Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T21:11:54.343Z Has data issue: false hasContentIssue false

8 - The quantum puzzle

Published online by Cambridge University Press:  05 September 2015

Stephen McKnight
Affiliation:
Northeastern University, Boston
Christos Zahopoulos
Affiliation:
Northeastern University, Boston
Get access

Summary

By the end of the nineteenth century all the important elements of classical physics were fully mature. Newton's Laws had been applied with success to everything from industrial machines to planetary orbits. Classical thermodynamics had extended energy conservation arguments into thermal processes, and scientists including J. Willard Gibbs and Ludwig Boltzmann had developed the statistical interpretation of entropy. James Clerk Maxwell had explained all electromagnetic phenomena, from AC generators/motors to light, with the four Maxwell's equations and three material-dependent constitutive relations. There was serious discussion that physics was on the verge of being “finished” – becoming a closed system of knowledge like classical geometry with only essentially routine tasks left of determining how the known laws could be applied to engineering problems.

Yet by 1930 the foundations of mechanics, electromagnetics, and atomic-scale systems had been shaken to the core by the new revolutions in the Theory of Relativity, the photon picture of light, and quantum physics. We are still reaping the benefits of the application of these new scientific paradigms in our technology today, including semiconductor electronic devices, lasers, and GPS systems. But the description of reality that these theories provide is still deeply anti-intuitive and disturbing.

Nevertheless, quantum physics is one of the most extensively experimentally verified theories that we know. Even when quantum theory and common sense seem to diverge, quantum theory gives the right answers when tested by experiment. In the next chapter we will develop the framework of quantum theory that has been so successful when people “shut up and calculate,” as one scientist suggested as the way through the philosophical thicket of quantum physics. But in this chapter, we will spend a brief time considering the historical development and continuing paradoxical implications of quantum theory.

The photoelectric effect and photons

In 1905, Albert Einstein, who was a key figure in the revolution of modern physics, was working as a clerk in the patent office in Zurich, Switzerland. Einstein had finished his studies in physics, but had not obtained a coveted position as a university professor. He was intensely interested in the latest developments in classical physics and was aware of a few of the remaining loose ends that were resisting explanation in the classical model.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×