Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-04T15:42:03.762Z Has data issue: false hasContentIssue false

16 - Saving the Black-Footed Ferret from Extinction

In Theory and Practice

from Part III - Saving Species

Published online by Cambridge University Press:  21 December 2018

Allison B. Kaufman
Affiliation:
University of Connecticut
Meredith J. Bashaw
Affiliation:
Franklin and Marshall College, Pennsylvania
Terry L. Maple
Affiliation:
Jacksonville Zoo and Gardens
Get access

Summary

The black-footed ferret story is one of success and triumph, but it is also not finished. At one point in its history, there were fewer than 30 individuals in the world. But the passion of wildlife biologists prevented its extinction, and now, after 30 years of captive breeding, we have produced over 9,100 individuals. Some ferrets are released into the wild and others remain in breeding facilities across North American zoos and the United States National Black-Footed Ferret Conservation Center to retain the species’ gene diversity and again to support current and new reintroduction sites. In this chapter, I will describe how we use science to help this species remain in existence now and into the future.
Type
Chapter
Information
Scientific Foundations of Zoos and Aquariums
Their Role in Conservation and Research
, pp. 440 - 474
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M. E., Oftedal, O. T., & Baer, D. J. (1996). The feeding and nutrition of carnivores. In Kleiman, D. G., Allen, M. E., Thompson, K. V., & Lumpkin, S. (Eds.), Wild Mammals in Captivity: Principles and Techniques (pp. 139147). Chicago, IL: University of Chicago Press.Google Scholar
Anderson, E., Forrest, S. C., Clark, T. W., & Richardson, L. (1986). Paleobiology, biogeography, and systematics of the black-footed ferret, Mustela nigripes. Great Basin Naturalist Memoirs, 8, 1162.Google Scholar
Angeloni, F., Wagemaker, N., Vergeer, P., & Ouborg, J. (2012). Genomic toolboxes for conservation biologists. Evolutionary Applications, 5(2), 130143.CrossRefGoogle ScholarPubMed
Atherton, R. W., Straley, M., Curry, P., Slaughter, R., Burgess, W., & Kitchin, R. M. (1989). Electroejaculation and cryopreservation of domestic ferret sperm. In Seal, E. T. T. U. S., Anderson, S. H., & Bodan, M. A. (Eds.), Conservation Biology and the Black-Footed Ferret (pp. 177189). New Haven, CT: Yale University Press.CrossRefGoogle Scholar
Audubon, J. J. & Bachman, J. (1851). The Viviparous Quadrupeds of North America. New York: V.G. Audubon Press.Google Scholar
Ballou, J. D., Earnhardt, J., & Thompson, S. (2001). MATERX: Population Management Software. Washington, DC: National Zoological Park.Google Scholar
Barone, M. A., Roelke, M. E., Howard, J., Brown, J. L., Anderson, A. E., & Wildt, D. E. (1994). Reproductive characteristics of male Florida panthers: Comparative studies from Florida, Texas, Colorado, Latin America, and North American zoos. Journal of Mammalogy, 75(1), 150162.CrossRefGoogle Scholar
Biggins, D. E., Godbey, J., Gage, K. L., Carter, L. G., & Montenieri, J. A. (2010). Vector control improves survival of three species of prairie dogs (Cynomys) in areas considered enzootic for plague. Vector-Borne and Zoonotic Diseases, 10(1), 1726.CrossRefGoogle ScholarPubMed
Biggins, D. E., Godbey, J. L., Hanebury, L. R., Luce, B., Marinari, P. E., Matchett, M. R., & Vargas, A. (1998). The effect of rearing methods on survival of reintroduced black-footed ferrets. Journal of Wildlife Management, 62(2), 643653.Google Scholar
Bond, J. C. & Lindburg, D. G. (1990). Carcass feeding of captive cheetahs (Acinonyx jubatus): The effects of a naturalistic feeding program on oral health and psychological well-being. Applied Animal Behaviour Science, 26, 373382.Google Scholar
Brown, J. L. (1997). Fecal steroid profiles in black-footed ferrets exposed to natural photoperiod. Journal of Wildlife Management, 61(4), 14281436.Google Scholar
Carr, A. (1986). Introduction. Great Basin Naturalist Memoirs, 9, 17.Google Scholar
Carroll, R. S., Erskine, M. S., Doherty, P. C., Lundell, L. A., & Baum, M. J. (1985). Coital stimuli controlling luteinizing hormone secretion and ovulation in the female ferret. Biology of Reproduction, 32, 925933.Google Scholar
Carvalho, C. F., Howard, J. G., Collins, L., Wemmer, C., Bush, M., & Wildt, D. E. (1991). Captive breeding of black-footed ferrets (Mustela nigripes) and comparative reproductive efficiency in 1-year-old versus 2-year-old animals. Journal of Zoo and Wildlife Medicine, 22(1), 96106.Google Scholar
Cully, J., Biggins, D., & Seery, D. (2006). Conservation of prairie dogs in areas with plague. In Hoogland, J. (Ed.), Conservation of the Black-Tailed Prairie Dog (pp. 157168). Washington, DC: Island Press.Google Scholar
Fox, J. G. (1998). Biology and Diseases of the Ferret. Baltimore, MD: Williams and Wilkins Co.Google Scholar
Gage, K. L. & Kosoy, M. Y. (2005). Natural history of plague: Perspectives from more than a century of research. Annual Review of Entomology, 50, 505528.CrossRefGoogle ScholarPubMed
Hillman, C. N. & Carpenter, J. W. (1983). Breeding biology and behavior of captive black-footed ferrets. International Zoo Yearbook, 23, 186191.Google Scholar
Howard, J., Lynch, C., Santymire, R., Marinari, P., & Wildt, D. (2016). Recovery of gene diversity using long-term cryopreserved spermatozoa and artificial insemination in the endangered black-footed ferret. Animal Conservation, 19(2), 102111.CrossRefGoogle Scholar
Howard, J., Marinari, P. E., & Wildt, D. E. (2003). Black-footed ferret: Model for assisted reproductive technologies contributing to in situ conservation. In Holt, W. V., Pickard, A., Rodger, J. C., & Wildt, D. E. (Eds.), Reproductive Sciences and Integrated Conservation (pp. 249266). Cambridge, MA: Cambridge University Press.Google Scholar
Howard, J., Santymire, R. M., Marinari, P. E., Kreeger, J. S., Williamson, L., & Wildt, D. E. (2004). Use of reproductive technology for black-footed ferret recovery. Paper presented at the Symposium on the Status of the Black-footed Ferret and Its Habitat. Fort Collins, CO.Google Scholar
Howard, J. G., Bush, M., Morton, C., Morton, F., & Wildt, D. E. (1991). Comparative semen cryopreservation in ferrets (Mustela putorius furo) and pregnancies after laparoscopic intrauterine insemination with frozen–thawed spermatozoa. Journal of Reproduction and Fertility, 92, 109118.Google Scholar
Howard, J. G., Hurlbut, S. L., Morton, C., Morton, F., Bush, M., & Wildt, D. E. (1989). Pregnancies in the domestic ferret after laparoscopic artificial insemination with frozen–thawed spermatozoa. Journal of Andrology, (Suppl.), 135.Google Scholar
Howard, J. G., Kwiatkowski, D. R., Williams, E. S., Atherton, R. W., Kitchin, R. M., Thorne, E. T. et al. (1996). Pregnancies in black-footed ferrets and Siberian polecats after laparoscopic artificial insemination with fresh and frozen-thawed semen. Paper presented at the American Society of Andrology.Google Scholar
Howard, J. G. & Wildt, D. E. (2009). Approaches and efficacy of artificial insemination in felids and mustelids. Theriogenology, 71, 130148.Google Scholar
ISIS (2004). SPARKS (Single population analysis and records keeping system) V 1.5. Minneapolis, MN: International Species Information System.Google Scholar
Jachowski, D. S. & Lockhart, J. M. (2009). Reintroducing the black-footed ferret Mustela nigripes to the Great Plains of North America. Small Carnivore Conservation, 41, 5864.Google Scholar
Johnson, W. E., Onorato, D. P., Roelke, M. E., Land, E. D., Cunningham, M., Belden, R. C. et al. (2010). Genetic restoration of the Florida panther. Science, 329(5999), 16411645.CrossRefGoogle ScholarPubMed
Li, Z., Sun, X., Chen, J., Leno, G., & Engelhardt, J. F. (2006). Factors affecting the efficacy of embryo transfer in the domestic ferret (Mustela putorius furo). Theriogenology, 66, 183190.Google Scholar
Lindburg, D. G. (1988). Improving the feeding of captive felines through application of field data. Zoo Biology, 7, 211218.Google Scholar
Liu, Z., He, C., Zhou, Y., & Wu, J. (2014). How much of the world’s land has been urbanized, really? A hierarchical framework for avoiding confusion. Landscape Ecology, 29(5), 763.Google Scholar
Lockhart, J., Thorne, T., & Gober, D. (2004). A historical perspective on recovery of the black-footed ferret and the biological and political challenges affecting its future. In Roelle, J., Miller, B., Godbey, J., & Biggins, D. (Eds.), Symposium on the Status of the Black-Footed Ferret and Its Habitat: Scientific Investigations Report (pp. 619). Washington, DC: US Department of the Interior.Google Scholar
Marinari, P. (2016). North American Regional Black-Footed Ferret Studbook. Front Royal, VA: Association of Zoos and Aquariums.Google Scholar
Marsh, R. E. (1984). Ground squirrels, prairie dogs, and marmots as pest on rangeland. Paper presented at the Conference for Organization and Practice of Vertebrate Pest Control, August 30–September 3, 1982, Fernherst, UK.Google Scholar
Matchett, M. R., Biggins, D. E., Carlson, V., Powell, B., & Rocke, T. (2010). Enzootic plague reduces black-footed ferret (Mustela nigripes) survival in Montana. Vector-Borne and Zoonotic Diseases, 10(1), 2735.Google Scholar
Merriam, C. H. (1902). The prairie dog of the Great Plains. US Department of Agriculture Yearbook, 1901, 257270.Google Scholar
Miller, B. J., Biggins, D., Wemmer, C., Powell, R., Calvo, L., Hanebury, L., & Wharton, T. (1990). Development of survival skills in captive-raised Siberian polecats (Mustela eversmanni) II: Predator avoidance. Journal of Ethology, 8(2), 95104.CrossRefGoogle Scholar
Miller, B. J., Reading, R. P., & Forrest, S. (1996). Prairie Night: Black-Footed Ferrets and the Recovery of Endangered Species. Washington, DC: Smithsonian Institution.Google Scholar
Miller, B. J., Wemmer, C., Biggins, D., & Reading, R. P. (1990). A proposal to conserve black-footed ferrets and the prairie dog ecosystem. Environmental Management, 14(6), 763769.Google Scholar
O’Brien, S. J., Martenson, J. S., Eichelberger, M. A., Thorne, E. T., & Wright, F. (1989). Genetic variation and molecular systematics of the black-footed ferret. In Thorne, E. T., Seal, U.S., Anderson, S.H., & Bogan, M.A. (Eds.), Conservation Biology and the Black-Footed Ferret (pp. 2133). New Haven, CT: Yale University Press.Google Scholar
Oxford English Dictionary (2017). Definition of “ferret.” Retrieved from https://en.oxforddictionaries.com/definition/ferret.Google Scholar
Poessel, S. A., Biggins, D. E., Santymire, R. M., Livieri, T. M., Crooks, K. R., & Angeloni, L. (2011). Environmental enrichment affects adrenocortical stress responses in the endangered black-footed ferret. General and Comparative Endocrinology, 172(3), 526533.Google Scholar
Pollak, J. P., Lacy, R. C., & Ballou, J. D. (2000). Population Management 2000 (Version 1.175). Brookfield, IL: Chicago Zoological Society.Google Scholar
Reading, R. P., Vargas, A., Miller, B. J., Clark, T. W., Hanebury, L. R., & Biggins, D. (1996). Recent directions in black-footed ferret recovery. Endangered Species Update, 13(10 & 11), 16.Google Scholar
Rocke, T., Mencher, J., Smith, S., Friedlander, A., Andrews, G., & Baeten, L. A. (2004). Recombinant F1–V fusion protein protects black-footed ferrets (Mustela nigripes) against virulent Yersinia pestis infection. Journal of Zoo and Wildlife Medicine, 35, 142146.CrossRefGoogle ScholarPubMed
Rocke, T. E., Tripp, D. W., Russell, R. E., Abbott, R. C., Richgels, K. L., Matchett, M. R. et al. (2017). Sylvatic plague vaccine partially protects prairie dogs (Cynomys spp.) in field trials. EcoHealth, 14, 438450.Google Scholar
Roelke, M. E. (1993). The consequences of demographic reduction and genetic depletion in the endangered Florida panther. Current Biology, 3, 340350.CrossRefGoogle ScholarPubMed
Santymire, R. (2016). Implementing the use of a biobank in the endangered black-footed ferret (Mustela nigripes). Reproduction, Fertility and Development, 28(8), 10971104.Google Scholar
Santymire, R., Livieri, T., Marinari, P., Bortner, R., & Wright, M. (2016). Effect of the Environment on the Health and Fecundity of the Endangered Black-Footed Ferret (Mustela nigripes). Madison, WI: Society for Conservation Biology.Google Scholar
Santymire, R. M., Howard, J. G., Wisely, S. M., Kreeger, J. S., Marinari, P. E., & Wildt, D. E. (2004). Seminal characteristics of wild black-footed ferrets (Mustela nigripes). Paper presented at the Defenders of Wildlife Carnivores – Expanding Partnerships in Carnivore Conservation, Santa Fe, New Mexico.Google Scholar
Santymire, R. M., Lavin, S. R., Branvold-Faber, H., Kreeger, J., & Marinari, P. (2015). Effect of dietary vitamin E and prey supplementation on semen quality in male black-footed ferrets (Mustela nigripes). Theriogenology, 84(2), 217225.Google Scholar
Santymire, R. M., Livieri, T. M., Branvold-Faber, H., & Marinari, P. E. (2014). The black-footed ferret: On the brink of recovery? In Holt, W. V., Brown, J. L., & Comizzoli, P. (Eds.), Reproductive Sciences in Animal Conservation (pp. 119134). New York: Springer.Google Scholar
Santymire, R. M., Marinari, P., & Lynch, C. (2016). Population Analysis and Breeding and Transfer Plan: Black-footed ferret (Mustela nigripes). Chicago, IL: Association of Zoos and Aquariums.Google Scholar
Santymire, R. M., Marinari, P. E., Kreeger, J. S., Wildt, D. E., & Howard, J. G. (2006). Sperm viability in the black-footed ferret (Mustela nigripes) is influenced by seminal and medium osmolality. Cryobiology, 53, 3750.Google Scholar
Santymire, R. M., Marinari, P. E., Kreeger, J. S., Wolf, K. N., Wildt, D. E., & Howard, J. G. (2005). Reproductive deficiency and asynchrony in yearling male black-footed ferrets. Paper presented at the Symposium on the Status of the Black-Footed Ferret and Its Habitat. Fort Collins, CO.Google Scholar
Santymire, R. M., Marinari, P. E., Kreeger, J. S., Wildt, D. E., & Howard, J. G. (2007). Slow cooling prevents cold-inducing damage to sperm motility and acrosomal integrity in the black-footed ferret (Mustela nigripes). Reproduction, Fertility and Development, 19, 652663.Google Scholar
Shepherdson, D. J., Carlstead, K., Mellen, J. D., & Seidensticker, J. (1993). The influence of food presentation on the behavior of small cats in confined environments. Zoo Biology, 12(2), 203216.CrossRefGoogle Scholar
Soulé, M., Gilpin, M., Conway, W., & Foose, T. (1986). The millennium ark: How long a voyage, how many staterooms, how many passengers? Zoo Biology, 5(2), 101113.Google Scholar
Uresk, D. W. (1987). Relation of black-tailed prairie dogs and control programs to vegetation, livestock, and wildlife. In Capinera, J. L. (Ed.), Integrated Pest Management on Rangeland: A Shortgrass Prairie Perspective (pp. 312322). Boulder, CO: Westview Press.Google Scholar
United States Fish and Wildlife Service (1988). Black-Footed Ferret Recovery Plan. Denver, CO: US Fish and Wildlife Service.Google Scholar
Wildt, D. E. (1994). Endangered species spermatozoa: Diversity, research, and conservation. In Bartke, A. (Ed.), Function of Somatic Cells in the Testes (pp. 124). New York: Springer-Verlag.Google Scholar
Wildt, D. E., Bush, M., Morton, C., Morton, F., & Howard, J. G. (1989). Semen characteristics and testosterone profiles in ferrets kept in long-day photoperiod, and the influence of hCG timing and sperm dilution on pregnancy rate after laparoscopic insemination. Journal of Reproduction and Fertility, 86, 349358.CrossRefGoogle ScholarPubMed
Williams, E., Anderson, S., Cavender, J., Lynn, C., List, K., Hearn, C., et al. (1996). Vaccination of black-footed ferret (Mustela nigripes) × Siberian polecat (M. eversmanni) hybrids and domestic ferrets (M. putorius furo) against canine distemper. Journal of Wildlife Diseases, 32(3), 417423.Google Scholar
Williams, E., Mills, K., Kwiatkowski, D., Thorne, E., & Boerger-Fields, A. (1994). Plague in a black-footed ferret (Mustela nigripes). Journal of Wildlife Diseases, 30, 581585.Google Scholar
Williams, E. S., Thorne, E. T., Kwiatkowski, D. R., Anderson, S. L., & Lutz, K. (1991). Reproductive biology and management of captive black-footed ferrets (Mustela nigripes). Zoo Biology, 10, 383398.Google Scholar
Williams, E. S., Thorne, E. T., Kwiatkowski, D. R., Lutz, K., & Anderson, S. L. (1992). Comparative vaginal cytology of the estrus cycle of black-footed ferrets (Mustela nigripes), Siberian polecats (M. eversmanni), and domestic ferrets (M. putorius furo). Journal of Veterinary Diagnostic Investigation, 4, 3844.Google Scholar
Wisely, S. M., Ososky, J. J., & Buskirk, S. W. (2002). Morphological changes to black-footed ferrets (Mustela nigripes) results from captivity. Canadian Journal of Zoology, 80, 15621568.Google Scholar
Wisely, S. M., Ryder, O. A., Santymire, R. M., Engelhardt, J. F., & Novak, B. J. (2015). A road map for 21st century genetic restoration: Gene pool enrichment of the black-footed ferret. Journal of Heredity, 106(5), 581592.Google Scholar
Wisely, S. M., Santymire, R. M., Livieri, T. M., Marinari, P. E., Kreeger, J. S., Wildt, D. E. et al. (2005). Environment influences morphology and development for in situ and ex situ populations of the black-footed ferret (Mustela nigripes). Animal Conservation, 8, 321328.Google Scholar
Wolf, K. N., Wildt, D. E., Vargas, A., Marinari, P. E., Kreeger, J. S., Ottinger, M. A. et al. (2000). Age dependent changes in sperm production, semen quality and testicular volume in black-footed ferrets (Mustela nigripes). Biology of Reproduction, 63, 179187.Google Scholar
Wolf, K. N., Wildt, D. E., Vargas, A., Marinari, P. E., Ottinger, M. A., & Howard, J. G. (2000). Reproductive inefficiency in male black-footed ferrets (Mustela nigripes). Zoo Biology, 19, 517528.Google Scholar
Zhao, R.-B., Zhou, C.-Y., Lu, Z.-X., Hu, P., Liu, J.-Q., Tan, W.-W. et al. (2016). The complete mitochondrial genome of black-footed ferret, Mustela nigripes (Mustela, Mustelinae). Mitochondrial DNA Part A, 27(3), 15951596.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×