Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2015
  • Online publication date: April 2015

3 - Optical Materials And Waveguides

from Part II - Passive Components

Related content

Powered by UNSILO
[1]Dirk, Taillaert, Harold, Chong, Peter I., Borel, et al. “A compact two-dimensional grating coupler used as a polarization splitter”. IEEE Photonics Technology Letters 15.9 (2003), pp. 1249–1251 (cit. on p. 49).
[2]Dan-Xia, Xu, J. H., Schmid, G. T., Reed, et al. “Silicon Photonic Integration Platform – Have We Found The Sweet Spot?”. IEEE Journal of Selected Topics in Quantum Electronics 20.4 (2014), pp. 1–17. issn: 1077-260X. DOI: 10.1109/JSTQE.2014.2299634 (cit. on p. 49).
[3]W. A., Zortman, D. C., Trotter, and M. R., Watts. “Silicon photonics manufacturing”. Optics Express 18.23 (2010), pp. 23598–23607 (cit. on p. 49).
[4] A. V., Krishnamoorthy, Xuezhe, Zheng, GuoliangLi, Li, et al. “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices”. IEEE Photonics Journal 3.3 (2011), pp. 567–579. DOI: 10.1109/JPHOT.2011.2140367 (cit. on p. 49).
[5] Edward, Palik. Handbook of Optical Constants of Solids. Elsevier, 1998 (cit. on p. 50).
[6] Kurt, Oughstun and Natalie, Cartwright. “On the Lorentz–Lorenz formula and the Lorentz model of dielectric dispersion”. Optics Express 11 (2003), pp. 1541–1546 (cit. on p. 50).
[7] Lorenzo, Pavesi and Gérard, Guillot. Optical Interconnects: The Silicon Approach. 978-3-540-28910-4. Springer Berlin/Heidelberg, 2006 (cit. on p. 50).
[8] G., Cocorullo and I., Rendina. “Thermo-optical modulation at 1.5 μm in silicon etalon”. Electronics Letters 28.1 (1992), pp. 83–85. DOI: 10.1049/el:19920051 (cit. on p. 51).
[9] J. A., McCaulley, V. M., Donnelly, M., Vernon, and I., Taha. “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide”. Physical Review B 49.11 (1994), p. 7408 (cit. on p. 51).
[10] Pieter, Dumon. “Ultra-compact integrated optical filters in silicon-on-insulator by means of wafer-scale technology”. PhD thesis. Gent University, 2007 (cit. on p. 51).
[11] Bradley J., Frey, Douglas B., Leviton, and Timothy J., Madison. “Temperature-dependent refractive index of silicon and germanium”. Proceedings SPIE. Vol. 6273. 2006, 62732J–62732J–10. DOI: 10.1117/12.672850 (cit. on p. 51).
[12] Muzammil, Iqbal, Martin A., Gleeson, Bradley, Spaugh, et al. “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation”. IEEE Journal of Selected Topics in Quantum Electronics 16.3 (2010), pp. 654–661 (cit. on p. 52).
[13] Lukas, Chrostowski, Samantha, Grist, Jonas, Flueckiger, et al. “Silicon photonic resonator sensors and devices”. Proceedings of SPIE Volume 8236; Laser Resonators, Microresonators, and Beam Control XIV (Jan. 2012) (cit. on p. 52).
[14] Xu, Wang, Samantha, Grist, Jonas, Flueckiger, Nicolas A. F., Jaeger, and Lukas, Chrostowski. “Silicon photonic slot waveguide Bragg gratings and resonators”. Optics Express 21 (2013), pp. 19029–19039 (cit. on p. 52).
[15] Xu, Wang. “Silicon photonic waveguide Bragg gratings”. PhD thesis. University of British Columbia, 2013 (cit. on p. 54).
[16] Effective Mode Area – FDTD Solutions Knowledge Base. [Accessed 2014/04/14]. URL: http://docs.lumerical.com/en/fdtd/user_guide_effective_mode_area.html (cit. on p. 61).
[17] A., Densmore, D. X., Xu, P., Waldron, et al. “A silicon-on-insulator photonic wire based evanescent field sensor”. IEEE Photonics Technology Letters 18.23 (2006), pp. 2520–2522 (cit. on p. 61).
[18] D. X., Xu, A., Delge, J. H., Schmid, et al. “Selecting the polarization in silicon photonic wire components”. Proceedings of SPIE. Vol. 8266 (2012), 82660G (cit. on p. 61).
[19] N., Rouger, L., Chrostowski, and R., Vafaei. “Temperature effects on silicon-on-insulator (SOI) racetrack resonators: a coupled analytic and 2-D finite difference approach”. Journal of Lightwave Technology 28.9 (2010), pp. 1380–1391. DOI: 10.1109/JLT.2010.2041528 (cit. on p. 68).
[20] K. P., Yap, J.|Lapointe, B., Lamontagne, et al. “SOI waveguide fabrication process development using star coupler scattering loss measurements”. Proceedings Device and Process Technologies for Microelectronics, MEMS, Photonics, and Nanotechnology IV, SPIE (2008), p. 680014 (cit. on p. 69).
[21] Dietrich, Marcuse. Theory of Dielectric Optical Waveguides. Elsevier, 1974 (cit. on p. 69).
[22] F. P., Payne and J. P. R., Lacey. “A theoretical analysis of scattering loss from planar optical waveguides”. Optical and Quantum Electronics 26.10 (1994), pp. 977–986 (cit. on p. 69).
[23] Christopher G., Poulton, Christian, Koos, Masafumi, Fujii, et al. “Radiation modes and roughness loss in high index-contrast waveguides”. IEEE Journal of Selected Topics in Quantum Electronics 12.6 (2006), pp. 1306–1321 (cit. on p. 69).
[24] Frdric, Grillot, Laurent, Vivien, Suzanne, Laval, and Eric, Cassan. “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides”. Journal of Lightwave Technology 24.2 (2006), p. 891 (cit. on p. 69).
[25] Tom, Baehr-Jones, Michael, Hochberg, and Axel, Scherer. “Photodetection in silicon beyond the band edge with surface states”. Optics Express 16.3 (2008), pp. 1659–1668 (cit. on p. 69).
[26] Jason J., Ackert, Abdullah S., Karar, John C., Cartledge, Paul E., Jessop, and Andrew P., Knights. “Monolithic silicon waveguide photodiode utilizing surface-state absorption and operating at 10 Gb/s”. Optics Express 22.9 (2014), pp. 10710–10715 (cit. on p. 69).
[27] A. D., Simard, N., Ayotte, Y., Painchaud, S., Bedard, and S., LaRochelle. “Impact of sidewall roughness on integrated Bragg gratings”. Journal of Lightwave Technology 29.24 (2011), pp. 3693–3704 (cit. on p. 69).
[28] Po, Dong, Wei, Qian, Shirong, Liao, et al. “Low loss shallow-ridge silicon waveguides”. Optics Express 18.14 (2010), pp. 14474–14479 (cit. on p. 69).
[29] Yurii, Vlasov and Sharee, McNab. “Losses in single-mode silicon-on-insulator strip waveguides and bends”. Optics Express 12.8 (2004), pp. 1622–1631. DOI: 10.1364/OPEX.12.001622 (cit. on p. 70).
[30] Guoliang, Li, Jin, Yao, Hiren, Thacker, et al. “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects”. Optics Express 20.11 (May 2012), pp. 12035–12039. DOI: 10.1364/OE.20.012035 (cit. on p. 70).
[31] Wim, Bogaerts, Pieter, Dumon, et al. “Compact wavelength-selective functions in silicon-on-insulator photonic wires”. IEEE Journal of Selected Topics in Quantum Electronics 12.6 (2006) (cit. on p. 70).
[32] Tom, Baehr-Jones, Ran, Ding, Ali, Ayazi, et al. “A 25 Gb/s silicon photonics platform”. arXiv:1203.0767v1 (2012) (cit. on pp. 71, 72).
[33] Using Mode Expansion Monitors – FDTD Solutions Knowledge Base. [Accessed 2014/04/14]. URL: http://docs.lumerical.com/en/fdtd/user_guide_using_mode_expansion_monitors.html (cit. on p. 73).
[34] R. J., Bojko, J., Li, L., He, et al. “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides”. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 29.6 (2011), 06F309–06F309 (cit. on p. 73).
[35] Bent Waveguide Calculation – MODE Solutions Knowledge Base. [Accessed 2014/04/14]. URL: http://docs.lumerical.com/en/mode/usr_waveguide_bend.html (cit. on p. 75).
[36] Amnon, Yariv and Pochi, Yeh. Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering). Oxford University Press, Inc., 2006 (cit. on pp. 77, 78).