Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T04:38:35.630Z Has data issue: false hasContentIssue false

5 - Ideal-Gas Shock Wave???Turbulent Boundary-Layer Interactions in Supersonic Flows and Their Modeling: Three-Dimensional Interactions

Published online by Cambridge University Press:  05 June 2012

Holger Babinsky
Affiliation:
University of Cambridge
John K. Harvey
Affiliation:
Imperial College London
Get access

Summary

Introduction

This chapter continues the description of supersonic turbulent shock wave–boundary layer interactions (STBLIs) by examining the flowfield structure of three-dimensional interactions. The capability of modern computational methods to predict the observed details of these flowfields is discussed for several canonical configurations, and the relationships between them and two-dimensional interactions (see Chapter 4) are explored.

Three-Dimensional Turbulent Interactions

To aid in the understanding of three-dimensional STBLIs, we consider a number of fundamental geometries based on the shape of the shock-wave generator – namely, sharp unswept (Fig. 5.1a) and swept (Fig. 5.1b) fins, semicones (Fig. 5.1c), swept compression ramps (SCRs) (Fig. 5.1d), blunt fins (Fig. 5.1e), and double sharp unswept fins (Fig. 5.1f). More complex three-dimensional shock-wave interactions generally contain elements of one or more of these basic categories. The first four types of shock-wave generators are examples of so-called dimensionless interactions [1] (Fig. 5.1a–d). Here, the shock-wave generator has an overall size sufficiently large compared to the boundary-layer thickness δ that any further increase in size does not affect the flow. The blunt-fin case (Fig. 5.1e) is an example of a dimensional interaction characterized by the additional length scale of the shock-wave generator (i.e., the leading-edge thickness). The crossing swept-shock-wave interaction case (Fig. 5.1f) represents a situation with a more complex three-dimensional flow topology. We briefly discuss the most important physical properties of these three-dimensional flows and provide examples of numerical simulations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Settles, G. S.Dolling, D. SSwept Shock-Wave/Boundary-Layer Interactions. Tactical Missile AerodynamicsProgress in Astronautics and AeronauticsHemsch, M.Neilsen, J.New YorkAIAA 1986 297Google Scholar
Prandtl, LÜber Flüssigkeitsbewegung bei Sehr Kleiner Reibung. Verhandlungen des 3 Internationalen Mathematiker-KongressesLeipzig, GermanyTeubner 1904 484Google Scholar
Legendre, R (Flow in the vicinity of the apex of a wing with large sweep angle at moderate incidencesLa Recherche Aéronautique 30 1952 3Google Scholar
Legendre, R (Separation of a laminar three-dimensional flowLa Recherche Aéronautique 54 1956 3Google Scholar
Legendre, R (Streamlines of a steady flow: separation and separatorsLa Recherche Aéronautique 6 1977 327Google Scholar
Délery, J. MPhysics of vortical flowsJ. of Aircraft 29 1992 856CrossRefGoogle Scholar
Délery, J. MRobert Legendre and Henri Werlé: Toward the elucidation of three-dimensional separationAnnual Review of Fluid Mechanics 33 2001 129CrossRefGoogle Scholar
Tobak, MPeake, D. J.Topology of three-dimensional separated flowsAnnual Review of Fluid Mechanics 14 1982 61CrossRefGoogle Scholar
Lighthill, J. MAttachment and Separation in Three-Dimensional FlowLaminar Boundary-Layer TheoryRosenhead, L.Oxford, UKOxford University Press 1963 72Google Scholar
Zheltovodov, A. A 1996
Zheltovodov, ARegimes and properties of three-dimensional separation flows initiated by skewed compression shocksJ. Applied of Mechanics and Technical Physics 23 1982 413CrossRefGoogle Scholar
Zheltovodov, AMaksimov, ASchülein, EDevelopment of Turbulent Separated Flows in the Vicinity of Swept Shock WavesThe Interactions of Complex 3-D FlowsKharitonov, A.Novosibirsk 1987 67Google Scholar
Schülein, EZheltovodov, A. ADevelopment of experimental methods for the hypersonic flows studies in Ludwieg tubeProc. International Conference on the Methods of Aerophysical Research – PtNovosibirsk, Russia 1998 191Google Scholar
Stanbrook, A 1960
Korkegi, R. H.Comparison of shock-induced two- and three-dimensional incipient turbulent separationAIAA J 13 1975 534CrossRefGoogle Scholar
Korkegi, R. H.A simple correlation for incipient turbulent boundary-layer separation due to a skewed shock waveAIAA J 11 1973 1575CrossRefGoogle Scholar
McCabe, AA three-dimensional interaction of a shock wave with a turbulent boundary layerThe Aeron. Quart XVII 1966 231CrossRefGoogle Scholar
Settles, G. SSwept shock/boundary-layer interactions: Scaling laws, flowfield structure, and experimental methods, special course on shock-wave/boundary-layer interactions in supersonic and hypersonic flowsAGARD Report 762 1993 1Google Scholar
Lu, FSettles, GColor surface-flow visualization of fin-generated shock wave boundary-layer interactionsExperiments in Fluids 8 1990 352CrossRefGoogle Scholar
Zheltovodov, APhysical features and properties of two- and three-dimensional separated flows at supersonic velocitiesIzvestiya AN SSSR, Mekhanika Zhidkosti i Gaza () 3 1979 42Google Scholar
Zheltovodov, A. A 2006
Zheltovodov, A. ASchülein, E 1986
Zheltovodov, ADvorak, RSafarik, PShock waves/turbulent boundary layer interaction properties at transonic and supersonic speeds conditionsIzvestiya SO AN SSSR, Seriya Tekhnicheskih Nauk 6 1990 31Google Scholar
Dem’yanenko, V. SIgumnov, V. ASpatial shock wave–turbulent boundary layer interactions in the interference region of intersecting surfacesIzvestiya Sibirskogo Otdeleniya Akademii Nauk SSSR (Proceedings of the USSR Academy of Sciences, Siberian Branch), Seriya Tekhnicheskh Nauk 8 1975 56Google Scholar
Hayes, J. R 1976
Schülein, EZheltovodov, A. ADocumentation of experimental data for hypersonic 3-D shock waves/turbulent boundary layer interaction flowsDLR Internal Report 95 2001Google Scholar
Kubota, HStollery, J. LAn experimental study of the interaction between a glancing shock and a turbulent boundary layerJ. Fluid Mech 116 1982 431CrossRefGoogle Scholar
Zubin, MOstapenko, NStructure of the flow in the region of separation for interaction of a normal shock wave with a boundary layerIzvestiya AN SSSR, Mekhanika Zhidkosti i Gaza 3 1979Google Scholar
Zubin, M. AOstapenko, N. AGeometrical characteristics of turbulent boundary layer separation at interaction with normal shock wave in conical flowsIzvestiya AN SSSR, Mekhanika Zhidkosti i Gaza 6 1983 43Google Scholar
Zukoski, E. E.Turbulent boundary-layer separation in front of a forward-facing stepAIAA J 5 1967 1746CrossRefGoogle Scholar
Chapman, DKuehn, DLarson, HInvestigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transitionNACA Report 1356 1958Google Scholar
Zheltovodov, A. AYakovlev, V. N 1986
Kutateladze, S. SLeont’ev, A. ITurbulent Boundary Layer of Compressible Gas. SO AN SSSRNovosibirsk 1962Google Scholar
Zheltovodov, A. AKharitonov, A. MAbout the analogy of 2-D and 3-D separated flowsFizicheskaya Gazodinamika (Physical Gas Dynamics)Novosibirsk 1976 130Google Scholar
Settles, G. SKimmel, R. LSimilarity of quasiconical shock wave/turbulent boundary layer interactionsAIAA J 24 1986 47CrossRefGoogle Scholar
Charwat, A. FSupersonic flows imbedded separated regionsAdvances in Heat Transfer 6 1970 1CrossRefGoogle Scholar
Oskam, BVas, I. EBogdonoff, S. MMach 3 oblique shock wave/turbulent boundary layer interactions in three dimensionsAIAA Paper 76 19 1976Google Scholar
Lu, FSettles, GConical similarity of shock/boundary layer interaction generated by swept finsAIAA Paper 83 1983Google Scholar
Leung, A. W. CSquire, L. CReynolds number effects in swept-shock-wave/turbulent-boundary-layer interactionAIAA J 33 1995 798CrossRefGoogle Scholar
Inger, G. RUpstream influence and skin friction in non-separating shock/turbulent boundary-layer interactionsAIAA Paper 80 1980Google Scholar
Inger, G. R 1980
Délery, JMarvin, J. GShock-wave boundary layer interactionsAGARDograph No 280 1986Google Scholar
Horstman, C. CHung, C. M41 1979
Alvi, F. SSettles, G. SStructure of swept shock wave/boundary layer interactions using conical shadowgraphyAIAA Paper 90 1990Google Scholar
Alvi, F. SSettles, G. SA physical model of the swept shock/boundary-layer interaction flowfieldAIAA Paper 91 1991Google Scholar
Edney, BAnomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shockAeronautical Research Institute in Sweden, FFA Report 115 1968Google Scholar
Schülein, ESkin-friction and heat-flux measurements in shock/boundary-layer interaction flowAIAA J 44 2006 1732CrossRefGoogle Scholar
Voitenko, D. MZubkov, A. I.Panov, Yu. A.Supersonic gas flow past a cylindrical obstacle on a plateIzvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza (Fluid Dynamics) 1 1966 120Google Scholar
Voitenko, D. MZubkov, A. I.Panov, Yu. A.About existence of supersonic zones in three-dimensional separated flowsIzvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza (Fluid Dynamics) 1 1967 20Google Scholar
Knight, D. DHorstman, C. CShapey, BBogdonoff, S. MStructure of supersonic turbulent flow past a sharp finAIAA J 25 1987 1331CrossRefGoogle Scholar
Bogdonoff, S. MThe modeling of a three-dimensional shock wave turbulent boundary layer interaction: The Dryden LectureAIAA Paper 90 1990Google Scholar
Knight, DYan, HPanaras, A. GZheltovodov, AAdvances in CFD prediction of shock wave turbulent boundary layer interactionsProgress in Aerospace Sciences 39 2003 121CrossRefGoogle Scholar
Panaras, A. GAlgebraic turbulence modeling for swept shock-wave/turbulent boundary-layer interactionsAIAA J 35 1997 456CrossRefGoogle Scholar
Panaras, A. GThe effect of the structure of swept-shock-wave/turbulent-boundary-layer interactions on turbulence modelingJ. Fluid Mech 338 1997 203CrossRefGoogle Scholar
Panaras, A. GCalculation of flows characterized by extensive cross-flow separationAIAA J 42 2004 2474CrossRefGoogle Scholar
Settles, G. SDodson, L. J 1991
Knight, D. DDegrez, GShock wave boundary layer interactions in high Mach number flows: A critical survey of current CFD prediction capabilitiesAGARD Report 319 1 1998Google Scholar
Thivet, FKnight, DZheltovodov, AMaksimov, AImportance of limiting the turbulence stresses to predict 3D shock wave boundary layer interactionsProc. 23rd International Symposium on Shock WavesFt. Worth, TX 2001 7Google Scholar
Durbin, POn the stagnation point anomalyInt. J. Heat Fluid Flow 17 1996 89CrossRefGoogle Scholar
Thivet, F11 2002
Zheltovodov, A. ASchülein, EProblems and capabilities of modeling of turbulent separation at supersonic speeds conditionsProc. The Seventh All-Union Congress on Theoretical and Applied Mechanics, Reports AnnotationsMoscow 1991 153Google Scholar
Zheltovodov, A. AMaksimov, A. IDevelopment of three-dimensional flows at conical shock-wave/turbulent boundary layer interactionSibirskiy Fiziko-Technicheskiy Zhurnal (Siberian Physical-Technical Journal) 2 1991 88Google Scholar
Settles, G. SBogdonoff, S. MScaling of two- and three-dimensional shock/turbulent boundary-layer interactions at compression cornersAIAA J 20 1982 782CrossRefGoogle Scholar
Dolling, D. SBogdonoff, S. MUpstream influence in sharp fin-induced shock wave turbulent boundary layer interactionAIAA J 21 1983 143CrossRefGoogle Scholar
Wang, S. WBogdonoff, S. MA re-examination of the upstream influence scaling and similarity laws for 3-D shock wave/turbulent boundary layer interactionAIAA Paper 83 1986 7Google Scholar
Lu, F. KSettles, G. SUpstream-influence scaling of sharp fin interactionsAIAA J 29 1991 1180CrossRefGoogle Scholar
Settles, G. SPerkins, J. JBogdonoff, S. MInvestigation of three-dimensional shock/boundary-layer interaction at swept compression cornersAIAA J 18 1980 779CrossRefGoogle Scholar
Settles, G. STeng, HCylindrical and conical flow regimes of three-dimensional shock/boundary-layer interactionsAIAA J 22 1984 194Google Scholar
Settles, G. SOn the inception lengths of swept shock-wave/turbulent boundary-layer interactionsProc. IUTAM Symposium on Turbulent Shear-Layer/Shock-Wave InteractionsPalaiseau, FranceDélery, J. 1985 203Google Scholar
Korkegi, R. HA lower bound for three-dimensional turbulent separation in supersonic flowAIAA J 23 1985 475CrossRefGoogle Scholar
Settles, G. SBogdonoff, S. MVas, I. EIncipient separation of a supersonic turbulent boundary layer at high Reynolds numbersAIAA J 14 1976 50CrossRefGoogle Scholar
Settles, G. S 1975
Settles, G. SHorstman, C. CMcKenzie, T. MExperimental and computational study of a swept compression corner interaction flowfieldAIAA J 24 1986 744CrossRefGoogle Scholar
Knight, D. DHorstman, C. CBogdonoff, S. MStructure of supersonic turbulent flow past a swept compression cornerAIAA J 30 1992 890CrossRefGoogle Scholar
Zheltovodov, A. AMaksimov, A. IShevchenko, A. MTopology of three-dimensional separation under the conditions of symmetric interaction of crossing shocks and expansion waves with turbulent boundary layerThermophysics and Aeromechanics 5 1998 293Google Scholar
Zheltovodov, A. AMaksimov, A. ISchülein, EGaitonde, D. VSchmisseur, J. DVerification of crossing-shock-wave/boundary layer interaction computations with the k-?? turbulence modelProc. International Conference on the Methods of Aerophysical ResearchNovosibirsk, Russia 2000 231Google Scholar
Zheltovodov, A. AMaksimov, A. IGaitonde, DVisbal, MShang, J. SExperimental and numerical study of symmetric interaction of crossing shocks and expansion waves with a turbulent boundary layerThermophysics and Aeromechanics 7 2000 155Google Scholar
Thivet, FKnight, D. DZheltovodov, A. AMaksimov, A. INumerical prediction of heat-transfer in supersonic inletsProc. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2000)Barcelona, CD Contents1 2000Google Scholar
Thivet, FKnight, D. DZheltovodov, A. AMaksimov, A. IInsights in turbulence modeling for crossing shock wave boundary layer interactionsAIAA J 39 2001 985CrossRefGoogle Scholar
Thivet, FKnight, D. DZheltovodov, A. AMaksimov, A. IAnalysis of observed and computed crossing-shock-wave/turbulent-boundary-layer interactionsAerospace Sci. and Technology 6 2002 3CrossRefGoogle Scholar
Moore, J. FMoore, JRealizability in two-equation turbulence modelsAIAA Paper 99 1999Google Scholar
Batcho, P. FKetchum, A. CBogdonoff, S. MFernando, E. MPreliminary study of the interactions caused by crossing shock waves and a turbulent boundary layerAIAA Paper 89 1989Google Scholar
Poddar, KBogdonoff, SA study of unsteadiness of crossing shock wave turbulent boundary layer interactionsAIAA Paper 90 1990Google Scholar
Davis, D. OHingst, W. RSurface and flowfield measurements in a symmetric crossing shock wave/turbulent boundary layer interactionAIAA Paper 92 1992Google Scholar
Garrison, T. JSettles, G. SFlowfield visualization of crossing shock-wave/boundary-layer interactionsAIAA Paper 92 10 1992Google Scholar
Gaitonde, D. VShang, J. SGarrison, T. JZheltovodov, A. AMaksimov, A. IEvolution of the separated flowfield in a 3-D shock wave/turbulent boundary layer interactionAIAA Paper 97 1997Google Scholar
Schmisseur, J. DGaitonde, D. VZheltovodov, A. AExploration of 3-D shock turbulent boundary layer interactions through combined experimental/computational analysisAIAA Paper 2000 11 2000Google Scholar
Schmisseur, J. DGaitonde, D. VNumerical investigation of strong crossing shock-wave/turbulent boundary-layer interactionsAIAA J 39 2001 1742CrossRefGoogle Scholar
Derunov, E. KZheltovodov, A. AMaksimov, A. IDevelopment of three-dimensional turbulent separation in the neighborhood of incident crossing shock wavesThermophysics and Aeromechanics 15 2008 29CrossRefGoogle Scholar
Zheltovodov, A. AMaksimov, A. IShevchenko, A. MKnight, D. DTopology of three-dimensional separation under the conditions of asymmetric interaction of crossing shocks and expansion waves with turbulent boundary layerThermophysics and Aeromechanics 5 1998 483Google Scholar
Gaitonde, DShang, JGarrison, TZheltovodov, AMaksimov, AThree-dimensional turbulent interactions caused by asymmetric crossing shock configurationsAIAA J 37 1999 1602CrossRefGoogle Scholar
Knight, DGnedin, MBecht, RZheltovodov, ANumerical simulation of crossing-shock-wave/turbulent-boundary-layer interaction using a two-equation model of turbulenceJ. Fluid Mech 409 2000 121CrossRefGoogle Scholar
Knight, D. DGarrison, T. JSettles, G. SZheltovodov, A. AMaksimov, A. IShevchenko, A. MVorontsov, S. SAsymmetric crossing-shock-wave/turbulent-boundary-layer interactionAIAA J 33 2001 2241CrossRefGoogle Scholar
Gaitonde, D. VVisbal, M. RShang, J. SZheltovodov, A. AMaksimov, A. ISidewall interaction in an asymmetric simulated scramjet inlet configurationJ. Propulsion and Power 17 2001 579CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×