Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2015
  • Online publication date: April 2015

6 - Modulators

from Part III - Active Components

Related content

Powered by UNSILO
[1] R., Soref and B., Bennett. “Electrooptical effects in silicon”. IEEE Journal of Quantum Electronics 23.1 (1987), pp. 123–129 (cit. on p. 217).
[2] G. T., Reed. G., Mashanovich, F. Y., Gardes. and D. J., Thomson. “Silicon optical modulators”. Nature Photonics 4.8 (2010), pp. 518–526 (cit. on p. 217).
[3] M., Nedeljkovic, R., Soref, and G. Z., Mashanovich. “Free-carrier electro-refraction and electroabsorption modulation predictions for silicon over the p. 1–14 micron infrared wavelength range”. IEEE Photonics Journal 3.6 (2011), pp. 1171–1180. DOI: 10.1109/JPHOT.2011.2171930 (cit. on pp. 217, 219).
[4] T., Baehr-Jones, R., Ding. Y., Liu, et al. “Ultralow drive voltage silicon traveling-wave modulator”. Optics Express 20.11 (2012), pp. 12014–12020 (cit. on pp. 224, 225).
[5] Xi, Xiao, Hao, Xu, Xianyao, Li, et al. “25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions”. Optics Express 20.3 (2012), pp. 2507–2515. DOI: 10.1364/OE.20.002507 (cit. on p. 226).
[6] Tom, Baehr-Jones, Ran, Ding, Ali, Ayazi, et al. “A 25 Gb/s silicon photonics platform”. arXiv:1203.0767v1 (2012) (cit. on pp. 226, 234).
[7] W., Bogaerts. P., De Heyn, T., Van Vaerenbergh, et al. “Silicon microring resonators”. Laser & Photonics Reviews 6.1 (2012), pp. 43–73. (cit. on p. 226).
[8] Guoliang Li, AshokV., Krishnamoorthy. Ivan, Shubin, et al. “Ring resonator modulators in silicon for interchip photonic links”. IEEE Journal of Selected Topics in Quantum Electronics 19.6 (2013), p. 3401819 (cit. on p. 226).
[9] Lukas, Chrostowski, Samantha, Grist, Jonas, Flueckiger, et al. “Silicon photonic resonator sensors and devices”. Proceedings of SPIE Volume 8236; Laser Resonators, Microresonators, and Beam Control XIV (Jan. 2012) (cit. on p. 230).
[10] Wei, Shi, Xu, Wang, Charlie, Lin, et al. “Silicon photonic grating-assisted, contra-directional couplers”. Optics Express 21.3 (2013), pp. 3633–3650 (cit. on p. 232).
[11] Matthew, Streshinsky, Ran, Ding, Yang, Liu, et al. “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm”. Optics Express 21.25 (2013), pp. 30 350–30 357 (cit. on p. 234).
[12] John E., Cunningham. Ivan, Shubin, Xuezhe, Zheng, et al. “Highly-efficient thermally-tuned resonant optical filters”. Optics Express 18.18 (2010), pp. 19055–19063 (cit. on p. 236).
[13] Tsung-Yang, Liow, JunFeng, Song, Xiaoguang, Tu, et al. “Silicon optical interconnect device technologies for 40 Gb/s and beyond”. IEEE JSTQE 19.2 (2013), p. 8200312. DOI: 10.1109/JSTQE.2012.2218580 (cit. on pp. 236, 240).
[14] Qing, Fang, Jun, Feng Song, Tsung-Yang, Liow, et al. “Ultralow power silicon photonics thermo-optic switch with suspended phase arms”. IEEE Photonics Technology Letters 23.8 (2011), pp. 525–527 (cit. on p. 236).
[15] PDE – Partial Differential Equation Toolbox – MATLAB. [Accessed 2014/04/14]. URL: http://www.mathworks.com/products/pde/ (cit. on p. 237).
[16] Michael R., Watts. Jie, Sun, Christopher, DeRose, et al. “Adiabatic thermo-optic Mach–Zehnder switch”. Optics Letters 38.5 (2013), pp. 733–735 (cit. on p. 240).
[17] T., Chu. H., Yamada, S., Ishida. and Y., Arakawa. “Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides”. Optics Express 13.25 (2005), pp. 10109–10114 (cit. on p. 240).