Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T10:09:06.419Z Has data issue: false hasContentIssue false

28 - Schizophrenia

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

It is widely held that schizophrenia is associated with a variety of subtle sensory and motor impairments – so called neurological soft signs – that may impact on manual dexterity. Neurological soft signs (NSS) in schizophrenia appear to be part of the underlying disorder. The motor deficit of the hand, however, may also worsen as a side effect of antipsychotic treatment. Within the theoretical framework of internal models schizophrenia has been associated with a deficit of self-monitoring and awareness of action. Deficient monitoring of the sensory consequences of voluntary movement may be directly related to the motor deficit to be found in schizophrenia. This chapter summarizes kinetic and kinematic aspects of impaired manual dexterity in schizophrenia and discusses the motor disability within the context of internal models for the sensorimotor processing of voluntary actions.

Introduction

Early in the 20th century, Bleuler (1908) and Kraepelin (1919) described several motor abnormalities in schizophrenia, such as problems in the sequencing and spacing of steps when walking and dyscoordination of hand and arm movements when performing handiwork and crafts. In this era antipsychotic drugs did not exist and, consequently, these early clinical observations cannot simply be considered a side effect of antipsychotic treatment. Today, deficits of fine motor performance, also referred to as neurological soft signs (NSS), are still observed in a substantial proportion of schizophrenic subjects, but their nature is still not completely understood and their semiology is not easily distinguishable from side effects of antipsychotic treatment.

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 390 - 402
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbib, M. A. & Mundhenk, T. N. (2005). Schizophrenia and the mirror system: an essay. Neuropsychologia, 43, 268–280.CrossRefGoogle Scholar
Bartko, G., Zador, G., Horvath, S. & Herczeg, I. (1988). Neurological soft signs in chronic schizophrenic patients: clinical correlates. Biol Psychiatry, 24, 458–460.CrossRefGoogle ScholarPubMed
Blakemore, S. J., Smith, J., Steel, R., Johnstone, C. E. & Frith, C. D. (2000). The perception of self-produced sensory stimuli in patients with auditory hallucinations and passivity experiences: evidence for a breakdown in self-monitoring. Psychol Med, 30, 1131–1139.CrossRefGoogle ScholarPubMed
Blakemore, S. J., Frith, C. D. & Wolpert, D. M. (2001). The cerebellum is involved in predicting the sensory consequences of action. Neuroreport, 12, 1879–1884.CrossRefGoogle Scholar
Bleuler, E. (1908). Dementia praecox or the Group of Schizophrenias. Translated by Zinkin, J. (1950). New York, NY: International Universities Press.Google Scholar
Boks, N. P. M., Russo, S., Knegtering, R. & Bosch, R. J. (2000). The specificity of neurological signs in schizophrenia: a review. Schizophr Res, 43, 109–116.CrossRefGoogle ScholarPubMed
Browne, S., Clarke, M., Gervin, M.et al. (2000). Determinants of neurological dysfunction in first episode schizophrenia. Psychol Med, 30, 1433–1441.CrossRefGoogle ScholarPubMed
Buchanan, R. W., Kirkpatrick, B., Heinrichs, D. W. & Carpenter, W. T.. (1990). Clinical correlates of the deficit syndrome of schizophrenia. Am J Psychiatry, 147, 290–294.Google ScholarPubMed
Buchanan, R. W., Koeppl, P. & Breier, A. (1994). Stability of neurological signs with clozapine treatment. Biol Psychiatry, 36, 198–200.CrossRefGoogle ScholarPubMed
Carnahan, H., Elliott, D. & Velomoor, V. R. (1996). Influence of object size on prehension in leukotomized and unleukotomized individuals with schizophrenia. J Clin Exp Neuropsychol, 18, 136–147.CrossRefGoogle ScholarPubMed
Chen, E. Y., Kwok, C. L., Au, J. W., Chen, R. Y. & Lau, B. S. (2000). Progressive deterioration of soft neurological signs in chronic schizophrenic patients. Acta Psychiat Scand, 102, 342–349.CrossRefGoogle ScholarPubMed
Compton, M. T., Bollini, A. M., McKenzie, M. L.et al. (2007). Neurological soft signs and minor physical anomalies in patients with schizophrenia and related disorders, their first-degree biological relatives, and non-psychiatric controls. Schizophr Res May 16 [Epub ahead of print].CrossRef
Daprati, E., Franck, N., Georgieff, N.et al. (1997). Looking for the agent: an investigation into consciousness of action and self-consciousness in schizophrenic patients. Cognition, 65, 71–86.CrossRefGoogle ScholarPubMed
Delevoye-Turrell, Y., Giersch, A. & Danion, J. M. (2002). A deficit in the adjustment of grip force responses in schizophrenia. Neuroreport, 13, 1537–1539.CrossRefGoogle Scholar
Delevoye-Turrell, Y., Giersch, A. & Danion, J. M. (2003). Abnormal sequencing of motor actions in patients with schizophrenia: evidence from grip force adjustments during object manipulation. Am J Psychiatry, 160, 134–141.CrossRefGoogle ScholarPubMed
Delevoye-Turrell, Y., Thomas, P. & Giersch, A. (2006). Attention for movement production: abnormal profiles in schizophrenia. Schizophr Res, 84, 430–432.CrossRefGoogle Scholar
Fahn, S. & Elton, R. L. (1987). The unified Parkinson's disease rating scale. In Fahn, S., Marsden, C. D., Calne, C. B., et al. (Eds.), Recent Developments in Parkinson's Disease (pp. 153–163). Florham Park, NJ: MacMillan Healthcare Information.Google Scholar
Farde, L., Wiesel, F. A. & Nordström, A. L. (1989). D1- and D2-dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology, 99, S28–S31.CrossRefGoogle ScholarPubMed
Farde, L., Nordström, A. L. & Wiesel, F. A. (1992). Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine, relation to extrapyramidal side effects. Arch Gen Psychiatry, 49, 538–544.CrossRefGoogle ScholarPubMed
Fish, B., Marcus, J., Hans, S. L., Auerbach, J. G. & Perdue, S. (1992). Infants at risk for schizophrenia: sequelae of a genetic neurointegrative defect. A review and replication analysis of pandysmaturation in the Jerusalem Infant Development Study. Arch Gen Psychiatry, 49, 221–235.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Wing, A. M. (1993). Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res, 95, 131–143.CrossRefGoogle ScholarPubMed
Franck, N., Farrer, C., Georgieff, N.et al. (2001). Defective recognition of one's own actions in patients with schizophrenia. Am J Psychiatry, 158, 454–459.CrossRefGoogle ScholarPubMed
Frith, C. D., Blakemore, S. & Wolpert, D. M. (2000). Explaining the symptoms of schizophrenia: abnormalities in the awareness of action. Brain Res Rev, 31, 357–363.CrossRefGoogle ScholarPubMed
Gourion, D., Goldberger, C., Olie, J., Loo, H. & Krebs, M. (2004). Neurological and morphological anomalies and the genetic liability to schizophrenia: a composite phenotype. Schizophr Res, 67, 23–31.CrossRefGoogle ScholarPubMed
Green, M. & Walker, E. (1985). Neuropsychological performance and positive and negative symptoms in schizophrenia. J Abnorm Psychol, 94, 460–469.CrossRefGoogle Scholar
Gupta, S., Rajaprabhakaran, R., Arndt, S., Flaum, M. & Andreasen, N. C. (1995). Premorbid adjustment as a predictor of phenomenological and neurobiological indices in schizophrenia. Schizophr Res, 16, 189–197.CrossRefGoogle Scholar
Heinrichs, D. W. & Buchanan, R. W. (1988). Significance and meaning of neurological signs in schizophrenia. Am J Psychiatry, 145, 11–18.Google Scholar
Henkel, V., Mergl, R., Schäfer, M.et al. (2004). Kinematic analysis of motor function in schizophrenic patients: a possibility to separate negative symptoms from extrapyramidal dysfunction induced by neuroleptics?Pharmacopsychiatry, 37, 110–118.Google ScholarPubMed
Jahn, T. (1999). Diskrete motorische Störungen bei Schizophrenie. Weinheim, Germany: Beltz/Psychologie Verlags Union.Google Scholar
Jahn, T., Mai, N., Ehrensperger, M.et al. (1995). Untersuchung der fein- und grobmotorischen Dysdiadochokinese schizophrener Patienten. Z Klin Psychol, 24, 300–315.Google Scholar
Jahn, T., Hubmann, W., Karr, M.et al. (2006). Motoric neurological soft signs and psychopathological symptoms in schizophrenic psychoses. Psychiatry Res, 142, 191–199.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Westling, G. (1988). Programmed and triggered actions to rapid load changes during precision grip. Exp Brain Res, 71, 72–86.CrossRefGoogle ScholarPubMed
Johnstone, E. C., MacMillan, J. F., Frith, C. D., Benn, D. K. & Crow, T. J. (1990). Further investigation of the predictors of outcome following first schizophrenic episodes. Br J Psychiatry, 157, 182–189.CrossRefGoogle ScholarPubMed
Kay, S. R., Fiszbein, A. & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull, 13, 261–276.CrossRefGoogle Scholar
Kraepelin, E. (1919). Dementia Praecox and Paraphrenia. Translated by Barclay, R. M., edited by Robertson, G. M. (1971). New York, NY: Robert E. Krieger.Google Scholar
Lehoux, C., Everett, J., Laplante, L.et al. (2003). Fine motor dexterity is correlated to social functioning in schizophrenia. Schizophr Res, 62, 269–273.CrossRefGoogle Scholar
Lindner, A., Thier, P., Kircher, T. T., Haarmeier, T. & Leube, D. T. (2005). Disorders of agency in schizophrenia correlate with an inability to compensate for the sensory consequences of actions. Curr Biol, 15, 1119–1124.CrossRefGoogle ScholarPubMed
Malenka, R. C., Angel, R. W., Hampton, B. & Berger, P. A. (1982). Impaired central error correcting behaviour in schizophrenia. Arch Gen Psychiatry, 39, 101–107.CrossRefGoogle Scholar
McNeil, T. F., Harty, B., Blennow, G. & Cantor-Graae, E. (1993). Neuromotor deviation in offspring of psychotic mothers: a selective developmental deficiency in two groups of children at heightened psychiatric risk?J Psychiatr Res, 27, 39–54.CrossRefGoogle ScholarPubMed
Merriam, A. E., Kay, S. R., Opler, L. A., Kushner, S. F. & Praag, H. M. (1990). Neurological signs and the positive–negative dimension in schizophrenia. Biol Psychiatry, 28, 181–192.CrossRefGoogle Scholar
Mittal, V. A., Hasenkamp, W., Sanfilipo, M.et al. (2007). Relation of neurological soft signs to psychiatric symptoms in schizophrenia. Schizophr Res, May 30 [Epub ahead of print].CrossRef
Mohr, F., Hubmann, W., Cohen, R.et al. (1996). Neurological soft signs in schizophrenia: assessment and correlates. Eur Arch Psychiatry Clin Neurosci, 246, 240–248.CrossRefGoogle ScholarPubMed
Nowak, D. A., Connemann, B. J., Alan, M. & Spitzer, M. (2006a). Sensorimotor dysfunction of grasping in schizophrenia: a side effect of antipsychotic treatment?J Neurol Neurosurg Psychiatry, 77, 650–657.CrossRefGoogle ScholarPubMed
Nowak, D. A., Topka, H., Timmann, D., Boecker, H. & Hermsdörfer, J. (2006b). The role of the cerebellum for predictive control of grasping. Cerebellum, 6, 7–17.CrossRefGoogle Scholar
Putzhammer, A., Perfahl, M., Pfeiff, L.et al. (2005). Performance of diadochokinetic movements in schizophrenic patients. Schizophr Res, 79, 271–280.CrossRefGoogle ScholarPubMed
Quitkin, F., Rifkin, A. & Klein, D. F. (1976). Neurologic soft signs in schizophrenia and character disorders. Organicity in schizophrenia with premorbid asociality and emotionally unstable character disorders. Arch Gen Psychiatry, 33, 845–853.CrossRefGoogle ScholarPubMed
Saoud, M., Coello, Y., Dumas, P.et al. (2000). Visual pointing and speed/accuracy trade-off in schizophrenia. Cogn Neuropsychiatry, 5, 123–134.CrossRefGoogle Scholar
Scheffer, R. E. (2004). Abnormal neurological signs at the onset of psychosis. Schizophr Res, 70, 19–26.CrossRefGoogle Scholar
Schröder, J., Niethammer, R., Geider, F. J.et al. (1992). Neurological soft signs in schizophrenia. Schizophr Res, 6, 25–30.CrossRefGoogle Scholar
Schröder, J., Wenz, F., Baudendistel, K., Schad, L. R. & Knopp, M. V. (1995). Sensorimotor cortex and supplementary motor area activation changes in schizophrenia: a study with functional magnetic resonance imaging. Br J Psychiatry, 167, 197–201.CrossRefGoogle ScholarPubMed
Schröder, J., Silvestri, S., Bubeck, B.et al. (1998). D2 dopamine receptor upregulation, treatment response, neurological soft signs, and extrapyramidal side effects in schizophrenia: a follow-up study with 123I-IBZM SPECT in the drug-naive state and after neuroleptic treatment. Biol Psychiatry, 42, 660–665.CrossRefGoogle Scholar
Sukhwinder, S. S., Samson, G., Bays, P. M., Frith, C. D. & Wolpert, D. M. (2005). Evidence for sensory prediction deficits in schizophrenia. Am J Psychiatry, 162, 2384–2386.Google Scholar
Tigges, P., Mergl, R., Frodl, T.et al. (2000). Digitized analysis of abnormal hand-motor performance in schizophrenic patients. Schizophr Res, 45, 133–143.CrossRefGoogle ScholarPubMed
Tosato, S. & Dazzan, P. (2005). The psychopathology of schizophrenia and the presence of neurological soft signs: a review. Curr Opin Psychiatry, 18, 285–288.CrossRefGoogle ScholarPubMed
Varambally, S., Venkatasubramanian, G., Thirthalli, J., Janakiramaiah, N. & Gangadhar, B. N. (2006). Cerebellar and other neurological soft signs in antipsychotic-naive schizophrenia. Acta Psychiatr Scand, 114, 352–356.CrossRefGoogle ScholarPubMed
Vaughan, S., Oquendo, M. & Horwath, E. (1991). A patient's psychotic interpretation of a drug side effect. Am J Psychiatry, 148, 393–394.Google ScholarPubMed
Walker, E. F. (1994). Neurodevelopmental precursors of schizophrenia. In David, A. S. & Cutting, J. C. (Eds.), The Neuropsychology of Schizophrenia (pp. 119–129). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Wolpert, D. M. & Flanagan, J. R. (2001). Motor prediction. Curr Biol, 11, R729–R732.CrossRefGoogle ScholarPubMed
Wolpert, D. M., Miall, R. C. & Kawato, M. (1998). Internal models in the cerebellum. Trends Cogn Sci, 2, 338–347.CrossRefGoogle ScholarPubMed
Yazici, A. H., Demir, B., Yazici, K. M. & Gogus, A. (2002). Neurological soft signs in schizophrenic patients and their nonpsychotic siblings. Schizophr Res, 58, 241–246.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×