Skip to main content Accessibility help
×
  • Cited by 22
Publisher:
Cambridge University Press
Online publication date:
March 2017
Print publication year:
2017
Online ISBN:
9781316275122

Book description

This unique resource explains the fundamental physics of semiconductor nanolasers, and provides detailed insights into their design, fabrication, characterization, and applications. Topics covered range from the theoretical treatment of the underlying physics of nanoscale phenomena, such as temperature dependent quantum effects and active medium selection, to practical design aspects, including the multi-physics cavity design that extends beyond pure electromagnetic consideration, thermal management and performance optimization, and nanoscale device fabrication and characterization techniques. The authors also discuss technological applications of semiconductor nanolasers in areas such as photonic integrated circuits and sensing. Providing a comprehensive overview of the field, detailed design and analysis procedures, a thorough investigation of important applications, and insights into future trends, this is essential reading for graduate students, researchers, and professionals in optoelectronics, applied photonics, physics, nanotechnology, and materials science.

Reviews

'For many years, photonics has sought to emulate the enormous success of electronics in miniaturizing devices - specifically with the aim of creating photonic integrated circuits. Nanolasers are strong potential candidates for the role of optical source in photonic integrated circuits. This excellent book provides the first in-depth description of the challenges faced in creating such lasers … It is anticipated that this book will help accelerate the creation of photonic integrated circuits and sensors based on nanolasers.'

K. Alan Shore Source: Optics and Photonics News

'This introduction to the growing literature on nanolaser is self-contained, and sufficiently user-friendly. … Although not conceived as a textbook, parts of the monograph would be suitable for courses in photonics or quantum electronics. … The authors are experts in this topical area and also have produced a substantial body of collaborative work. That history may well be at the heart of the impressive thematic, conceptual, and editorial coherence of the text.'

Richard F. Haglund, Jr Source: MRS Bulletin

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References

[1]Bozhevolnyi, S. I., eds. Plasmonic Nanoguides and Circuits. Singapore: Pan Stanford, 2008.
[2]Maiman, T. H., “Stimulated optical radiation in ruby,” Nature, vol. 187, pp. 493494, 1960.
[3]Purcell, E. M., “Spontaneous emission probabilities at radio frequencies,” Phys. Rev., vol. 69, p. 681, 1946.
[4]Yokoyama, H. and Brorson, S., “Rate equation analysis of microcavity lasers,” J. Appl. Phys., vol. 66, pp. 48014805, 1989.
[5]Yokoyama, H., Nishi, K., Anan, T., Yamada, H., Brorson, S., and Ippen, E., “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett., vol. 57, pp. 28142816, 1990.
[6]Yamamoto, Y., Machida, S., and Björk, G., “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A, vol. 44, p. 657, 1991.
[7]Gérard, J. M. and Gayral, B., “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol., vol. 17, pp. 20892095, 1999.
[8]Lau, E. K., Lakhani, A., Tucker, R. S., and Wu, M. C., “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express, vol. 17, pp. 77907799, 2009.
[9]Ni, C. A. and Chuang, S. L., “Theory of high-speed nanolasers and nanoLEDs,” Opt. Express, vol. 20, pp. 1645016470, 2012.
[10]Suhr, T., Gregersen, N., Yvind, K., and Mørk, J., “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express, vol. 18, pp. 1123011241, 2010.
[11]Ellis, B., Mayer, M. A., Shambat, G., Sarmiento, T., Harris, J., Haller, E. E., and Vučković, J., “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics, vol. 5, pp. 297300, 2011.
[12]Bhattacharya, P., Xiao, B., Das, A., Bhowmick, S., and Heo, J., “Solid state electrically injected exciton-polariton laser,” Phys. Rev. Lett., vol. 110, p. 206403, 2013.
[13]Noda, S., “Seeking the ultimate nanolaser,” Science, vol. 314, p. 260, 2006.
[14]Khajavikhan, M., Simic, A., Katz, M., Lee, J., Slutsky, B., Mizrahi, A., Lomakin, V., and Fainman, Y., “Thresholdless nanoscale coaxial lasers,” Nature, vol. 482, pp. 204207, 2012.
[15]Björk, G., Karlsson, A., and Yamamoto, Y., “Definition of a laser threshold,” Phys. Rev. A, vol. 50, p. 1675, 1994.
[16]Ning, C., “What is laser threshold?IEEE J. Sel. Top. Quantum Electron., vol. 19, p. 1, 2013.
[17]Smalley, J. S., Gu, Q., and Fainman, Y., “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum. Electron., vol. 50, pp. 175185, 2014.
[18]McCall, S., Levi, A., Slusher, R., Pearton, S., and Logan, R., “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett., vol. 60, pp. 289291, 1992.
[19]Gargas, D. J., Moore, M. C., Ni, A., Chang, S., Zhang, Z., Chuang, S., and Yang, P., “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano, vol. 4, pp. 32703276, 2010.
[20]Hofrichter, J., Raz, O., Liu, L., Morthier, G., Horst, F., Regreny, P., De Vries, T., Dorren, H. J., and Offrein, B. J., “All-optical wavelength conversion using mode switching in InP microdisc laser,” Electron. Lett., vol. 47, pp. 927929, 2011.
[21]Song, Q., Cao, H., Ho, S., and Solomon, G., “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett., vol. 94, pp. 061109–061109–3, 2009.
[22]Painter, O., Lee, R., Scherer, A., Yariv, A., O’Brien, J., Dapkus, P., and Kim, I., “Two-dimensional photonic band-gap defect mode laser,” Science, vol. 284, pp. 18191821, 1999.
[23]Akahane, Y., Asano, T., Song, B., and Noda, S., “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature, vol. 425, pp. 944947, 2003.
[24]Scofield, A. C., Kim, S., Shapiro, J. N., Lin, A., Liang, B., Scherer, A., and Huffaker, D. L., “Bottom-up photonic crystal lasers,” Nano Lett., vol. 11, pp. 53875390, 2011.
[25]Chen, C., Chiu, C., Chang, S., Shih, M., Kuo, M., Huang, J., Kuo, H., Chen, S., Lee, L., and Jeng, M., “Large-area ultraviolet GaN-based photonic quasicrystal laser with high-efficiency green color emission of semipolar {10–11} In 0.3 Ga 0.7 N/GaN multiple quantum wells,” Appl. Phys. Lett., vol. 102, pp. 011134–011134–4, 2013.
[26]Oulton, R. F., Sorger, V. J., Zentgraf, T., Ma, R. M., Gladden, C., Dai, L., Bartal, G., and Zhang, X., “Plasmon lasers at deep subwavelength scale,” Nature, vol. 461, pp. 629632, 2009.
[27]Lu, Y., Kim, J., Chen, H., Wu, C., Dabidian, N., Sanders, C. E., Wang, C., Lu, M., Li, B., and Qiu, X., “Plasmonic nanolaser using epitaxially grown silver film,” Science, vol. 337, pp. 450453, 2012.
[28]Lin, C., Wang, J., Chen, C., Shen, K., Yeh, D., Kiang, Y., and Yang, C., “A GaN photonic crystal membrane laser,” Nanotechnology, vol. 22, p. 025201, 2011.
[29]Arai, S., Nishiyama, N., Maruyama, T., and Okumura, T., “GaInAsP/InP membrane lasers for optical interconnects,” IEEE J. Sel. Top. Quantum Electron., vol. 17, pp. 13811389, 2011.
[30]Zhou, W. and Ma, Z., “Breakthroughs in Nanomembranes and Nanomembrane Lasers,” IEEE Photon. J., vol. 5, p. 0700707, 2013.
[31]Wang, Z., Tian, B., and VanThourhout, D., “Design of a novel micro-laser formed by monolithic integration of a III-V pillar with a silicon photonic crystal cavity,” J. Lightwave Technol., vol. 31, pp. 14751481, 2013.
[32]Lin, J., Huang, Y., Yao, Q., Lv, X., Yang, Y., Xiao, J., and Du, Y., “InAlGaAs/InP cylinder microlaser connected with two waveguides,” Electron. Lett., vol. 47, pp. 929930, 2011.
[33]Albert, F., Hopfmann, C., Eberspacher, A., Arnold, F., Emmerling, M., Schneider, C., Hofling, S., Forchel, A., Kamp, M., and Wiersig, J., “Directional whispering gallery mode emission from Limaçon-shaped electrically pumped quantum dot micropillar lasers,” Appl. Phys. Lett., vol. 101, pp. 021116–021116–4, 2012.
[34]Hill, M. T., Oei, Y. S., Smalbrugge, B., Zhu, Y., De Vries, T., van Veldhoven, P. J., van Otten, F. W. M., and Eijkemans, T. J., “Lasing in metallic-coated nanocavities,” Nat. Photonics, vol. 1, pp. 589594, 2007.
[35]Nezhad, M. P., Simic, A., Bondarenko, O., Slutsky, B., Mizrahi, A., Feng, L., Lomakin, V., and Fainman, Y., “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics, vol. 4, pp. 395399, 2010.
[36]Lee, J. H., Khajavikhan, M., Simic, A., Gu, Q., Bondarenko, O., Slutsky, B., Nezhad, M. P., and Fainman, Y., “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express, vol. 19, pp. 2152421531, 2011.
[37]Ding, K., Hill, M., Liu, Z., Yin, L., van Veldhoven, P., and Ning, C., “Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature,” Opt. Express, vol. 21, pp. 47284733, 2013.
[38]Gu, Q., Shane, J., Vallini, F., Wingad, B., Smalley, J. S., Frateschi, N. C., and Fainman, Y., “Amorphous Al2O3 shield for thermal management in electrically pumped metallo-dielectric nanolasers,” IEEE J. Quantum. Electron., vol. 50, pp. 499509, 2014.
[39]Hall, R., Fenner, G., Kingsley, J., Soltys, T., and Carlson, R., “Coherent light emission from Ga-As junctions,” Phys. Rev. Lett., vol. 9, p. 366, 1962.
[40]Soda, H., Iga, K., Kitahara, C., and Suematsu, Y., “GaInAsP/InP surface emitting injection lasers,” Japanese Journal of Applied Physics, vol. 18, pp. 23292330, 1979.
[41]Albert, F., Braun, T., Heindel, T., Schneider, C., Reitzenstein, S., Hofling, S., Worschech, L., and Forchel, A., “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett., vol. 97, pp. 101108–101108–3, 2010.
[42]Sandoghdar, V., Treussart, F., Hare, J., Lefevre-Seguin, V., Raimond, J., and Haroche, S., “Very low threshold whispering-gallery-mode microsphere laser,” Physical Review-Section A-Atomic Molecular and Optical Physics, vol. 54, p. R1777, 1996.
[43]Hill, M. T. and Gather, M. C., “Advances in small lasers,” Nature Photonics, vol. 8, pp. 908918, 2014.
[44]Nezhad, M. P., Tetz, K., and Fainman, Y., “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express, vol. 12, pp. 40724079, 2004.
[45]Maier, S. A., “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun., vol. 258, pp. 295299, 2006.
[46]Bergman, D. J. and Stockman, M. I., “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett., vol. 90, p. 027402, 2003.
[47]Ning, C., “Nanolasers: Current status of the trailblazer of synergetics.” In Self-organization in Complex Systems: The Past, Present, and Future of Synergetics. Proceedings of the International Symposium, Hanse Institute of Advanced Studies, Delmenhorst, Germany, November 13–16, pp. 190128, 2012.
[48]Fainman, Y., Lee, L., Psaltis, D., and Yang, C., Optofluidics: Fundamentals, Devices, and Applications. McGraw-Hill, Inc., 2009.
[49]Dang, C., Lee, J., Breen, C., Steckel, J. S., Coe-Sullivan, S., and Nurmikko, A., “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol., vol. 7, pp. 335339, 2012.
[50]Imamog, A., Ram, R., Pau, S., and Yamamoto, Y., “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A, vol. 53, p. 4250, 1996.
[51]Schneider, C., Rahimi-Iman, A., Kim, N. Y., Fischer, J., Savenko, I. G., Amthor, M., Lermer, M., Wolf, A., Worschech, L., and Kulakovskii, V. D., “An electrically pumped polariton laser,” Nature, vol. 497, pp. 348352, 2013.
[52]Deng, H., Weihs, G., Santori, C., Bloch, J., and Yamamoto, Y., “Condensation of semiconductor microcavity exciton polaritons,” Science, vol. 298, pp. 199202, 2002.
[53]High, A. A., Leonard, J. R., Hammack, A. T., Fogler, M. M., Butov, L. V., Kavokin, A. V., Campman, K. L., and Gossard, A. C., “Spontaneous coherence in a cold exciton gas,” Nature, vol. 483, pp. 584588, 2012.
[54]Chang, S. W. and Chuang, S. L., “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum. Electron., vol. 45, pp. 10141023, 2009.
[55]Li, D. and Ning, C., “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B, vol. 80, p. 153304, 2009.
[56]Li, D. and Ning, C., “Peculiar features of confinement factors in a metal-semiconductor waveguide,” Appl. Phys. Lett., vol. 96, p. 181109, 2010.
[57]Maslov, A. and Ning, C., “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett., vol. 83, pp. 12371239, 2003.
[58]Moser, P., Lott, J., and Bimberg, D., “Energy efficiency of directly modulated oxide-confined high bit rate 850-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron., vol. 19, pp. 1702212-11702212-12, 2013.
[59]Chang, S. W., Ni, C. Y. A., and Chuang, S. L., “Theory for bowtie plasmonic nanolasers,” Opt. Express, vol. 16, pp. 1058010595, 2008.
[60]Yariv, A., Quantum Electronics. John Wiley & Sons, 1989.
[61]Iga, K., “Surface-emitting laser – its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron., vol. 6, pp. 12011215, 2000.
[62]Lee, Y., Jewell, J., Scherer, A., McCall, S., Harbison, J., and Florez, L., “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett., vol. 25, pp. 13771378, 1989.
[63]Lebby, M. S., Gaw, C. A., Jiang, W., Kiely, P. A., Shieh, C. L., Claisse, P. R., Ramdani, J., Hartman, D. H., Schwartz, D. B., and Grula, J., “Use of VCSEL arrays for parallel optical interconnects,” in Photonics West’96, pp. 8191, 1996.
[64]Englund, D., Altug, H., Ellis, B., and Vučković, J., “Ultrafast photonic crystal lasers,” Laser & Photon. Rev., vol. 2, pp. 264274, 2008.
[65]Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P., “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, pp. 18971899, 2001.
[66]Ma, Y., Guo, X., Wu, X., Dai, L., and Tong, L., “Semiconductor nanowire lasers,” Adv. Opt. Photon., vol. 5, pp. 216273, 2013.
[67]Saxena, D., Mokkapati, S., Parkinson, P., Jiang, N., Gao, Q., Tan, H. H., and Jagadish, C., “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photon., vol. 7, pp. 963968, 2013.
[68]Alam, M. Z., Meier, J., Aitchison, J. S., and Mojahedi, M., “Super mode propagation in low index medium,” in Photonic Applications Systems Technologies Conference, pp. JThD112, 2007.
[69]Johnson, P. B. and Christy, R., “Optical constants of the noble metals,” Phys. Rev. B, vol. 6, p. 4370, 1972.
[70]Zhang, Q., Li, G., Liu, X., Qian, F., Li, Y., Sum, T. C., Lieber, C. M., and Xiong, Q., “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun., vol. 5, 2014.
[71]Lu, Y., Wang, C., Kim, J., Chen, H., Lu, M., Chen, Y., Chang, W., Chen, L., Stockman, M. I., and Shih, C., “All-color plasmonic nanolasers with ultralow thresholds: Autotuning mechanism for single-mode lasing,” Nano Lett., vol. 14, pp. 43814388, 2014.
[72]Cao, H., Xu, J., Zhang, D., Chang, S., Ho, S., Seelig, E., Liu, X., and Chang, R., “Spatial confinement of laser light in active random media,” Phys. Rev. Lett., vol. 84, p. 5584, 2000.
[73]Cao, H., “Lasing in random media,” Waves in Random Media, vol. 13, pp. R1R39, 2003.
[74]Pickering, T., Hamm, J. M., Page, A. F., Wuestner, S., and Hess, O., “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun., vol. 5, 2014.
[75]Wuestner, S., Pickering, T., Hamm, J. M., Page, A. F., Pusch, A., and Hess, O., “Ultrafast dynamics of nanoplasmonic stopped-light lasing,” Faraday Discuss., vol. 178, pp. 307324, 2015.
[76]Hill, M. T., Marell, M., Leong, E. S., Smalbrugge, B., Zhu, Y., Sun, M., van Veldhoven, P. J., Geluk, E. J., Karouta, F., and Oei, Y., “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express, vol. 17, pp. 1110711112, 2009.
[77]Ding, K., Diaz, J., Bimberg, D., and Ning, C., “Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects,” Laser & Photon. Rev., vol. 9, pp. 488497, 2015.
[78]Agio, M. and Alù, A., Optical Antennas. Cambridge University Press, 2013.
[79]Yu, K., Lakhani, A., and Wu, M. C., “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express, vol. 18, pp. 87908799, 2010.
[80]Manolatou, C. and Rana, F., “Subwavelength nanopatch cavities for semiconductor plasmon lasers,” IEEE. J. Quantum. Electron., vol. 44, pp. 435447, 2008.
[81]Ding, Q., Mizrahi, A., Fainman, Y., and Lomakin, V., “Dielectric shielded nanoscale patch laser resonators,” Opt. Lett., vol. 36, pp. 18121814, 2011.
[82]Lakhani, A. M., Yu, K., and Wu, M. C., “Lasing in subwavelength semiconductor nanopatches,” Semicond. Scie.Technol., vol. 26, p. 014013, 2011.
[83]Ding, K., Wang, H., Hill, M. T., and Ning, C., “Design and fabrication of an electrical injection metallic bowtie plasmonic structure integrated with semiconductor gain medium,” Appl. Phys. Lett., vol. 103, p. 091112, 2013.
[84]Kwon, S., Kang, J., Seassal, C., Kim, S., Regreny, P., Lee, Y., Lieber, C. M., and Park, H., “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Let., vol. 10, pp. 36793683, 2010.
[85]Ma, R., Oulton, R. F., Sorger, V. J., Bartal, G., and Zhang, X., “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater., vol. 10, pp. 110113, 2011.
[86]Leymann, H., Foerster, A., Jahnke, F., Wiersig, J., and Gies, C., “Sub-and superradiance in nanolasers,” Phys. Rev. Appl., vol. 4, p. 044018, 2015.
[87]Stockman, M. I., “Spasers explained,” Nat. Photon., vol. 2, pp. 327329, 2008.
[88]Noginov, M., Zhu, G., Belgrave, A., Bakker, R., Shalaev, V., Narimanov, E., Stout, S., Herz, E., Suteewong, T., and Wiesner, U., “Demonstration of a spaser-based nanolaser,” Nature, vol. 460, pp. 11101112, 2009.
[89]Zheludev, N. I., Prosvirnin, S., Papasimakis, N., and Fedotov, V., “Lasing spaser,” Nature Photonics, vol. 2, pp. 351354, 2008.
[90]Flynn, R., Kim, C., Vurgaftman, I., Kim, M., Meyer, J., Mäkinen, A., Bussmann, K., Cheng, L., Choa, F., and Long, J., “A room-temperature semiconductor spaser operating near 1.5 μm,” Opt. Express, vol. 19, pp. 89548961, 2011.
[91]Suh, J. Y., Kim, C. H., Zhou, W., Huntington, M. D., Co, D. T., Wasielewski, M. R., and Odom, T. W., “Plasmonic Bowtie Nanolaser Arrays,” Nano Lett., vol. 12, pp. 57695774, 2012.
[92]Ginzburg, P. and Zayats, A. V., “Linewidth enhancement in spasers and plasmonic nanolasers,” Opt. Express, vol. 21, pp. 21472153, 2013.
[93]Dorfman, K. E., Jha, P. K., Voronine, D. V., Genevet, P., Capasso, F., and Scully, M. O., “Quantum-coherence-enhanced surface plasmon amplification by stimulated emission of radiation,” Phys. Rev. Lett., vol. 111, p. 043601, 2013.
[94]Meng, X., Kildishev, A. V., Fujita, K., Tanaka, K., and Shalaev, V. M., “Wavelength-tunable spasing in the visible,” Nano Lett., vol. 13, pp. 41064112, 2013.
[95]Rupasinghe, C., Rukhlenko, I. D., and Premaratne, M., “Spaser made of graphene and carbon nanotubes,” ACS Nano, vol. 8, pp. 24312438, 2014.
[96]Smotrova, E. I., Nosich, A. I., Benson, T. M., and Sewell, P., “Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing,” IEEE J. Sel. Top. Quantum Electron., vol. 12, pp. 7885, 2006.
[97]Goebel, E., Luz, G., and Schlosser, E., “Optical gain spectra of InGaAsP/InP double heterostructures,” IEEE J. Quantum. Electron., vol. 15, pp. 697700, 1979.
[98]Yeh, P., Yariv, A., and Marom, E., “Theory of Bragg fiber,” J. Opt. Soc. Am., vol. 68, pp. 11961201, 1978.
[99]Mizrahi, A., Lomakin, V., Slutsky, B. A., Nezhad, M. P., Feng, L., and Fainman, Y., “Low threshold gain metal coated laser nanoresonators,” Opt. Lett., vol. 33, pp. 12611263, 2008.
[100]Smotrova, E. and Nosich, A., “Mathematical analysis of the lasing eigenvalue problem for the WG modes in a 2-D circular microcavity,” Opt. Quant. Electron., vol. 36, pp. 213221, 2004.
[101]Palik, E. D., Handbook of Optical Constants of Solids. New York: Academic Press, 1997.
[102]Smalley, J. S., Puckett, M. W., and Fainman, Y., “Invariance of optimal composite waveguide geometries with respect to permittivity of the metal cladding,” Opt. Lett., vol. 38, pp. 51615164, 2013.
[103]Saleh, A. A. and Dionne, J. A., “Waveguides with a silver lining: Low threshold gain and giant modal gain in active cylindrical and coaxial plasmonic devices,” Phys. Rev. B, vol. 85, p. 045407, 2012.
[104]Rakić, A. D., “Algorithm for the determination of intrinsic optical constants of metal films: Application to aluminum,” Appl. Opt., vol. 34, pp. 47554767, 1995.
[105]McKay, J. A. and Rayne, J. A., “Temperature dependence of the infrared absorptivity of the noble metals,” Phys. Rev. B, vol. 13, p. 673, 1976.
[106]Kato, K. and Umemura, N., “Sellmeier equations for GaS and GaSe and their applications to the nonlinear optics in GaS x Se 1−x,” Opt. Lett., vol. 36, pp. 746747, 2011.
[107]Gu, Q., Slutsky, B., Vallini, F., Smalley, J. S., Nezhad, M. P., Frateschi, N. C., and Fainman, Y., “Purcell effect in sub-wavelength semiconductor lasers,” Opt. Express, vol. 21, pp. 1560315617, 2013.
[108]Genet, C. and Ebbesen, T., “Light in tiny holes,” Nature, vol. 445, pp. 3946, 2007.
[109]Stubkjaer, K., Asada, M., Arai, S., and Suematsu, Y., “Spontaneous recombination, gain and refractive index variation for 1.6 µm wavelength InGaAsP/InP lasers,” Japanese Journal of Applied Physics, vol. 20, p. 1499, 1981.
[110]Bennett, B. R., Soref, R. A., and del Alamo, J. A., “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE. J. Quantum. Electron., vol. 26, pp. 113122, 1990.
[111]Goi, A., Syassen, K., and Cardona, M., “Effect of pressure on the refractive index of Ge and GaAs,” Physical Review B, vol. 41, p. 10104, 1990.
[112]Rong, H., Jones, R., Liu, A., Cohen, O., Hak, D., Fang, A., and Paniccia, M., “A continuous-wave Raman silicon laser,” Nature, vol. 433, pp. 725728, 2005.
[113]Dal Negro, L., “Light emission from silicon nanostructures: Past, present and future perspectives,” in Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum Electronics and Laser Science Conference. CLEO/QELS 2009. Conference on, 2009, pp. 12.
[114]Fang, A. W., Park, H., Cohen, O., Jones, R., Paniccia, M. J., and Bowers, J. E., “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express, vol. 14, pp. 92039210, 2006.
[115]Bondarenko, O., Simic, A., Gu, Q., Lee, J., Slutsky, B., Nezhad, M., and Fainman, Y., “Wafer bonded subwavelength metallo-dielectric laser,” IEEE Photon. J., p. 608, 2011.
[116]Niklaus, F., Kumar, R., McMahon, J., Yu, J., Lu, J., Cale, T., and Gutmann, R., “Adhesive wafer bonding using partially cured benzocyclobutene for three-dimensional integration,” J. Electrochem. Soc., vol. 153, pp. G291G295, 2006.
[117]Pasquariello, D. and Hjort, K., “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 118131, 2002.
[118]Liang, D., Bowers, J., Oakley, D., Napoleone, A., Chapman, D., Chen, C., Juodawlkis, P., and Raday, O., “High-quality 150 mm InP-to-silicon epitaxial transfer for silicon photonic integrated circuits,” Electrochem. Solid-State Lett., vol. 12, pp.H101H104, 2009.
[119]Liang, D., Fang, A. W., Park, H., Reynolds, T. E., Warner, K., Oakley, D. C., and Bowers, J. E., “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater., vol. 37, pp. 15521559, 2008.
[120]Zhu, Z., Liu, H., Wang, S., Li, T., Cao, J., Ye, W., Yuan, X., and Zhu, S., “Optically pumped nanolaser based on two magnetic plasmon resonance modes,” Appl. Phys. Lett., vol. 94, p. 103106, 2009.
[121]Walther, H., “Experiments on cavity quantum electrodynamics,” Phys. Rep., vol. 219, pp. 263281, 1992.
[122]Berman, P. R., ed., Cavity Quantum Electrodynamics. San Diego, CA: Academic Press, 1994.
[123]Xu, Y., Vučković, J., Lee, R., Painter, O., Scherer, A., and Yariv, A., “Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity,” J. Opt. Soc. Am. B, vol. 16, pp. 465474, 1999.
[124]Ryu, H. and Notomi, M., “Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity,” Opt. Lett., vol. 28, pp. 23902392, 2003.
[125]Meldrum, A., Bianucci, P., and Marsiglio, F., “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express, vol. 18, pp. 1023010246, 2010.
[126]Haroche, S., “New trends in atomic physics,” in Proceedings of the Les Houches Summer School of Theoretical Physics, Session XXXVIII, 1982, Grynberg, G. and Stora, R., Eds. Amsterdam: Elsevier Science, pp. 195309, 1984.
[127]Suhara, T., Semiconductor Laser Fundamentals. CRC Press, 2004.
[128]Agrawal, G. P. and Olsson, N. A., “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum. Electron., vol. 25, pp. 22972306, 1989.
[129]Scully, M. O. and Zubairy, M. S., Quantum Optics. Cambridge University Press, 1997.
[130]Carmichael, H. J., Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations. Berlin: Springer-Verlag, 1999.
[131]Baba, T., Sano, D., Nozaki, K., Inoshita, K., Kuroki, Y., and Koyama, F., “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett., vol. 85, pp. 39893991, 2004.
[132]Iwase, H., Englund, D., and Vučković, J., “Analysis of the Purcell effect in photonic and plasmonic crystals with losses,” Opt. Express, vol. 18, pp. 1654616560, 2010.
[133]Asada, M., “Intraband relaxation time in quantum-well lasers,” IEEE J. Quantum. Electron., vol. 25, pp. 20192026, 1989.
[134]Sakurai, J. J., Modern Quantum Mechanics. Reading, MA: Addison-Wesley, 1994.
[135]Fujita, M., Sakai, A., and Baba, T., “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: Design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron., vol. 5, pp. 673681, 1999.
[136]Altug, H., Englund, D., and Vučković, J., “Ultrafast photonic crystal nanocavity laser,” Nat. Physics, vol. 2, pp. 484488, 2006.
[137]Coldren, L. A. and Corzine, S. W., Diode Lasers and Photonic Integrated Circuits. New York: John Wiley & Sons, Inc., 1995.
[138]Glauser, M., Rossbach, G., Cosendey, G., Levrat, J., Cobet, M., Carlin, J., Besbas, J., Gallart, M., Gilliot, P., and Butté, R., “Investigation of InGaN/GaN quantum wells for polariton laser diodes,” Phys. Status Solidi C, vol. 9, pp. 13251329, 2012.
[139]Yamada, M. and Suematsu, Y., “Analysis of gain suppression in undoped injection lasers,” J. Appl. Phys., vol. 52, pp. 26532664, 1981.
[140]Kowalsky, W., Schlachetzki, A., and Fiedler, F., “Near-band-gap absorption of InGaAsP at 1.3 μm wavelength,” Phys. Status Solidi A, vol. 68, pp. 153158, 1981.
[141]Groeneveld, R. H., Sprik, R., and Lagendijk, A., “Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals,” Phys. Rev. B, vol. 45, p. 5079, 1992.
[142]Fann, W., Storz, R., Tom, H., and Bokor, J., “Electron thermalization in gold,” Phys. Rev. B, vol. 46, p. 13592, 1992.
[143]Yamanishi, M. and Lee, Y., “Phase dampings of optical dipole moments and gain spectra in semiconductor lasers,” IEEE J. Quantum. Electron., vol. 23, pp. 367370, 1987.
[144]Chinn, S. R., Zory, P. Jr., and Reisinger, A. R., “A model for GRIN-SCH-SQW diode lasers,” IEEE J. Quantum. Electron., vol. 24, pp. 21912214, 1988.
[145]Yariv, A. and Yeh, P., Photonics: Optical Electronics in Modern Communications. Oxford University Press, 2007.
[146]Deveaud, B., Clerot, F., Roy, N., Satzke, K., Sermage, B., and Katzer, D., “Enhanced radiative recombination of free excitons in GaAs quantum wells,” Phys. Rev. Lett., vol. 67, pp. 23552358, 1991.
[147]Baba, T. and Sano, D., “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron., vol. 9, pp. 13401346, 2003.
[148]Chow, W. W. and Koch, S. W., Semiconductor-Laser Fundamentals. Berlin: Springer, 1999.
[149]Yu, P., Bhattacharya, P., and Cheng, J., “Enhanced spontaneous emission from InAs/GaAs self-organized quantum dots in a GaAs photonic-crystal-based microcavity,” J. Appl. Phys., vol. 93, pp. 61736176, 2003.
[150]Jahnke, F. and Koch, S., “Theory of carrier heating through injection pumping and lasing in semiconductor microcavity lasers,” Opt. Lett., vol. 18, pp. 14381440, 1993.
[151]Bouillard, J. G., Dickson, W., O’Connor, D. P., Wurtz, G. A., and Zayats, A. V., “Low-temperature plasmonics of metallic nanostructures,” Nano Lett., vol. 12, pp. 15611565, 2012.
[152]Parkins, G., Lawrence, W., and Christy, R., “Intraband optical conductivity σ (ω, T) of Cu, Ag, and Au: Contribution from electron-electron scattering,” Phys. Rev. B, vol. 23, p. 6408, 1981.
[153]Turhan-Sayan, G., “Temperature effects on surface plasmon resonance: Design considerations for an optical temperature sensor,” J. Lightwave Technol., vol. 21, p. 805, 2003.
[154]Cassidy, D. R. and Cross, G. H., “Universal method to determine the thermo-optic coefficient of optical waveguide layer materials using a dual slab waveguide,” Appl. Phys. Lett., vol. 91, pp. 141914–141914–3, 2007.
[155]Della Corte, F. G., Cocorullo, G., Iodice, M., and Rendina, I., “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm,” Appl. Phys. Lett., vol. 77, pp. 16141616, 2000.
[156]Masum, J., Ramoo, D., Balkan, N., and Adams, M., “Temperature dependence of the spontaneous emission factor in VCSELs,” IEEE Proceedings – Optoelectronics, vol. 146, pp. 245251, 1999.
[157]Ramoo, D. M. and Adams, M. J., “Temperature dependence of the spontaneous emission factor in microcavities,” Proc. SPIE, vol. 4646, pp. 157167, 2002.
[158]Smalley, J. S., Gu, Q., Puckett, M. W., and Fainman, Y., “Metal-clad subwavelength semiconductor lasers with temperature-insensitive spontaneous hyper-emission,” in CLEO: Applications and Technology, pp. JTh2A. 74, 2014.
[159]Gies, C., Wiersig, J., Lorke, M., and Jahnke, F., “Semiconductor model for quantum-dot-based microcavity lasers,” Phys. Rev. A, vol. 75, p. 013803, 2007.
[160]Ritchie, R., “Plasma losses by fast electrons in thin films,” Phys. Rev., vol. 106, p. 874, 1957.
[161]Ozbay, E., “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science, vol. 311, pp. 189193, 2006.
[162]Kittel, C., Introduction to Solid State Physics. New York: John Wiley & Sons, Inc., 2005.
[163]Maier, S. A., Plasmonics: Fundamentals and Applications. Springer Science & Business Media, 2007.
[164]Blaber, M. G., Arnold, M. D., and Ford, M. J., “Search for the ideal plasmonic nanoshell: The effects of surface scattering and alternatives to gold and silver,” The Journal of Physical Chemistry C, vol. 113, pp. 30413045, 2009.
[165]Avrutsky, I., Salakhutdinov, I., Elser, J., and Podolskiy, V., “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B, vol. 75, p. 241402, 2007.
[166]MacDonald, K. F., Sámson, Z. L., Stockman, M. I., and Zheludev, N. I., “Ultrafast active plasmonics,” Nat. Photon., vol. 3, pp. 5558, 2009.
[167]Pendry, J. B., “Negative refraction makes a perfect lens,” Phys. Rev. Lett., vol. 85, p. 3966, 2000.
[168]Ayala-Orozco, C., Urban, C., Knight, M. W., Urban, A. S., Neumann, O., Bishnoi, S. W., Mukherjee, S., Goodman, A. M., Charron, H., and Mitchell, T., “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano, vol. 8, pp. 63726381, 2014.
[169]Fu, Y., Zhang, J., and Lakowicz, J. R., “Plasmonic enhancement of single-molecule fluorescence near a silver nanoparticle,” J. Fluoresc., vol. 17, pp. 811816, 2007.
[170]Vo-Dinh, T., Fales, A. M., Griffin, G. D., Khoury, C. G., Liu, Y., Ngo, H., Norton, S. J., Register, J. K., Wang, H., and Yuan, H., “Plasmonic nanoprobes: From chemical sensing to medical diagnostics and therapy,” Nanoscale, vol. 5, pp. 1012710140, 2013.
[171]Melikyan, A., Alloatti, L., Muslija, A., Hillerkuss, D., Schindler, P., Li, J., Palmer, R., Korn, D., Muehlbrandt, S., and Van Thourhout, D., “High-speed plasmonic phase modulators,” Nat. Photon., vol. 8, pp. 229233, 2014.
[172]O’Connor, D. and Zayats, A. V., “Data storage: The third plasmonic revolution,” Nat. Nanotechnol., vol. 5, pp. 482483, 2010.
[173]Lee, J., Tymchenko, M., Argyropoulos, C., Chen, P., Lu, F., Demmerle, F., Boehm, G., Amann, M., Alù, A., and Belkin, M. A., “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature, vol. 511, pp. 6569, 2014.
[174]Galfsky, T., Krishnamoorthy, H., Newman, W., Narimanov, E., Jacob, Z., and Menon, V., “Active hyperbolic metamaterials: Enhanced spontaneous emission and light extraction,” Optica, vol. 2, pp. 6265, 2015.
[175]Berini, P. and De Leon, I., “Surface plasmon-polariton amplifiers and lasers,” Nat. Photon., vol. 6, pp. 1624, 2012.
[176]Berini, P., “Long-range surface plasmon polaritons,” Adv. Opt. Photon., vol. 1, pp. 484588, 2009.
[177]Plotz, G., Simon, H., and Tucciarone, J., “Enhanced total reflection with surface plasmons,” J. Opt. Soc. Am., vol. 69, pp. 419422, 1979.
[178]Sudarkin, A. and Demkovich, P., “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys, vol. 34, p. 57, 1989.
[179]Avrutsky, I., “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B, vol. 70, p. 155416, 2004.
[180]Tredicucci, A., Machl, C., Capasso, F., Hutchinson, A. L., Sivco, D. L., and Cho, A. Y., “Single-mode surface plasmon laser,” in Lasers and Electro-Optics, 2000. (CLEO 2000), pp. 266267.
[181]Seidel, J., Grafström, S., and Eng, L., “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett., vol. 94, p. 177401, 2005.
[182]De Leon, I. and Berini, P., “Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media,” Phys. Rev. B, vol. 78, p. 161401, 2008.
[183]Noginov, M., Podolskiy, V., Zhu, G., Mayy, M., Bahoura, M., Adegoke, J., Ritzo, B., and Reynolds, K., “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express, vol. 16, pp. 13851392, 2008.
[184]Kumar, P., Tripathi, V., and Liu, C., “A surface plasmon laser,” J. Appl. Phys., vol. 104, 2008.
[185]Bolger, P., Dickson, W., Krasavin, A., Liebscher, L., Hickey, S., Skryabin, D., and Zayats, A., “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett., vol. 35, pp. 11971199, 2010.
[186]Lu, F., Li, T., Xu, J., Xie, Z., Li, L., Zhu, S., and Zhu, Y., “Surface plasmon polariton enhanced by optical parametric amplification in nonlinear hybrid waveguide,” Opt. Express, vol. 19, pp. 28582865, 2011.
[187]Gartia, M. R., Seo, S., Kim, J., Chang, T., Bahl, G., Lu, M., Liu, G. L., and Eden, J. G., “Injection-seeded optoplasmonic amplifier in the visible,” Sci. Rep., vol. 4, 6168, 2014.
[188]Economou, E., “Surface plasmons in thin films,” Phys. Rev., vol. 182, p. 539, 1969.
[189]Poddubny, A., Iorsh, I., Belov, P., and Kivshar, Y., “Hyperbolic metamaterials,” Nat. Photon., vol. 7, pp. 948957, 2013.
[190]Ni, X., Ishii, S., Thoreson, M. D., Shalaev, V. M., Han, S., Lee, S., and Kildishev, A. V., “Loss-compensated and active hyperbolic metamaterials,” Opt. Express, vol. 19, pp. 2524225254, 2011.
[191]Argyropoulos, C., Estakhri, N. M., Monticone, F., and Alù, A., “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express, vol. 21, pp. 1503715047, 2013.
[192]Savelev, R. S., Shadrivov, I. V., Belov, P. A., Rosanov, N. N., Fedorov, S. V., Sukhorukov, A. A., and Kivshar, Y. S., “Loss compensation in metal-dielectric layered metamaterials,” Phys. Rev. B, vol. 87, p. 115139, 2013.
[193]Savelev, R., Shadrivov, I., and Kivshar, Y. S., “Wave scattering by metal-dielectric multilayer structures with gain,” JETP Letters, vol. 100, pp. 731736, 2015.
[194]Smalley, J. S., Vallini, F., Kanté, B., and Fainman, Y., “Modal amplification in active waveguides with hyperbolic dispersion at telecommunication frequencies,” Opt. Express, vol. 22, pp. 2108821105, 2014.
[195]Smalley, J. S., Vallini, F., Shahin, S., Kanté, B., and Fainman, Y., “Gain-enhanced high-k transmission through metal-semiconductor hyperbolic metamaterials,” Opt. Mater. Express, vol. 5, pp. 23002312, 2015.
[196]Lu, D., Kan, J. J., Fullerton, E. E., and Liu, Z., “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol., vol. 9, pp. 4853, 2014.
[197]Popov, A. K. and Myslivets, S. A., “Transformable broad-band transparency and amplification in negative-index films,” Appl. Phys. Lett., vol. 93, p. 191117, 2008.
[198]Xiao, S., Drachev, V. P., Kildishev, A. V., Ni, X., Chettiar, U. K., Yuan, H., and Shalaev, V. M., “Loss-free and active optical negative-index metamaterials,” Nature, vol. 466, pp. 735738, 2010.
[199]Campione, S., Albani, M., and Capolino, F., “Complex modes and near-zero permittivity in 3D arrays of plasmonic nanoshells: Loss compensation using gain [Invited],” Opt. Mater. Express, vol. 1, pp. 10771089, 2011.
[200]Vahala, K. J., “Optical microcavities,” Nature, vol. 424, pp. 839846, 2003.
[201]Yokoyama, H., “Physics and device applications of optical microcavities,” Science, vol. 256, pp. 6670, 1992.
[202]Baida, F. I., Belkhir, A., Van Labeke, D., and Lamrous, O., “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B, vol. 74, p. 205419, 2006.
[203]Benzaquen, R., Charbonneau, S., Sawadsky, N., Roth, A., Leonelli, R., Hobbs, L., and Knight, G., “Alloy broadening in photoluminescence spectra of Ga< inf> x</inf> In< inf> 1-x</inf> As< inf> y</inf> P< inf> 1-y</inf> lattice matched to InP,” J. Appl. Phys., vol. 75, pp. 26332639, 1994.
[204]Bayer, M., Reinecke, T., Weidner, F., Larionov, A., McDonald, A., and Forchel, A., “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett., vol. 86, p. 3168, 2001.
[205]Baba, T., “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron., vol. 3, pp. 808830, 1997.
[206]Schawlow, A. L. and Townes, C. H., “Infrared and optical masers,” Phys. Rev., vol. 112, p. 1940, 1958.
[207]Henry, C., “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum. Electron., vol. 18, pp. 259264, 1982.
[208]Bjork, G., Karlsson, A., and Yamamoto, Y., “On the linewidth of microcavity lasers,” Appl. Phys. Lett., vol. 60, pp. 304306, 1992.
[209]Rice, P. R. and Carmichael, H., “Photon statistics of a cavity-QED laser: A comment on the laser–phase-transition analogy,” Phys. Rev. A, vol. 50, p. 4318, 1994.
[210]Pedrotti, L. M., Sokol, M., and Rice, P. R., “Linewidth of four-level microcavity lasers,” Phys. Rev. A, vol. 59, p. 2295, 1999.
[211]Rosenzweig, M., Mohrle, M., Duser, H., and Venghaus, H., “Threshold-current analysis of InGaAs-InGaAsP multiquantum well separate-confinement lasers,” IEEE J. Quantum. Electron., vol. 27, pp. 18041811, 1991.
[212]Sweeney, S., Phillips, A., Adams, A., O’Reilly, E., and Thijs, P., “The effect of temperature dependent processes on the performance of 1.5-μm compressively strained InGaAs (P) MQW semiconductor diode lasers,” IEEE Photon. Technol. Lett., vol. 10, pp. 10761078, 1998.
[213]Sweeney, S., Jin, S., Ahmad, C., Adams, A., and Murdin, B., “Carrier recombination processes in 1.3 μm and 1.5 μm InGaAs (P)-based lasers at cryogenic temperatures and high pressures,” Physica Status Solidi (b), vol. 241, pp. 33993404, 2004.
[214]Fuchs, G., Schiedel, C., Hangleiter, A., Härle, V., and Scholz, F., “Auger recombination in strained and unstrained InGaAs/InGaAsP multiple quantum-well lasers,” Appl. Phys. Lett., vol. 62, pp. 396398, 1993.
[215]Fukuda, M., “Current drift associated with surface recombination current in InGaAsP/InP optical devices,” J. Appl. Phys., vol. 59, pp. 41724176, 1986.
[216]Strauf, S., Hennessy, K., Rakher, M., Choi, Y. S., Badolato, A., Andreani, L., Hu, E., Petroff, P., and Bouwmeester, D., “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett., vol. 96, p. 127404, 2006.
[217]Kinsey, N., Ferrera, M., Shalaev, V., and Boltasseva, A., “Examining nanophotonics for integrated hybrid systems: A review of plasmonic interconnects and modulators using traditional and alternative materials [Invited],” J. Opt. Soc. Am. B Optical Physics, vol. 32, p. 121, 2015.
[218]Balanis, C. A., Antenna Theory: Analysis and Design. New York: John Wiley & Sons, Inc., 2005.
[219]Park, H. G., Kim, S. H., Kwon, S. H., Ju, Y. G., Yang, J. K., Baek, J. H., Kim, S. B., and Lee, Y. H., “Electrically driven single-cell photonic crystal laser,” Science, vol. 305, pp.14441447, 2004.
[220]Zhou, H., Wissinger, M., Fallert, J., Hauschild, R., Stelzl, F., Klingshirn, C., and Kalt, H., “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett., vol. 91, pp. 181112–181112–3, 2007.
[221]Hahn, C., Zhang, Z., Fu, A., Wu, C. H., Hwang, Y. J., Gargas, D. J., and Yang, P., “Epitaxial growth of InGaN nanowire arrays for light emitting diodes,” ACS Nano, vol. 5, pp. 39703976, 2011.
[222]Rideout, W., Sharfin, W., Koteles, E., Vassell, M., and Elman, B., “Well-barrier hole burning in quantum well lasers,” IEEE Photon. Technol. Lett., vol. 3, pp. 784786, 1991.
[223]Vallini, F., Gu, Q., Kats, M., Fainman, Y., and Frateschi, N. C., “Carrier saturation in multiple quantum well metallo-dielectric semiconductor nanolaser: Is bulk material a better choice for gain media?Opt. Express, vol. 21, pp. 2598525998, 2013.
[224]Chuang, S. L. and Chuang, S. L., Physics of Optoelectronic Devices. New York: John Wiley & Sons, Inc., 1995.
[225]Reisinger, A., Zory, P. Jr., and Waters, R., “Cavity length dependence of the threshold behavior in thin quantum well semiconductor lasers,” IEEE. J. Quantum. Electron., vol. 23, pp. 993999, 1987.
[226]Wu, C. and Yang, E., “Physical mechanisms of carrier leakage in DH injection lasers,” J. Appl. Phys., vol. 49, pp. 31143117, 1978.
[227]Casey, H., “Room-temperature threshold-current dependence of GaAs-Al x Ga 1-x As double-heterostructure lasers on x and active-layer thickness,” J. Appl. Phys., vol. 49, pp. 36843692, 1978.
[228]Dutta, N., “Calculated temperature dependence of threshold current of GaAs-AlxGa1–xAs double heterostructure lasers,” J. Appl. Phys., vol. 52, pp. 7073, 1981.
[229]Lau, K. Y., “Dynamics of quantum well lasers,” in Quantum Well Lasers, Zory, P. S., Ed. New York: Academic, pp. 217276, 1993.
[230]Nagarajan, R., Ishikawa, M., Fukushima, T., Geels, R. S., and Bowers, J. E., “High speed quantum-well lasers and carrier transport effects,” IEEE. J. Quantum. Electron., vol. 28, pp. 19902008, 1992.
[231]Cohen-Tannoudji, C., Dupont-Roc, J., and Grynberg, G., Photons and Atoms: Introduction to Quantum Electrodynamics. New York: John Wiley & Sons, Inc., 1989.
[232]Lu, C., Chuang, S. L., and Bimberg, D., “Metal-cavity surface-emitting nanolasers,” IEEE. J. Quantum. Electron., vol. 49, pp. 114121, 2013.
[233]Shane, J., Gu, Q., Potterton, A., and Fainman, Y., “Effect of undercut etch on performance and fabrication robustness of metal-clad semiconductor nanolasers,” IEEE. J. Quantum. Electron., vol. 51, no. 1, pp. 19, 2015.
[234]Ding, K. and Ning, C., “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Technol., vol. 28, p. 124002, 2013.
[235]Chuang, S. L., Gorman, J. O., and Levi, A., “Amplified spontaneous emission and carrier pinning in laser diodes,” IEEE. J. Quantum. Electron., vol. 29, pp. 16311639, 1993.
[236]Ding, K. and Ning, C., “Metallic subwavelength-cavity semiconductor nanolasers,” Light: Sci. Appl., vol. 1, p. e20, 2012.
[237]Hess, O., Pendry, J., Maier, S., Oulton, R., Hamm, J., and Tsakmakidis, K., “Active nanoplasmonic metamaterials,” Nat. Mater., vol. 11, pp. 573584, 2012.
[238]Ning, C., Indik, R., and Moloney, J., “Self-consistent approach to thermal effects in vertical-cavity surface-emitting lasers,” J. Opt. Soc. Am. B, vol. 12, pp. 19932004, 1995.
[239]Yu, S. F., Analysis and Design of Vertical Cavity Surface Emitting Lasers. New York: Wiley-VCH, 2003.
[240]Yoneoka, S., Lee, J., Liger, M., Yama, G., Kodama, T., Gunji, M., Provine, J., Howe, R. T., Goodson, K. E., and Kenny, T. W., “Electrical and thermal conduction in atomic layer deposition nanobridges down to 7 nm thickness,” Nano Lett., vol. 12, pp. 683686, 2012.
[241]Wank, J. R., George, S. M., and Weimer, A. W., “Nanocoating individual cohesive boron nitride particles in a fluidized bed by ALD,” Powder. Technol., vol. 142, pp. 5969, 2004.
[242]Chen, G. and Shakouri, A., “Heat transfer in nanostructures for solid-state energy conversion,” J. Heat Transfer, vol. 124, pp. 242252, 2002.
[243]Green, B. M., Chu, K. K., Chumbes, E. M., Smart, J. A., Shealy, J. R., and Eastman, L. F., “The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs,” Electron. Dev. Lett., vol. 21, pp. 268270, 2000.
[244]Shih, M., Bagheri, M., Mock, A., Choi, S., OBrien, J., Dapkus, P., and Kuang, W., “Identification of modes and single mode operation of sapphire-bonded photonic crystal lasers under continuous-wave room temperature operation,” Appl. Phys. Lett., vol. 90, pp. 121116–121116–3, 2007.
[245]Chu, S., Wang, G., Zhou, W., Lin, Y., Chernyak, L., Zhao, J., Kong, J., Li, L., Ren, J., and Liu, J., “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol., vol. 6, pp. 506510, 2011.
[246]Min, B., Lee, J. S., Cho, K., Hwang, J. W., Kim, H., Sung, M. Y., Kim, S., Park, J., Seo, H. W., and Bae, S. Y., “Semiconductor nanowires surrounded by cylindrical Al2O3 shells,” J. Electron. Mater., vol. 32, pp. 13441348, 2003.
[247]Lee, S. and Cahill, D. G., “Heat transport in thin dielectric films,” J. Appl. Phys., vol. 81, pp. 25902595, 1997.
[248]Dörre, E. and Hübner, H., Alumina: Processing, Properties, and Applications. New York: Springer-Verlag, 1984.
[249]Duan, X., Huang, Y., Agarwal, R., and Lieber, C. M., “Single-nanowire electrically driven lasers,” Nature, vol. 421, pp. 241245, 2003.
[250]Kim, M. W. and Ku, P., “Semiconductor nanoring lasers,” Appl. Phys. Lett., vol. 98, pp. 201105–201105–3, 2011.
[251]Yang, H., Zhao, D., Chuwongin, S., Seo, J., Yang, W., Shuai, Y., Berggren, J., Hammar, M., Ma, Z., and Zhou, W., “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photon., vol. 6, pp. 617622, 2012.
[252]Chen, K. J. and Huang, S., “AlN passivation by plasma-enhanced atomic layer deposition for GaN-based power switches and power amplifiers,” Semicond. Sci. Technol., vol. 28, pp. 074015–1074015–8, 2013.
[253]Kleiner, M. B., Kühn, S., and Weber, W., “Thermal conductivity measurements of thin silicon dioxide films in integrated circuits,” IEEE Trans. Electron Dev., vol. 43, pp. 16021609, 1996.
[254]Bosund, M., Sajavaara, T., Laitinen, M., Huhtio, T., Putkonen, M., Airaksinen, V., and Lipsanen, H., “Properties of AlN grown by plasma enhanced atomic layer deposition,” Appl. Surf. Sci., vol. 257, pp. 78277830, 2011.
[255]Matsudaira, A., Lu, C., Zhang, M., Chuang, S. L., Stock, E., and Bimberg, D., “Cavity-volume scaling law of quantum-dot metal-cavity surface-emitting microlasers,” IEEE Photon. J., vol. 4, pp. 11031114, 2012.
[256]Forchel, A., Menschig, A., Maile, B., Leier, H., and Germann, R., “Transport and optical properties of semiconductor quantum wires,” J. Vac. Sci. Technol. B, vol. 9, pp. 444450, 1991.
[257]Cahill, D. G., “Thermal conductivity measurement from 30 to 750 K: The 3 ω method,” Rev. Sci. Instrum., vol. 61, pp. 802808, 1990.
[258]Shin, S., Cho, H. N., Kim, B. S., and Cho, H. H., “Influence of upper layer on measuring thermal conductivity of multilayer thin films using differential 3-ω method,” Thin Solid Films, vol. 517, pp. 933936, 2008.
[259]Kwon, M. and Shin, S., “Simple and fast numerical analysis of multilayer waveguide modes,” Opt. Commun., vol. 233, pp. 119126, 2004.
[260]Tsakmakidis, K. L., Pickering, T. W., Hamm, J. M., Page, A. F., and Hess, O., “Completely stopped and dispersionless light in plasmonic waveguides,” Phys. Rev. Lett., vol. 112, p. 167401, 2014.
[261]Baba, T., “Slow light in photonic crystals,” Nature Photonics, vol. 2, pp. 465473, 2008.
[262]Mookherjea, S., Park, J. S., Yang, S., and Bandaru, P. R., “Localization in silicon nanophotonic slow-light waveguides,” Nature Photonics, vol. 2, pp. 9093, 2008.
[263]Imamoğlu, A. and Ram, R., “Semiconductor lasers without population inversion,” Opt. Lett., vol. 19, pp. 17441746, 1994.
[264]Deng, H., Haug, H., and Yamamoto, Y., “Exciton-polariton bose-einstein condensation,” Reviews of Modern Physics, vol. 82, p. 1489, 2010.
[265]Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J., Marchetti, F., Szymańska, M., Andre, R., and Staehli, J., “Bose–Einstein condensation of exciton polaritons,” Nature, vol. 443, pp. 409414, 2006.
[266]Yamamoto, Y., Tassone, F., and Cao, H., Semiconductor Cavity Quantum Electrodynamics. Springer Science & Business Media, 2000.
[267]Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H., Rupper, G., Ell, C., Shchekin, O., and Deppe, D., “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature, vol. 432, pp. 200203, 2004.
[268]Weisbuch, C., Nishioka, M., Ishikawa, A., and Arakawa, Y., “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett., vol. 69, p. 3314, 1992.
[269]Tassone, F., Bassani, F., and Andreani, L., “Quantum-well reflectivity and exciton-polariton dispersion,” Physical Review B, vol. 45, p. 6023, 1992.
[270]Keldysh, L. and Kozlov, A., “Collective properties of excitons in semiconductors,” Sov. Phys.JETP, vol. 27, p. 521, 1968.
[271]Keldysh, L. and Kopaev, Y. V., “Possible instability of semimetallic state toward coulomb interaction,” Soviet Physics Solid State, USSR, vol. 6, pp. 2219-&, 1965.
[272]Imamoḡlu, A. and Ram, R., “Quantum dynamics of exciton lasers,” Phys. Lett. A, vol. 214, pp. 193198, 1996.
[273]Lagoudakis, P., Martin, M., Baumberg, J., Qarry, A., Cohen, E., and Pfeiffer, L., “Electron-polariton scattering in semiconductor microcavities,” Phys. Rev. Lett., vol. 90, p. 206401, 2003.
[274]Bhattacharya, P., Frost, T., Deshpande, S., Baten, M. Z., Hazari, A., and Das, A., “Room temperature electrically injected polariton laser,” Phys. Rev. Lett., vol. 112, p. 236802, 2014.
[275]Igarashi, K., Takeshima, K., Tsuritani, T., Takahashi, H., Sumita, S., Morita, I., Tsuchida, Y., Tadakuma, M., Maeda, K., and Saito, T., “110.9-Tbit/s SDM transmission over 6,370 km using a full C-band seven-core EDFA,” Opt. Express, vol. 21, pp. 1805318060, 2013.
[276]Morioka, T., Awaji, Y., Ryf, R., Winzer, P., Richardson, D., and Poletti, F., “Enhancing optical communications with brand new fibers,” IEEE Communications Magazine, vol. 50, pp. s31s42, 2012.
[277]Poletti, F., Wheeler, N., Petrovich, M., Baddela, N., Fokoua, E. N., Hayes, J., Gray, D., Li, Z., Slavík, R., and Richardson, D., “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photon., vol. 7, pp. 279284, 2013.
[278]Luo, L., Ophir, N., Chen, C. P., Gabrielli, L. H., Poitras, C. B., Bergmen, K., and Lipson, M., “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun., vol. 5, 2014.
[279]Horst, F., Green, W. M., Assefa, S., Shank, S. M., Vlasov, Y. A., and Offrein, B. J., “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-) multiplexing,” Opt. Express, vol. 21, pp. 1165211658, 2013.
[280]Assefa, S., Shank, S., Green, W., Khater, M., Kiewra, E., Reinholm, C., Kamlapurkar, S., Rylyakov, A., Schow, C., and Horst, F., “A 90 nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEDM), 2012, pp. 3133.38.
[281]Marchena, E., Creazzo, T., Krasulick, S. B., Yu, P., Van Orden, D., Spann, J. Y., Blivin, C. C., Dallesasse, J. M., Varangis, P., and Stone, R. J., “Integrated tunable CMOS laser for si photonics,” in National Fiber Optic Engineers Conference, 2013, pp. PDP5 C. 7.
[282]Roelkens, G., Liu, L., Liang, D., Jones, R., Fang, A., Koch, B., and Bowers, J., “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev., vol. 4, pp. 751779, 2010.
[283]Reed, G. T., Mashanovich, G., Gardes, F., and Thomson, D., “Silicon optical modulators,” Nat. Photon., vol. 4, pp. 518526, 2010.
[284]Casalino, M., Iodice, M., Sirleto, L., Rendina, I., and Coppola, G., “Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current,” Opt. Express, vol. 21, pp. 2807228082, 2013.
[285]Huang, S., Lu, W., Li, C., Huang, W., Lai, H., and Chen, S., “A CMOS-compatible approach to fabricate an ultra-thin germanium-on-insulator with large tensile strain for Si-based light emission,” Opt. Express, vol. 21, pp. 640646, 2013.
[286]Pospischil, A., Humer, M., Furchi, M. M., Bachmann, D., Guider, R., Fromherz, T., and Mueller, T., “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photon., vol. 7, pp. 892896, 2013.
[287]Boyraz, O. and Jalali, B., “Demonstration of directly modulated silicon Raman laser,” Opt. Express, vol. 13, pp. 796800, 2005.
[288]Camacho-Aguilera, R. E., Cai, Y., Patel, N., Bessette, J. T., Romagnoli, M., Kimerling, L. C., and Michel, J., “An electrically pumped germanium laser,” Opt. Express, vol. 20, pp. 1131611320, 2012.
[289]Tanaka, S., Jeong, S., Sekiguchi, S., Kurahashi, T., Tanaka, Y., and Morito, K., “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express, vol. 20, pp. 2805728069, 2012.
[290]Zilkie, A., Seddighian, P., Bijlani, B., Qian, W., Lee, D., Fathololoumi, S., Fong, J., Shafiiha, R., Feng, D., and Luff, B., “Power-efficient III-V/Silicon external cavity DBR lasers,” Opt. Express, vol. 20, pp. 2345623462, 2012.
[291]Lee, J. H., Shubin, I., Yao, J., Bickford, J., Luo, Y., Lin, S., Djordjevic, S. S., Thacker, H. D., Cunningham, J. E., and Raj, K., “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express, vol. 22, pp. 76787685, 2014.
[292]Hsu, C., Chen, Y., and Su, Y., “Heteroepitaxy for GaAs on nanopatterned Si (001),” IEEE Photon. Technol. Lett., vol. 24, pp. 10091011, 2012.
[293]Chen, R., Tran, T. D., Ng, K. W., Ko, W. S., Chuang, L. C., Sedgwick, F. G., and Chang-Hasnain, C., “Nanolasers grown on silicon,” Nat. Photon., vol. 5, pp. 170175, 2011.
[294]Rojo Romeo, P., Van Campenhout, J., Regreny, P., Kazmierczak, A., Seassal, C., Letartre, X., Hollinger, G., Van Thourhout, D., Baets, R., and Fedeli, J., “Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs,” Opt. Express, vol. 14, pp. 38643871, 2006.
[295]Fang, A. W., Lively, E., Kuo, Y., Liang, D., and Bowers, J. E., “A distributed feedback silicon evanescent laser,” Opt. Express, vol. 16, pp. 44134419, 2008.
[296]Stanković, S., Jones, R., Sysak, M. N., Heck, J. M., Roelkens, G., and Van Thourhout, D., “Hybrid III–V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett., vol. 24, pp. 21552158, 2012.
[297]Keyvaninia, S., Roelkens, G., Van Thourhout, D., Jany, C., Lamponi, M., Le Liepvre, A., Lelarge, F., Make, D., Duan, G., and Bordel, D., “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express, vol. 21, pp. 37843792, 2013.
[298]Tao, L., Yuan, L., Li, Y., Yu, H., Wang, B., Kan, Q., Chen, W., Pan, J., Ran, G., and Wang, W., “4-λ InGaAsP-Si distributed feedback evanescent lasers with varying silicon waveguide width,” Opt. Express, vol. 22, pp. 54485454, 2014.
[299]Bondarenko, O., Gu, Q., Shane, J., Simic, A., Slutsky, B., and Fainman, Y., “Wafer bonded distributed feedback laser with sidewall modulated Bragg gratings,” Appl. Phys. Lett., vol. 103, pp. 043105–043105–4, 2013.
[300]De Koninck, Y., Raineri, F., Bazin, A., Raj, R., Roelkens, G., and Baets, R., “Experimental demonstration of a hybrid III–V-on-silicon microlaser based on resonant grating cavity mirrors,” Opt. Lett., vol. 38, pp. 24962498, 2013.
[301]Zhang, Y., Qu, H., Wang, H., Zhang, S., Liu, L., Ma, S., and Zheng, W., “A hybrid silicon single mode laser with a slotted feedback structure,” Opt. Express, vol. 21, pp. 877883, 2013.
[302]Santis, C. T., Steger, S. T., Vilenchik, Y., Vasilyev, A., and Yariv, A., “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U. S. A., vol. 111, pp. 28792884, 2014.
[303]Gu, Q., Smalley, J. S., Nezhad, M. P., Simic, A., Lee, J. H., Katz, M., Bondarenko, O., Slutsky, B., Mizrahi, A., Lomakin, V., and Fainman, Y., “Subwavelength semiconductor lasers for dense chip-scale integration,” Adv. Opt. Photon., vol. 6, pp. 156, 2014.
[304]Kim, M., Li, Z., Huang, K., Going, R., Wu, M. C., and Choo, H., “Engineering of metal-clad optical nanocavity to optimize coupling with integrated waveguides,” Opt. Express, vol. 21, pp. 2579625804, 2013.
[305]Kim, M., Lakhani, A. M., and Wu, M. C., “Efficient waveguide-coupling of metal-clad nanolaser cavities,” Opt. Express, vol. 19, pp. 2350423512, 2011.
[306]Haus, H. A., Waves and Fields in Optoelectronics (Prentice-Hall series in solid state physical electronics). Englewood Cliffs, NJ: Prentice Hall, 1984.
[307]Lau, E. K., Zhao, X., Sung, H., Parekh, D., Chang-Hasnain, C., and Wu, M. C., “Strong optical injection-locked semiconductor lasers demonstrating ˃ 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express, vol. 16, pp. 66096618, 2008.
[308]Matsui, Y., Murai, H., Arahira, S., Ogawa, Y. and Suzuki, A., “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers,” IEEE. J. Quantum. Electron., vol. 34, pp. 19701978, 1998.
[309]Ledentsov, N., Bimberg, D., Hopfer, F., Mutig, A., Shchukin, V., Savel’ev, A., Fiol, G., Stock, E., Eisele, H., and Dähne, M., “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett., vol. 2, pp. 417429, 2007.
[310]Moser, P., Lott, J., Wolf, P., Larisch, G., Li, H., and Bimberg, D., “85-fJ dissipated energy per bit at 30 Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett., vol. 25, pp. 16381641, 2013.
[311]Yamanishi, M. and Suemune, I., “Comment on polarization dependent momentum matrix elements in quantum well lasers,” Jpn. J. Appl. Phys., vol. 23, p. L35, 1984.
[312]Bondarenko, O., Fang, C., Vallini, F., Smalley, J. S., and Fainman, Y., “Extremely compact hybrid III-V/SOI lasers: Design and fabrication approaches,” Opt. Express, vol. 23, pp. 26962712, 2015.
[313]Kogelnik, H. and Shank, C., “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys., vol. 43, pp. 23272335, 1972.
[314]Morthier, G. and Vankwikelberge, P., Handbook of Distributed Feedback Laser Diodes. Boston: Artech House, 2013.
[315]Grieco, A., Slutsky, B., and Fainman, Y., “Characterization of waveguide loss using distributed Bragg reflectors,” Appl. Phys. B, vol. 114, pp. 467474, 2014.
[316]Roelkens, G., Van Thourhout, D., Baets, R., and Smit, M., “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit,” Opt. Express, vol. 14, pp. 81548159, 2006.
[317]Heck, M., Bauters, J. F., Davenport, M. L., Doylend, J. K., Jain, S., Kurczveil, G., Srinivasan, S., Tang, Y., and Bowers, J. E., “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron., vol. 19, 2013.
[318]Duan, G., Jany, C., Le Liepvre, A., Accard, A., Lamponi, M., Make, D., Kaspar, P., Levaufre, G., Girard, N., and Lelarge, F., “Hybrid III–V on silicon lasers for photonic integrated circuits on silicon,” IEEE J. Sel. Top. Quantum Electron., vol. 20, pp. 158170, 2014.
[319]Agrawal, G. P. and Dutta, N. K., Long Wavelength Semiconductor Lasers. New York: Van Nostrand Reinhold, 1986.
[320]Lamponi, M., Keyvaninia, S., Jany, C., Poingt, F., Lelarge, F., De Valicourt, G., Roelkens, G., Van Thourhout, D., Messaoudene, S., and Fedeli, J., “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett., vol. 24, pp. 7678, 2012.
[321]Park, H., Kuo, Y., Fang, A. W., Jones, R., Cohen, O., Paniccia, M. J., and Bowers, J. E., “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express, vol. 15, pp. 1353913546, 2007.
[322]Kurczveil, G., Heck, M. J., Peters, J. D., Garcia, J. M., Spencer, D., and Bowers, J. E., “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron., vol. 17, pp. 15211527, 2011.
[323]Koyanagi, M., Nakamura, T., Yamada, Y., Kikuchi, H., Fukushima, T., Tanaka, T., and Kurino, H., “Three-dimensional integration technology based on wafer bonding with vertical buried interconnections,” IEEE Trans. Electron Dev., vol. 53, pp. 27992808, 2006.
[324]de Valicourt, G., Le Liepvre, A., Vacondio, F., Simonneau, C., Lamponi, M., Jany, C., Accard, A., Lelarge, F., Make, D., and Poingt, F., “Directly modulated and fully tunable hybrid silicon lasers for future generation of coherent colorless ONU,” Opt. Express, vol. 20, pp.B552B557, 2012.
[325]Cortes, C., Newman, W., Molesky, S., and Jacob, Z., “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt., vol. 14, p. 063001, 2012.
[326]Ramakrishna, S. A. and Pendry, J. B., “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B, vol. 67, p. 201101, 2003.
[327]Ohring, M., Materials Science of Thin Films. San Diego, CA: Academic Press, 2001.
[328]George, S. M., “Atomic layer deposition: An overview,” Chem. Rev., vol. 110, pp. 111131, 2009.
[329]Hämäläinen, J., Ritala, M., and Leskelä, M., “Atomic layer deposition of noble metals and their oxides,” Chem. Mater., vol. 26, pp. 786801, 2013.
[330]Chang, S., Lin, T., and Chuang, S. L., “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express, vol. 18, pp. 1503915053, 2010.
[331]Altug, H. and Vuckovic, J., “Photonic crystal nanocavity array laser,” Opt. Express, vol. 13, pp. 88198828, 2005.
[332]Morris, S. M., Hands, P. J., Findeisen-Tandel, S., Cole, R. H., Wilkinson, T. D., and Coles, H. J., “Polychromatic liquid crystal laser arrays towards display applications,” Opt. Express, vol. 16, pp. 1882718837, 2008.
[333]Zhou, W., Dridi, M., Suh, J. Y., Kim, C. H., Wasielewski, M. R., Schatz, G. C., and Odom, T. W., “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol., vol. 8, no. 7, pp. 506511, 2013.
[334]Abe, H., Narimatsu, M., Kita, S., Tomitaka, A., Takemura, Y., and Baba, T., “Live cell imaging using photonic crystal nanolaser array,” Micro-TAS, vol. 593, p. 2011, 2011.
[335]Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S., and Watts, M. R., “Large-scale nanophotonic phased array,” Nature, vol. 493, pp. 195199, 2013.
[336]Oclaro, “Data Sheet: 850 nm 20Gb/s Multimode VCSEL Chip Array,” <www.oclaro.com/datasheets/D00473-PB%20APA7601xy0000%20Datasheet%20Iss01.pdf>
[337]He, L., Özdemir, Ş. K., Zhu, J., Kim, W., and Yang, L., “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol., vol. 6, pp. 428432, 2011.
[338]Francois, A. and Himmelhaus, M., “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett., vol. 94, p. 031101, 2009.
[339]Gather, M. C. and Yun, S. H., “Single-cell biological lasers,” Nat. Photon., vol. 5, pp. 406410, 2011.
[340]Gather, M. C. and Yun, S. H., “Lasing from Escherichia coli bacteria genetically programmed to express green fluorescent protein,” Opt. Lett., vol. 36, pp. 32993301, 2011.
[341]Nizamoglu, S., Gather, M. C., and Yun, S. H., “All-Biomaterial Laser Using Vitamin and Biopolymers,” Adv. Mater., vol. 25, pp. 59435947, 2013.
[342]Sun, Y., Shopova, S. I., Wu, C. S., Arnold, S., and Fan, X., “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U. S. A., vol. 107, pp.1603916042, 2010.
[343]Glauber, R. J. and Lewenstein, M., “Quantum optics of dielectric media,” Phys. Rev. A, vol. 43, p. 467, 1991.
[344]Chang, S. W. and Chuang, S. L., “Normal modes for plasmonic nanolasers with dispersive and inhomogeneous media,” Opt. Lett., vol. 34, pp. 9193, 2009.
[345]Glauber, R. J., “Optical coherence and photon statistics,” in Quantum Optics and Electronics, DeWitt, C. et al., Eds. New York: Gordon and Breach, p. 63, 1965,
[346]Björk, G., Machida, S., Yamamoto, Y., and Igeta, K., “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A, vol. 44, p. 669, 1991.
[347]Srinivasan, K. and Painter, O., “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature, vol. 450, pp. 862865, 2007.
[348]Khitrova, G., Gibbs, H., Kira, M., Koch, S., and Scherer, A., “Vacuum Rabi splitting in semiconductors,” Nat. Phys., vol. 2, pp. 8190, 2006.
[349]Weisskopf, V. and Wigner, E., “Calculation of the natural brightness of spectral lines on the basis of Dirac’s theory,” Z. Phys., vol. 63, pp. 5473, 1930.
[350]Burov, L., Lebedok, E., Kononenko, V., Ryabtsev, A., and Ryabtsev, G., “Interband transition matrix element and temperature dependence of the lasing threshold for GaN laser structures,” J. Appl. Spectrosc., vol. 74, pp. 878883, 2007.
[351]Nicholas, R., Portal, J., Houlbert, C., Perrier, P., and Pearsall, T., “An experimental determination of the effective masses for GaxIn1–xAsyP1–y alloys grown on InP,” Appl. Phys. Lett., vol. 34, pp. 492494, 1979.
[352]Sharma, A., Ravindra, N., Auluck, S., and Srivastava, V., “Temperature-dependent effective masses in III-V compound semiconductors,” Physica Status Solidi (b), vol. 120, pp. 715721, 1983.
[353]Forrest, S., Schmidt, P., Wilson, R., and Kaplan, M., “Relationship between the conduction-band discontinuities and band-gap differences of InGaAsP/InP heterojunctions,” Appl. Phys. Lett., vol. 45, pp. 11991201, 1984.
[354]Varshni, Y., “Temperature dependence of the energy gap in semiconductors,” Physica, vol. 34, pp. 149154, 1967.
[355]Satzke, K., Weiser, G., Höger, R., and Thulke, W., “Absorption and electroabsorption spectra of an In1–xGaxP1–yAsy/InP double heterostructure,” J. Appl. Phys., vol. 63, pp. 54855490, 1988.
[356]Zhang, P., Gu, Q., Lau, Y., and Fainman, Y., “Constriction resistance and current crowding in electrically-pumped semiconductor nanolasers with the presence of undercut and sidewall tilt,” IEEE. J. Quantum. Electron., vol. 52, no. 3, pp. 17, 2016.
[357]Zhang, P., Hung, D. M., and Lau, Y., “Current flow in a 3-terminal thin film contact with dissimilar materials and general geometric aspect ratios,” J. Phys. D, vol. 46, p. 065502, 2013.
[358]Zhang, P., Lau, Y., and Timsit, R. S., “On the spreading resistance of thin-film contacts,” IEEE Trans. Electron Dev., vol. 59, pp. 19361940, 2012.
[359]Shane, J., Gu, Q., Vallini, F., Wingad, B., Smalley, J. S., Frateschi, N. C., and Fainman, Y., “Thermal considerations in electrically-pumped metallo-dielectric nanolasers,” SPIE OPTO, pp. 898027–898027–11, 2014.
[360]Zhang, P., Lau, Y., and Timsit, R. S., “Spreading resistance of a contact spot on a thin film,” in Holm Conference on Electrical Contacts (HOLM), 2013 IEEE 59th, pp. 17.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.