Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T03:55:30.018Z Has data issue: false hasContentIssue false

29 - Stroke therapy

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

Stroke is the leading cause of disability in the adult worldwide. The most common neurological impairment following stroke is weakness or loss of sensibility of the extremities contralateral to the side of the brain lesion. Only about 40% of affected individuals regain full recovery; the remaining 60% have persistent neurological deficits that impact on their social functioning in private and community life. By now, much of our clinical and scientific interest is focused on stroke prevention and acute stroke therapy. In contrast, there is less effort in developing novel strategies for hand motor rehabilitation after stroke. This is surprising since about two-thirds of stroke survivors are left with permanent sensory or motor impairment. This chapter discusses the intrinsic capacity of the cortical motor system for reorganization and gives an overview of established and novel concepts for sensorimotor rehabilitation of the hand after stroke.

Introduction

Stroke is the leading cause of disability in the adult worldwide (Kolominsky-Rabas et al., 2001). The annual incidence of stroke is 100–300 per 100,000 (Broderick et al., 1998). The most common impairment following stroke is weakness of the limbs contralateral to the side of the brain lesion (Kelly-Hayes et al., 1998). Only about 40% of stroke survivors recover completely (Hankey et al., 2002) and among the remaining 60% permanent sensory and/or motor disability of the hand constitutes a major problem (Stein, 1998).

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 405 - 424
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschuler, E. L., Wisdom, S. B., Stone, L.et al. (1999). Rehabilitation of hemiparesis after stroke with a mirror. Lancet, 353, 2035–2036.CrossRefGoogle ScholarPubMed
Bhatt, E., Nagpal, A., Greer, K. H.et al. (2007). Effect of finger tracking combined with electrical stimulation on brain reorganization and hand function in subjects with stroke. Exp Brain Res, 182, 435–447.CrossRefGoogle ScholarPubMed
Blennerhassett, J. M., Carey, L. M. & Matyas, T. A. (2006). Grip force regulation during pinch grip lifts under somatosensory guidance: comparison between people with stroke and healthy controls. Arch Phys Med Rehabil, 87, 418–429.CrossRefGoogle ScholarPubMed
Bobath, B. (1987). Adult Hemiplegia. Evaluation and Treatment. London: Butterworth-Heinemann.Google Scholar
Bolton, D. A., Cauraugh, J. H. & Hausenblas, H. A. (2004). Electromyogram-triggered neuromuscular stimulation and stroke motor recovery of arm/hand functions: a meta-analysis. J Neurol Sci, 223, 121–127.CrossRefGoogle ScholarPubMed
Bourbonnais, D., Bilodeau, S., Cross, P.et al. (1997). A motor reeducation program aimed to improve strength and coordination of the upper-limb of a hemiparetic subject. Neurorehabilitation, 9, 3–15.CrossRefGoogle ScholarPubMed
Broderick, J., Brott, T., Kothari, R.et al. (1998). The Greater Cincinnati/Northern Kentucky Stroke Study: preliminary first-ever and total incidence rates of stroke among blacks. Stroke, 29, 415–421.CrossRefGoogle ScholarPubMed
Broeren, J., Rydmark, M., Bjorkdahl, A. & Sunnerhagen, K. S. (2007). Assessment and training in a 3-dimensional virtual environment with haptics: a report on 5 cases of motor rehabilitation in the chronic stage after stroke. Neurorehabil Neural Repair, 21, 180–189.CrossRefGoogle Scholar
Buccino, G., Solodkin, A. & Small, S. L. (2006). Functions of the mirror neuron system: implications for neurorehabilitation. Cogn Behav Neurol, 19, 55–63.CrossRefGoogle ScholarPubMed
Bütefisch, C., Hummelsheim, H., Denzler, P. & Mauritz, K. H. (1995). Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci, 130, 59–68.CrossRefGoogle ScholarPubMed
Cadoret, G. & Smith, A. M. (1997). Comparison of the neuronal activity in the SMA and the ventral cingulate cortex during prehension in the monkey. J Neurophysiol, 77, 153–166.CrossRefGoogle ScholarPubMed
Carey, J. R., Durfee, W. K., Bhatt, E.et al. (2007). Comparison of finger tracking versus simple movement training via telerehabilitation to alter hand function and cortical reorganization after stroke. Neurorehabil Neural Repair, 21, 216–232.CrossRefGoogle ScholarPubMed
Carey, L. M. & Matyas, T. A. (2005). Training of somatosensory discrimination after stroke: facilitation of stimulus generalization. Am J Phys Med Rehabil, 84, 428–442.CrossRefGoogle ScholarPubMed
Cauraugh, J. H. & Kim, S. (2002). Two coupled motor recovery protocols are better than one: electromyogram-triggered neuromuscular stimulation and bilateral movements. Stroke, 33, 1589–1594.CrossRefGoogle ScholarPubMed
Cauraugh, J. H., Light, K., Kim, S., Thigpen, M. & Behrman, A. (2000). Chronic motor dysfunction after stroke: recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke, 31, 1360–1364.CrossRefGoogle ScholarPubMed
Conforto, A. B., Kaelin-Lang, A. & Cohen, L. G. (2002). Increase in hand muscle strength of stroke patients after somatosensory stimulation. Ann Neurol, 51, 122–125.CrossRefGoogle ScholarPubMed
Conforto, A. B., Cohen, L. G., dos Santos, R. L., Scaff, M. & Marie, S. K. (2007). Effects of somatosensory stimulation on motor function in chronic cortico-subcortical strokes. J Neurol, 254, 333–339.CrossRefGoogle ScholarPubMed
Dafotakis, M., Grefkes, C., Eickhoff, S. B.et al. (2008). Effects of rTMS on grip force control following subcortical stroke. Exp Neurol, 211, 407–412.CrossRefGoogle ScholarPubMed
Kroon, J. R., Lee, J. H., IJzerman, M. J. & Lankhorst, G. J. (2002). Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review. Clin Rehabil, 16, 350–360.CrossRefGoogle ScholarPubMed
Vries, S. & Mulder, T. (2007). Motor imagery and stroke rehabilitation: a critical discussion. J Rehabil Med, 39, 5–13.CrossRefGoogle ScholarPubMed
Dimitrijevic, M. M. & Soroker, N. (1994). Mesh-glove. 2. Modulation of residual upper limb motor control after stroke with whole-hand electric stimulation. Scand J Rehabil Med, 26, 187–190.Google ScholarPubMed
Dum, R. P. & Strick, P. L. (2002). Motor areas in the frontal lobe of the primate. Physiol Behav, 77, 677–682.CrossRefGoogle ScholarPubMed
Ertelt, D., Small, S., Solodkin, A.et al. (2007). Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage, 36, 164–173.CrossRefGoogle Scholar
Floel, A. & Cohen, L. G. (2006). Translational studies in neurorehabilitation: from bench to bedside. Cogn Behav Neurol, 19, 1–10.CrossRefGoogle ScholarPubMed
Fregni, F., Boggio, P. S., Mansur, C. G.et al. (2005). Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport, 16, 1551–1555.CrossRefGoogle ScholarPubMed
Glanz, M., Klawansky, S., Stason, W.et al. (1995). Biofeedback therapy in poststroke rehabilitation: a meta-analysis of the randomized controlled trials. Arch Phys Med Rehabil, 76, 508–515.CrossRefGoogle ScholarPubMed
Grefkes, C., Nowak, D. A., Eickhoff, S.et al. (2008). Cortical connectivity after subcortical stroke assessed with fMRI. Arch Neurol, 65, 741–747.Google Scholar
Hamzei, F., Liepert, J., Dettmers, C., Weiller, C. & Rijntjes, M. (2006). Two different reorganization patterns after rehabilitative therapy: an exploratory study with fMRI and TMS. Neuroimage, 31, 710–720.CrossRefGoogle ScholarPubMed
Hankey, G. J., Jamrozik, K., Broadhurst, R. J., Forbes, S. & Anderson, C. S. (2002). Long-term disability after first-ever stroke and related prognostic factors in the Perth Community Stroke Study, 1989–1990. Stroke, 33, 1034–1040.CrossRefGoogle ScholarPubMed
Hermsdörfer, J., Marquardt, C., Wack, S. & Mai, N. (1999). Comparative analysis of diadochokinetic movements. J Electromyogr Kinesiol, 9, 283–295.CrossRefGoogle ScholarPubMed
Hermsdörfer, J., Hagl, E., Nowak, D. A. & Marquardt, C. (2003). Grip force control during object manipulation in cerebral stroke. Clin Neurophysiol, 114, 915–929.CrossRefGoogle ScholarPubMed
Hesse, S., Werner, C., Pohl, M.et al. (2005). Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke, 36, 1960–1966.CrossRefGoogle ScholarPubMed
Hummel, F., Celnik, P., Giraux, P.et al. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 128, 490–499.CrossRefGoogle ScholarPubMed
Hummel, F. C. & Cohen, L. G. (2006). Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol, 5, 708–712.CrossRefGoogle ScholarPubMed
Hummelsheim, H., Amberger, S. & Mauritz, K. H. (1996). The influence of EMG initiated electrical muscle stimulation on motor recovery of the centrally paretic hand. Eur J Neurosci, 3, 245–254.CrossRefGoogle ScholarPubMed
Hummelsheim, H., Maierloth, M. L. & Eickhof, C. (1997). The functional value of electrical muscle stimulation for the rehabilitation of the hand in stroke patients. Scand J Rehabil Med, 29, 3–10.Google ScholarPubMed
Jenkins, W. M., Merzenich, M. M., Ochs, M. T., Allard, T. & Guíc-Robles, E. (1990). Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J Neurophysiol, 63, 82–104.CrossRefGoogle ScholarPubMed
Kahn, L. E., Lum, P. S., Rymer, W. Z. & Reinkensmeyer, D. J. (2006). Robot-assisted movement training for the stroke-impaired arm: does it matter what the robot does?J Rehabil Res Dev, 43, 619–630.CrossRefGoogle Scholar
Kelly-Hayes, M., Robertson, J. T., Broderick, J. P.et al. (1998). The American Heart Association Stroke Outcome Classification: executive summary. Circulation, 97, 2474–2478.CrossRefGoogle ScholarPubMed
Khedr, E. M., Ahmed, M. A., Fathy, N. & Rothwell, J. C. (2005). Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology, 65, 466–468.CrossRefGoogle ScholarPubMed
Kolominsky-Rabas, P. L., Weber, M., Gefeller, O., Neundörfer, B. & Heuschmann, P. U. (2001). Epidemiology of ischemic stroke subtypes according to the TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke, 32, 2735–2740.CrossRefGoogle ScholarPubMed
Kowalczewski, J., Gritsenko, V., Ashworth, N., Ellaway, P. & Prochazka, A. (2007). Upper-extremity functional electric stimulation-assisted exercises on a workstation in the subacute phase of stroke recovery. Arch Phys Med Rehabil, 88, 833–839.CrossRefGoogle ScholarPubMed
Kriz, G., Hermsdörfer, J., Marquardt, C. & Mai, N. (1995). Feedback-based training of grip force control in patients with brain damage. Arch Phys Med Rehabil, 76, 653–659.CrossRefGoogle ScholarPubMed
Kwakkel, G., Kollen, B. J. & Wagenaar, R. C. (2002). Long-term effects of intensity of upper and lower limb training following stroke: a randomised trial. J Neurol Neurosurg Psychiatry, 72, 473–479.Google Scholar
Kwakkel, G., Peppen, R., Wagenaar, R. C.et al. (2004). Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke, 35, 2529–2539.CrossRefGoogle ScholarPubMed
Lang, C. E., Wagner, J. M., Bastian, A. J.et al. (2005). Deficits in grasp versus reach during acute hemiparesis. Exp Brain Res, 166, 126–136.CrossRefGoogle ScholarPubMed
Lang, C. E., Reilly, K. T. & Schieber, M. H. (2006a). Human voluntary motor control and dysfunction. In Selzer, M., Clarke, S., Cohen, L., Duncan, P. & Gage, F. (Eds.), Neural Repair and Rehabilitation (Vol. II, pp. 24–36). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Lang, C. E., Wagner, J. M., Edwards, D. F., Sahrmann, S. A. & Dromerick, A. W. (2006b). Recovery of grasp versus reach in people with hemiparesis poststroke. Neurorehabil Neural Repair, 20, 444–454.CrossRefGoogle ScholarPubMed
Larsen, C. & Schneider, W. (2007). Spiraldynamische Körperarbeit. Hands-on-Techniken der 3D-Massage. Stuttgart, Germany: Thieme.Google Scholar
Lennon, S., Baxter, D. & Ashburn, A. (2001). Physiotherapy based on the Bobath concept in stroke rehabilitation: a survey within the UK. Disabil Rehabil, 23, 254–262.Google ScholarPubMed
Liepert, J., Hamzei, F. & Weiller, C. (2000). Motor cortex disinhibition of the unaffected hemisphere after acute stroke. Muscle Nerve, 23, 1761–1763.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Luke, C., Dodd, K. J. & Brock, K. (2004). Outcomes of the Bobath concept on upper limb recovery following stroke. Clin Rehabil, 18, 888–898.CrossRefGoogle ScholarPubMed
Lum, P. S., Burgar, C. G., Shor, P. C., Majmundar, M. & Loos, M. (2002). Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil, 83, 952–959.CrossRefGoogle ScholarPubMed
Lum, P. S., Burgar, C. G., Loos, M.et al. (2006). MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J Rehabil Res Dev, 43, 631–642.CrossRefGoogle ScholarPubMed
Mai, N. (1989). Residual control of isometric finger forces in hemiparetic patients. Evidence for dissociation of performance deficits. Neurosci Lett, 101, 347–351.CrossRefGoogle ScholarPubMed
Mansur, C. G., Fregni, F., Boggio, P. S.et al. (2005). A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology, 64, 1802–1804.CrossRefGoogle ScholarPubMed
Masiero, S., Celia, A., Rosati, G. & Armani, M. (2007). Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch Phys Med Rehabil, 88, 142–149.CrossRefGoogle ScholarPubMed
McDonnell, M. N., Hillier, S. L., Ridding, M. C. & Miles, T. S. (2006). Impairments in precision grip correlate with functional measures in adult hemiplegia. Clin Neurophysiol, 117, 1474–1480.CrossRefGoogle ScholarPubMed
Merians, A. S., Poizner, H., Boian, R., Burdea, G. & Adamovich, S. (2006). Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke?Neurorehabil Neural Repair, 20, 252–267.CrossRefGoogle Scholar
Miller, G. J. T. & Light, K. E. (1997). Strength training in spastic hemiparesis – should it be avoided? Neurorehabilitation, 9, 17–28.CrossRefGoogle ScholarPubMed
Miltner, W. H., Bauder, H., Sommer, M., Dettmers, C. & Taub, E. (1999). Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke: a replication. Stroke, 30, 586–592.CrossRefGoogle ScholarPubMed
Mudie, M. H. & Matyas, T. A. (2000). Can simultaneous bilateral movement involve the undamaged hemisphere in reconstruction of neural networks damaged by stroke?Disabil Rehabil, 22, 23–37.CrossRefGoogle Scholar
Muellbacher, W., Richards, C., Ziemann, U.et al. (2002). Improving hand function in chronic stroke. Arch Neurol, 59, 1278–1282.CrossRefGoogle ScholarPubMed
Mulder, T. (2007). Motor imagery and action observation: cognitive tools for rehabilitation. J Neural Transmiss, 114, 1265–1278.CrossRefGoogle ScholarPubMed
Murase, N., Duque, J., Mazzocchio, R. & Cohen, L. G. (2004). Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol, 55, 400–409.CrossRefGoogle ScholarPubMed
Myers, B. J. (1989). Proprioceptive neuromuscular facilitation (PNF) approach. In Thromby, C. A. (Ed.), Occupational Therapy for Physical Dysfunction (pp. 135–155). Baltimore, MD: Williams & Wilkins.Google Scholar
Naito, E., Roland, P. E. & Ehrsson, H. H. (2002). I feel my hand moving: a new role of the primary motor cortex in somatic perception of limb movement. Neuron, 36, 979–988.CrossRefGoogle ScholarPubMed
Nakayama, H., Jorgensen, H. S., Raaschou, H. O. & Olsen, T. S. (1994). Recovery of upper extremity function in stroke subjects: the Copenhagen Stroke Study. Arch Phys Med Rehabil, 75, 394–398.CrossRefGoogle Scholar
Nowak, D. A. (2006). Toward an objective quantification of impaired manual dexterity following stroke: the usefulness of precision grip measures. Clin Neurophysiol, 117, 1409–1411.CrossRefGoogle ScholarPubMed
Nowak, D. A. & Hermsdörfer, J. (2005). Grip force behaviour during object manipulation in neurological disorders: toward an objective evaluation of manual performance deficits. Mov Dis, 20, 11–25.CrossRefGoogle ScholarPubMed
Nowak, D. A., Hermsdörfer, J. & Topka, H. (2003). Deficits of predictive grip force control during object manipulation in acute stroke. J Neurol, 250, 850–860.CrossRefGoogle ScholarPubMed
Nowak, D. A., Grefkes, C., Dafotakis, M.et al. (2007). Dexterity is impaired at both hands following unilateral subcortical middle cerebral artery stroke. Eur J Neurosci, 25, 3173–3184.CrossRefGoogle ScholarPubMed
Nudo, R. J., Milliken, G. W., Jenkins, W. M. & Merzenich, M. M. (1996). Use-dependent alterations of movement representation in primary motor cortex of adult squirrel monkeys. J Neurosci, 16, 785–807.CrossRefGoogle ScholarPubMed
Page, S. J., Levine, P. & Leonard, A. C. (2005). Effects of mental practice on affected limb use and function in chronic stroke. Arch Phys Med Rehabil, 86, 399–402.CrossRefGoogle ScholarPubMed
Page, S. J.Levine, P. & Leonard, A. (2007). Mental practice in chronic stroke: results of a randomized, placebo-controlled trial. Stroke, 38, 1293–1297.CrossRefGoogle ScholarPubMed
Penfield, W. & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 37, 389–443.CrossRefGoogle Scholar
Penfield, W. & Rasmussen, T. (1950). The Cerebral Cortex of Man. New York, NY: MacMillan.Google Scholar
Perfetti, C. (2006). Rehabilitieren mit Gehirn. Kognitiv – Therapeutische Übungen in Neurologie und Orthopädie. Munich, Germany: Pflaum.Google Scholar
Platz, T. (2004). Impairment-oriented training (IOT) – scientific concept and evidence-based treatment strategies. Restor Neurol Neurosci, 22, 301–315.Google ScholarPubMed
Platz, T., Winter, T., Muller, N.et al. (2001). Arm ability training for stroke and traumatic brain injury patients with mild arm paresis: a single-blind, randomized, controlled trial. Arch Phys Med Rehabil, 82, 961–968.CrossRefGoogle ScholarPubMed
Popovic, M. B., Popovic, D. B., Sinkjaer, T., Stefanovic, A. & Schwirtlich, L. (2003). Clinical evaluation of Functional Electrical Therapy in acute hemiplegic subjects. J Rehabil Res Dev, 40, 443–453.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Luppino, G. & Matelli, M. (1998). The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol, 106, 283–296.CrossRefGoogle ScholarPubMed
Santos, M., Zahner, L. H., Mckiernan, B. J., Mahnken, J. D. & Quaney, B. (2006). Neuromuscular electrical stimulation improves severe hand dysfunction for individuals with chronic stroke: a pilot study. J Neurol Phys Ther, 30, 175–183.CrossRefGoogle ScholarPubMed
Schieber, M. H. (2001). Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol, 86, 2125–2143.CrossRefGoogle ScholarPubMed
Sharma, N., Pomeroy, V. M. & Baron, J. C. (2006). Motor imagery: a backdoor to the motor system after stroke?Stroke, 37, 1941–1952.CrossRefGoogle ScholarPubMed
Stein, D. G. (1998). Brain injury and theories of recovery. In Goldstein, L. B. (Ed.), Restorative Neurology: Advances in Pharmacotherapy for Recovery After Stroke (pp. 1–34). Armonk, NY: Futura Publishing.Google Scholar
Stevens, J. A. & Stoykov, M. E. (2004). Simulation of bilateral movement training through mirror reflection: a case report demonstrating an occupational therapy technique for hemiparesis. Top Stroke Rehabil, 11, 59–66.CrossRefGoogle ScholarPubMed
Struppler, A., Havel, P. & Müller-Barna, P. (2003). Facilitation of skilled finger movements by repetitive peripheral magnetic stimulation (RPMS) – a new approach in central paresis. Neurorehabilitation, 18, 69–82.Google ScholarPubMed
Suppé, B. & Spirgi-Gantert, I. (2007). FBL Klein-Vogelbach Functional Kinetics: Die Grundlagen. Bewegungsanalyse, Untersuchung, Behandlung. Berlin, Germany: Springer.Google Scholar
Taub, E., Miller, N. E., Novack, T. A.et al. (1993). Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil, 74, 347–354.Google ScholarPubMed
Taub, E., Uswatte, G. & Pidikiti, R. (1999). Constraint-induced movement therapy – a new family of techniques with broad application to physical rehabilitation – a clinical review. J Rehabil Res Develop, 36, 237–251.Google ScholarPubMed
Tijs, E. & Matyas, T. A. (2006). Bilateral training does not facilitate performance of copying tasks in poststroke hemiplegia. Neurorehabil Neural Repair, 20, 473–483.CrossRefGoogle Scholar
Lee, J. H. (2001). Constraint-induced therapy for stroke: more of the same or something completely different?Curr Opin Neurol, 14, 741–744.Google ScholarPubMed
Peppen, R. P., Kwakkel, G., Wood-Dauphinee, S.et al. (2004). The impact of physical therapy on functional outcomes after stroke: what's the evidence?Clin Rehabil, 18, 833–862.CrossRefGoogle ScholarPubMed
Whitall, J., Waller, S. M., Silver, K. H. C. & Macko, R. F. (2000). Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke, 31, 2390–2395.CrossRefGoogle ScholarPubMed
Winstein, C. J., Rose, D. K., Tan, S. M.et al. (2004). A randomized controlled comparison of upper-extremity rehabilitation strategies in acute stroke: a pilot study of immediate and long-term outcomes. Arch Phys Med Rehabil, 85, 620–628.CrossRefGoogle ScholarPubMed
Woldag, H., Waldmann, G., Heuschkel, G. & Hummelsheim, H. (2003). Is the repetitive training of complex hand and arm movements beneficial for motor recovery in stroke patients?Clin Rehabil, 17, 723–730.CrossRefGoogle ScholarPubMed
Wolf, S. L., Winstein, C. J., Miller, J. P.et al. for the EXCITE Investigators (2006). Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. J Am Med Assoc, 296, 2095–2104.CrossRefGoogle ScholarPubMed
Wu, C. W., Seo, H. J. & Cohen, L. G. (2006). Influence of electric somatosensory stimulation on paretic-hand function in chronic stroke. Arch Phys Med Rehabil, 87, 351–357.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×