), 115–145.Google Scholar
[133] Herron, D. A., Shanmugalingam, N., and Xie, X. 2008. Uniformity from Gromov hyperbolicity. Illinois J. Math., 52(4), 1065–1109.Google Scholar
[134] Hesse, J. 1975. p-extremal length and p-measurable curve families. Proc. Amer. Math. Soc., 53(2), 356–360.Google Scholar
[135] Hewitt, E. and Stromberg, K. 1965. Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable. New York: Springer-Verlag.
[136] Hildebrandt, T. H. 1953. Integration in abstract spaces. Bull. Amer. Math. Soc., 59, 111–139.Google Scholar
[137] Holopainen, I. 1990. Nonlinear potential theory and quasiregular mappings on Riemannian manifolds. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, 45.Google Scholar
[138] Jacobs, K. 1978. Measure and Integral. New York: Academic Press, Harcourt Brace Jovanovich.
[139] Järvenpää, E., Järvenpää, M., Rogovin, K., Rogovin, S., and Shanmugalingam, N. 2007. Measurability of equivalence classes and MECp-property in metric spaces. Rev. Mat. Iberoam., 23(3), 811–830.Google Scholar
[140] Jiang, R. 2012. Lipschitz continuity of solutions of Poisson equations in metric measure spaces. Potential Anal., 37(3), 281–301.Google Scholar
[141] Jiang, R. and Koskela, P. 2012. Isoperimetric inequality from the Poisson equation via curvature. Comm. Pure Appl. Math., 65(8), 1145–1168.Google Scholar
[142] John, F. 1948. Extremum problems with inequalities as subsidiary conditions, pp. 187–204 in: Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948. New York: Interscience.
[143] Johnson, W. B., Lindenstrauss, J., and Schechtman, G. 1986. Extensions of Lipschitz maps into Banach spaces. Israel J. Math., 54(2), 129–138.Google Scholar
[144] Kajino, N. 2012a. Heat kernel asymptotics for the measurable Riemannian structure on the Sierpinski gasket. Potential Anal., 36(1), 67–115.Google Scholar
[145] Kajino, N. 2012b. Time changes of local Dirichlet spaces by energy measures of harmonic functions. Forum Math., 24(2), 339–363.Google Scholar
[146] Kapovich, I. and Benakli, N. 2002. Boundaries of hyperbolic groups, pp. 39–93 in: Combinatorial and Geometric Group Theory, Contemp. Math., vol. 296. Providence, RI: American Mathematical Society.
[147] Kapovitch, V. 2007. Perelman's stability theorem. pp. 103–136 in: Surveys in Differential Geometry, vol. 11. Somerville, MA: Int. Press.
[148] Karak, N. Removable sets for Orlicz–Sobolev spaces. Preprint, 2013.
[149] Kechris, A. S. 1995. Classical Descriptive Set Theory. Graduate Texts in Mathematics, vol. 156. New York: Springer-Verlag.
[150] Keith, S. 2003. Modulus and the Poincaré inequality on metric measure spaces. Math. Z., 245(2), 255–292.Google Scholar
[151] Keith, S. 2004a. A differentiable structure for metric measure spaces. Adv. Math., 183(2), 271–315.Google Scholar
[152] Keith, S. 2004b. Measurable differentiable structures and the Poincaré inequality. Indiana Univ. Math. J., 53(4), 1127–1150.Google Scholar
[153] Keith, S. and Zhong, X. 2008. The Poincaré inequality is an open ended condition. Ann. Math. (2), 167(2), 575–599.Google Scholar
[154] Kigami, J. 1994. Effective resistances for harmonic structures on p.c.f. self-similar sets. Math. Proc. Cambridge Phil. Soc., 115(2), 291–303.Google Scholar
[155] Kigami, J. 2001. Analysis on Fractals. Cambridge Tracts in Mathematics, vol. 143. Cambridge: Cambridge University Press.
[156] Kigami, J., Strichartz, R. S., and Walker, K. C. 2001. Constructing a Laplacian on the diamond fractal. Experimental Math., 10(3), 437–448.Google Scholar
[157] Kinnunen, J. and Latvala, V. 2002. Lebesgue points for Sobolev functions on metric spaces. Rev. Mat. Iberoam., 18(3), 685–700.Google Scholar
[158] Kinnunen, J. and Shanmugalingam, N. 2001. Regularity of quasi-minimizers on metric spaces. Manuscripta Math., 105(3), 401–423.Google Scholar
[159] Kinnunen, J. and Shanmugalingam, N. 2006. Polar sets on metric spaces. Trans. Amer. Math. Soc., 358(1), 11–37.Google Scholar
[160] Kinnunen, J., Korte, R., Shanmugalingam, N., and Tuominen, Heli. 2008. Lebesgue points and capacities via the boxing inequality in metric spaces. Indiana Univ. Math. J., 57(1), 401–430.Google Scholar
[161] Kinnunen, J., Korte, R., Lorent, A., and Shanmugalingam, N. 2013. Regularity of sets with quasiminimal boundary surfaces in metric spaces. J. Geom. Anal., 23(4), 1607–1640.Google Scholar
[162] Kleiner, B. 2006. The asymptotic geometry of negatively curved spaces: uniformization, geometrization and rigidity, pp. 743–768 in: International Congress of Mathematicians, Vol. II. Zürich: European Mathematical Society.
[163] Kleiner, B. and Mackay, J. 2011. Differentiable structures on metric measure spaces: a primer. Preprint. Available at arxiv.org/abs/1108.1324.
[164] Korevaar, N. J. and Schoen, R. M. 1993. Sobolev spaces and harmonic maps for metric space targets. Comm. Anal. Geom., 1, 561–659.Google Scholar
[165] Korte, R. 2007. Geometric implications of the Poincaré inequality. Results Math., 50(1–2), 93–107.Google Scholar
[166] Korte, R., Lahti, P., and Shanmugalingam, N. Semmes family of curves and a characterization of functions of bounded variation in terms of curves. Preprint, 2013. Available at cvgmt.sns.it/paper/2229/.
[167] Koskela, P. 1999. Removable sets for Sobolev spaces. Ark. Mat., 37(2), 291–304.Google Scholar
[168] Koskela, P. and MacManus, P. 1998. Quasiconformal mappings and Sobolev spaces. Studia Math., 131, 1–17.Google Scholar
[169] Koskela, P. and Saksman, E. 2008. Pointwise characterizations of Hardy–Sobolev functions. Math. Res. Lett., 15(4), 727–744.Google Scholar
[170] Koskela, P. and Zhou, Y. 2012. Geometry and analysis of Dirichlet forms. Adv. Math., 231(5), 2755–2801.Google Scholar
[171] Koskela, P., Rajala, K., and Shanmugalingam, N. 2003. Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces. J. Funct. Anal., 202(1), 147–173.Google Scholar
[172] Koskela, P., Shanmugalingam, N., and Tyson, J. T. 2004. Dirichlet forms, Poincaré inequalities, and the Sobolev spaces of Korevaar and Schoen. Potential Anal., 21(3), 241–262.Google Scholar
[173] Koskela, P., Shanmugalingam, N., and Zhou, Y. 2012. L∞-variational problem associated to Dirichlet forms. Math. Res. Lett., 19(6), 1263–1275.
[174] Kumagai, T. 1993. Regularity, closedness and spectral dimensions of the Dirichlet forms on PCF. self-similar sets. J. Math. Kyoto Univ., 33(3), 765–786.Google Scholar
[175] Kuratowski, C. 1935. Quelques problèmes concernant les espaces métriques non-séparables. Fund. Math., 25, 534–545.Google Scholar
[176] Kuwae, K., Machigashira, Y., and Shioya, T. 2001. Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces. Math. Z., 238(2), 269–316.Google Scholar
[177] Laakso, T. J. 2000. Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality. Geom. Funct. Anal., 10(1), 111–123.Google Scholar
[178] Ladyzhenskaya, O. A. and Ural'tseva, N. N. 1984. Estimates of max |ux| for solutions of quasilinear elliptic and parabolic equations of general type, and some existence theorems. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 138, 90–107.Google Scholar
[179] Lang, U. and Schlichenmaier, T. 2005. Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions. Int. Math. Res. Not., 3625–3655.Google Scholar
[180] Lang, U., Pavlović, B., and Schroeder, V. 2000. Extensions of Lipschitz maps into Hadamard spaces. Geom. Funct. Anal., 10(6), 1527–1553.Google Scholar
[181] Ledoux, M. and Talagrand, M. 1991. Probability in Banach Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 23. Berlin: Springer-Verlag.
[182] Lee, J. R. and Naor, A. 2005. Extending Lipschitz functions via random metric partitions. Invent. Math., 160(1), 59–95.Google Scholar
[183] Levi, B. 1906. Sul principio di Dirichlet. Rend. Circ. Mat. Palermo, 22, 293–359.Google Scholar
[184] Li, P. and Tam, L.-F. 1995. Green's functions, harmonic functions, and volume comparison. J. Differential Geom., 41(2), 277–318.Google Scholar
[185] Li, S. 2014. Coarse differentiation and quantitative nonembeddability for Carnot groups. J. Funct. Anal., 266(7), 4616–4704.Google Scholar
[186] Li, X. and Shanmugalingam, N. Preservation of bounded geometry under sphericalization and flattening. Preprint 2013. Report No. IML-1314f-16, Institut Mittag-Leffler preprint series. Available at www.mittag-leffler.se/preprints/files/IML-1314f-16.pdf. Indiana. Math J., to appear.
[187] Liu, Y., Lu, G., and Wheeden, R. L. 2002. Some equivalent definitions of high order Sobolev spaces on stratified groups and generalizations to metric spaces. Math. Ann., 323(1), 157–174.Google Scholar
[188] Lott, J. and Villani, C. 2007. Weak curvature conditions and functional inequalities. J. Funct. Anal., 245(1), 311–333.Google Scholar
[189] Lott, J. and Villani, C. 2009. Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2), 169(3), 903–991.Google Scholar
[190] Luukkainen, J. and Saksman, E. 1998. Every complete doubling metric space carries a doubling measure. Proc. Amer. Math. Soc., 126, 531–534.Google Scholar
[191] Mackay, J. M. 2010. Spaces and groups with conformal dimension greater than one. Duke Math. J., 153(2), 211–227.Google Scholar
[192] Mackay, J. M., Tyson, J. T., and Wildrick, K. 2013. Modulus and Poincaré inequalities on non-self-similar Sierpiński carpets. Geom. Funct. Anal., 23(3), 985–1034.Google Scholar
[193] Malý, J. and Ziemer, W. P. 1997. Fine Regularity of Solutions of Elliptic Partial Differential Equations. Mathematical Surveys and Monographs, vol. 51. Providence, RI: American Mathematical Society.
[194] Malý, L. 2013. Minimal weak upper gradients in Newtonian spaces based on quasi-Banach function lattices. Ann. Acad. Sci. Fenn. Math., 38(2), 727–745.Google Scholar
[195] Marola, N., Miranda, M., Jr., and Shanmugalingam, N. Boundary measures, generalized Gauss–Green formulas and the mean value property in metric measure spaces. Available at cvgmt.sns.it/paper/2129. Rev. Mat. lberoamericana, to appear.
[196] Mattila, P. 1973. Integration in a space of measures. Ann. Acad. Sci. Fenn. Ser. A I, 1–37.Google Scholar
[197] Mattila, P. 1995. Geometry of Sets and Measures in Euclidean Spaces. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge: Cambridge University Press.
[198] Maz'ya, V. G. 1960. Classes of domains and imbedding theorems for function spaces. Soviet Math. Dokl., 1, 882–885.Google Scholar
[199] Maz'ya, V. G. 1964. On the theory of the higher-dimensional Schrödinger operator. Izv. Akad. Nauk SSSR Ser. Mat., 28, 1145–1172.Google Scholar
[200] Maz'ya, V. G. 1970. Classes of sets and measures that are connected with imbedding theorems. Izdat. “Nauka”, Moscow, pp. 142–159, 246.
[201] Maz'ya, V. G. 1975. The summability of functions belonging to Sobolev spaces. Izdat. Leningrad. Univ., Leningrad, pp. 66–98.
[202] Maz'ya, V. G. 1985. Sobolev Spaces. Berlin: Springer-Verlag. Translated from the Russian by T. O. Shaposhnikova.
[203] McShane, E. J. 1934. Extension of range of functions. Bull. Amer. Math. Soc., 40, 837–842.Google Scholar
[204] McShane, E. J. 1944. Integration. Princeton, NJ: Princeton University Press.
[205] McShane, E. J. 1950. Linear functionals on certain Banach spaces. Proc. Amer. Math. Soc., 1, 402–408.Google Scholar
[206] Megginson, R. E. 1998. An Introduction to Banach Space Theory. Graduate Texts in Mathematics, vol. 183. New York: Springer-Verlag.
[207] Meyers, N. and Serrin, J. 1964. H = W. Proc. Nat. Acad. Sci. USA, 51, 1055–1056.
[208] Milman, V. D. and Schechtman, G. 1986. Asymptotic Theory of Finite-Dimensional Normed Spaces. Lecture Notes in Mathematics, vol. 1200. Berlin: Springer-Verlag. With an appendix by M. Gromov.
[209] Miranda, M., Jr. 2003. Functions of bounded variation on “good” metric spaces. J. Math. Pures Appl. (9), 82(8), 975–1004.Google Scholar
[210] Mitchell, J. 1985. On Carnot–Carathéodory metrics. J. Differential Geom., 21, 35–45.Google Scholar
[211] Montgomery, R. 2002. A Tour of Subriemannian Geometries, their Geodesics and Applications. Mathematical Surveys and Monographs, vol. 91. Providence, RI: American Mathematical Society.
[212] Morrey, C. B. 1966. Multiple Integrals in the Calculus of Variations. Berlin: Springer-Verlag.
[213] Muckenhoupt, B. 1972. Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc., 165, 207–226.Google Scholar
[214] Munkres, J. R. 1975. Topology: A First Course. Englewood Cliffs, NJ: Prentice-Hall.
[215] Nadler, S. B. 1978. Hyperspaces of Sets. Monographs and Textbooks in Pure and Applied Mathematics, vol. 49. New York: Marcel Dekker.
[216] Naor, A. 2010. L1 embeddings of the Heisenberg group and fast estimation of graph isoperimetry, pp. 1549–1575 in: Proc. Int. Congress of Mathematicians, Vol. III. New Delhi: Hindustan Book Agency.
[217] Nazarov, F., Treil, S., and Volberg, A. 1998. Weak type estimates and Cotlar inequalities for Calderón–Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not., 463–487.Google Scholar
[218] Nazarov, F., Treil, S., and Volberg, A. >2003. The Tb-theorem on non-homogeneous spaces. Acta Math., 190(2), 151–239.Google Scholar
[219] Nikodym, O. M. 1933. Sur une classe de fonctions considérées dans problème de Dirichlet. Fund. Math., 21, 129–150.Google Scholar
[220] Ohtsuka, M. 2003. Extremal Length and Precise Functions. GAKUTO International Series. Mathematical Sciences and Applications, vol. 19. Tokyo: Gakkōtosho. With a preface by Fumi-Yuki Maeda.
[221] Oxtoby, J. C. and Ulam, S. M. 1939. On the existence of a measure invariant under a transformation. Ann. Math. (2), 40, 560–566.Google Scholar
[222] Pankka, P. and Wu, J.-M. 2014. Geometry and quasisymmetric parametrization of Semmes spaces. Rev. Mat. Iberoamericana, 30(4), 893–960.Google Scholar
[223] Pansu, P. 1989a. Dimension conforme et sphère à l'infini des variétés à courbure négative. Ann. Acad. Sci. Fenn. Ser. A I Math., 14, 177–212.Google Scholar
[224] Pansu, P. 1989b. Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. Math. (2), 129, 1–60.Google Scholar
[225] Perelman, G. 1995. Spaces with curvature bounded below, pp. 517–525 in: Proc. Int. Congress of Mathematicians, Vols. 1, 2 (Zürich, 1994). Basel: Birkhäuser.
[226] Rademacher, H. 1919. Über partielle und totale Differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale. Math. Ann., 79(4), 340–359.Google Scholar
[227] Rajala, K. 2005. Surface families and boundary behavior of quasiregular mappings. Illinois J. Math., 49(4), 1145–1153.Google Scholar
[228] Rajala, K. and Wenger, S. 2013. An upper gradient approach to weakly differentiable cochains. J. Math. Pures Appl., 100, 868–906.Google Scholar
[229] Rauch, H. E. 1956. Harmonic and analytic functions of several variables and the maximal theorem of Hardy and Littlewood. Can. J. Math., 8, 171–183.Google Scholar
[230] Reimann, H. M. 1989. An estimate for pseudoconformal capacities on the sphere. Ann. Acad. Sci. Fenn. Ser. A I Math., 14, 315–324.Google Scholar
[231] Reshetnyak, Yu. G. 1967. Space Mappings with Bounded Distortion. Sibirsk. Mat. Z., 8, 629–659.Google Scholar
[232] Reshetnyak, Yu. G. 1989. Space Mappings with Bounded Distortion. Translations of Mathematical Monographs, vol. 73. American Mathematical Society. Translated from the Russian by H. H. McFaden.
[233] Reshetnyak, Yu. G. 1997. Sobolev classes of functions with values in a metric space. Sibirsk. Mat. Zh., 38, 657–675.Google Scholar
[234] Rickman, S. 1993. Quasiregular Mappings. Berlin: Springer-Verlag.
[235] Rogers, C. A. 1970. Hausdorff Measures. London: Cambridge University Press.
[236] Royden, H. L. 1988. Real Analysis. Third edn. Macmillan Publ. Co.
[237] Rudin, W. 1987. Real and Complex Analysis. Third edn. New York: McGraw-Hill.
[238] Rudin, W. 1991. Functional Analysis. Second edn. New York: McGraw-Hill.
[239] Saksman, E. 1999. Remarks on the nonexistence of doubling measures. Ann. Acad. Sci. Fenn. Ser. A I Math., 24(1), 155–163.Google Scholar
[240] Saloff-Coste, L. 2002. Aspects of Sobolev-type Inequalities. London Mathematical Society Lecture Note Series, vol. 289. Cambridge: Cambridge University Press.
[241] Savaré, G. 2014. Self-improvement of the Bakry–Émery condition and Wasserstein contraction of the heat flow in RCD(K, ∞) metric measure spaces. Discrete Contin. Dynam. Syst., 34(4), 1641–1661.Google Scholar
[242] Schechter, M. 2002. Principles of Functional Analysis. Second edn. Graduate Studies in Mathematics, vol. 36. Providence, RI: American Mathematical Society.
[243] Schwartz, L. 1973. Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures. Tata Institute of Fundamental Research Studies in Mathematics, no. 6. London: Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press.
[244] Semmes, S. 1996a. Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities. Selecta Math., 2, 155–295.Google Scholar
[245] Semmes, S. 1996b. Good metric spaces without good parameterizations. Rev. Mat. Iberoam., 12, 187–275.Google Scholar
[246] Semmes, S. 1996c. On the nonexistence of bi-Lipschitz parameterizations and geometric problems about A∞-weights. Rev. Mat. Iberoam., 12, 337–410.Google Scholar
[247] Shanmugalingam, N. 1999. Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Ph.D. thesis, University of Michigan.
[248] Shanmugalingam, N. 2000. Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam., 16(2), 243–279.Google Scholar
[249] Shanmugalingam, N. 2001. Harmonic functions on metric spaces. Illinois J. Math., 45(3), 1021–1050.
[250] Shanmugalingam, N. 2009. A universality property of Sobolev spaces in metric measure spaces, pp. 345–359 in: Sobolev Spaces in Mathematics. Vol. I. International Mathematics Series (NY), vol. 8. New York: Springer.
[251] Shiryaev, A. N. 1996. Probability. Second edn. Graduate Texts in Mathematics, vol. 95. New York: Springer-Verlag. Translated from the first (1980) Russian edition by R. P. Boas.
[252] Smith, K. T. 1956. A generalization of an inequality of Hardy and Littlewood. Can. J. Math., 8, 157–170.Google Scholar
[253] Sobolev, S. L. 1936. On some estimates relating to families of functions having derivatives that are square integrable. Dokl. Akad. Nauk SSSR, 1, 267–270. (In Russian).Google Scholar
[254] Sobolev, S. L. 1938. On a theorem in functional analysis. Math. Sb., 4, 471–497. (In Russian.)Google Scholar
[255] Sobolev, S. L. 1950. Some Applications of Functional Analysis in Mathematical Physics. Izdat. Leningrad. Gos. Univ., Leningrad. (In Russian).
[256] Sobolev, S. L. 1991. Some Applications of Functional Analysis in Mathematical Physics. Translations of Mathematical Monographs, vol. 90. Providence, RI: American Mathematical Society. Translated from the third Russian edition by Harold H., McFaden. With comments by V. P., Palamodov.
[257] Stein, E. M. 1993. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series. Princeton, NJ: Princeton University Press.
[258] Strichartz, R. S. 1998. Fractals in the large. Can. J. Math., 50(3), 638–657.Google Scholar
[259] Strichartz, R. S. 1999a. Analysis on fractals. Not. Amer. Math. Soc., 46(10), 1199–1208.Google Scholar
[260] Strichartz, R. S. 1999b. Some properties of Laplacians on fractals. J. Funct. Anal., 164(2), 181–208.Google Scholar
[261] Strichartz, R. S. 2001. The Laplacian on the Sierpinski gasket via the method of averages.Pacific J. Math., 201(1), 241–256.Google Scholar
[262] Strichartz, R. S. 2002. Harmonic mappings of the Sierpinski gasket to the circle. Proc. Amer. Math. Soc., 130(3), 805–817.Google Scholar
[263] Strichartz, R. S. 2003. Function spaces on fractals. J. Funct. Anal., 198(1), 43–83.Google Scholar
[264] Sturm, K.-Th. 2005. Generalized Ricci bounds and convergence of metric measure spaces. C. R. Math. Acad. Sci. Paris, 340(3), 235–238.Google Scholar
[265] Sturm, K.-Th. 2006a. A curvature–dimension condition for metric measure spaces. C. R. Math. Acad. Sci. Paris, 342(3), 197–200.Google Scholar
[266] Sturm, K.-Th. 2006b. On the geometry of metric measure spaces. II. Acta Math., 196(1), 133–177.Google Scholar
[267] Tolsa, X. 1998. Cotlar's inequality without the doubling condition and existence of principal values for the Cauchy integral of measures. J. Reine Angew. Math., 502, 199–235.Google Scholar
[268] Tolsa, X. 1999. L2-boundedness of the Cauchy integral operator for continuous measures. Duke Math. J., 98(2), 269–304.Google Scholar
[269] Tonelli, L. 1926. Sulla quadratura delle superficie. Atti Reale Accad. Lincei, 3, 633–638.Google Scholar
[270] Tuominen, H. 2004. Orlicz–Sobolev spaces on metric measure spaces. Ann. Acad. Sci. Fenn. Math. Diss., 135, 1–86.Google Scholar
[271] Tyson, J. T. 1998. Quasiconformality and quasisymmetry in metric measure spaces. Ann. Acad. Sci. Fenn. Ser. A I Math., 23, 525–548.Google Scholar
[272] Tyson, J. T. 1999. Geometric and analytic applications of a generalized definition of the conformal modulus. Ph.D. thesis, University of Michigan.
[273] Väisälä, J. 1971. Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Mathematics, vol. 229. Berlin: Springer-Verlag.
[274] Varopoulos, N. 1987. Fonctions harmoniques sur les groupes de Lie. C. R. Acad. Sci. Paris Sér. I Math., 304, 519–521.Google Scholar
[275] Verdera, J. 2002. The fall of the doubling condition in Calderón–Zygmund theory, pp. 275–292 in: Proc. 6th Int. Conf. on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), Publ. Mat.Google Scholar
[276] Villani, C. 2003. Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. Providence, RI: American Mathematical Society.
[277] Vol'berg, A. L. and Konyagin, S. V. 1987. On measures with the doubling condition. Izv. Akad. Nauk SSSR Ser. Mat., 51, 666–675. English translation: Math. USSR-Izv., 30, 629–638, 1988.Google Scholar
[278] von Renesse, M.-K. and Sturm, K.-Th. 2005. Transport inequalities, gradient estimates, entropy, and Ricci curvature. Comm. Pure Appl. Math., 58(7), 923–940.Google Scholar
[279] Vuorinen, M. 1988. Conformal Geometry and Quasiregular Mappings. Berlin: Springer-Verlag.
[280] Wallin, H. 1963a. Continuous functions and potential theory. Ark. Mat., 5, 55–84.Google Scholar
[281] Wallin, H. 1963b. Studies in potential theory. Inaugural dissertation. Acta Universitatis Upsaliensis, Abstracts of Uppsala Dissertations in Science, vol. 26. Almqvist & Wiksells Boktryckeri AB, Uppsala.
[282] Weaver, N. 2000. Lipschitz algebras and derivations. II. Exterior differentiation. J. Funct. Anal., 178(1), 64–112.Google Scholar
[283] Whitney, H. 1934. Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc., 36(1), 63–89.Google Scholar
[284] Williams, M. 2012. Geometric and analytic quasiconformality in metric measure spaces. Proc. Amer. Math. Soc., 140(4), 1251–1266.Google Scholar
[285] Wojtaszczyk, P. 1991. Banach Spaces for Analysts. Cambridge: Cambridge University Press.
[286] Yosida, K. 1980. Functional Analysis. New York: Springer-Verlag.
[287] Ziemer, W. P. 1967. Extremal length and conformal capacity. Trans. Amer. Math. Soc., 126, 460–473.Google Scholar
[288] Ziemer, W. P. 1969. Extremal length and p-capacity. Michigan Math. J., 16, 43–51.Google Scholar
[289] Ziemer, W. P. 1970. Extremal length as a capacity. Michigan Math. J., 17, 117–128.Google Scholar
[290] Ziemer, W. P. 1989. Weakly Differentiable Functions. Graduate Texts in Mathematics, vol. 120. New York: Springer-Verlag.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×