Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T12:54:22.814Z Has data issue: false hasContentIssue false

Chapter 8 - Scientific Community

Published online by Cambridge University Press:  04 November 2019

Todd L. Pittinsky
Affiliation:
Stony Brook University, State University of New York
Get access

Summary

Early philosophers of science, such as Francis Bacon and René Descartes, often viewed scientific inquiry as a largely individualistic enterprise. The individual needed only apply the appropriate method – whether empirical induction or logical deduction – to obtain valid knowledge or “truths” about the natural world. Although such investigators still expected to share their discoveries through publication, even publication started out as a largely individualistic activity, the discoverer arranging for communication through regular book publishers. Bacon and Descartes communicated their main ideas through monographs, as did Nicolaus Copernicus, Galileo Galilei, Johannes Kepler, and other pioneers of the scientific revolution. The dissemination of scientific findings lacked any systematic social organization. In this way, science, or rather what was then called “natural philosophy,” did not differ that much from other forms of writing, such as literature or theology.

Type
Chapter
Information
Science, Technology, and Society
New Perspectives and Directions
, pp. 176 - 202
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P. D., & Long, J. S. (1987). Interuniversity mobility of academic scientists. American Sociological Review, 52, 643652. doi:10.2307/2095600CrossRefGoogle Scholar
Allison, P. D., & Long, J. S. (1990). Departmental effects on scientific productivity. American Sociological Review, 55, 469478. doi:10.2307/2095801Google Scholar
Allison, P. D., Long, J. S., & Krauze, T. K. (1982). Cumulative advantage and inequality in science. American Sociological Review, 47, 615625. doi:10.2307/2095162Google Scholar
Allison, P. D., Price, D. S., Griffith, B. C., Moravcsik, M. J., & Stewart, J. A. (1976). Lotka’s law: A problem in its interpretation and application. Social Studies of Science, 6, 269276. doi:10.1177/030631277600600205Google Scholar
Allison, P. D., & Stewart, J. A. (1974). Productivity differences among scientists: Evidence for accumulative advantage. American Sociological Review, 39, 596606. doi:10.2307.2094424Google Scholar
Anderson, M. S., Ronning, E. A., DeVries, R., & Martinson, B. C. (2010). Extending the Mertonian norms: Scientists’ subscription to norms of research. Journal of Higher Education, 81, 366393. doi:10.1353/jhe.0.0095Google Scholar
Anwar, M. (2004). From doctoral dissertation to publication: A study of 1995 American graduates in library and information sciences. Journal of Librarianship and Information Science, 36, 151157. doi:10.1177/0961000604050565CrossRefGoogle Scholar
Ashar, H., & Shapiro, J. Z. (1990). Are retrenchment decisions rational? The role of information in times of budgetary stress. Journal of Higher Education, 61, 123141. doi:10.1080/00221546.1990.11775101Google Scholar
Ashton, S. V., & Oppenheim, C. (1978). A method of predicting Nobel Prize winners in chemistry. Social Studies of Science, 8, 341348. doi:10.1177/030631277800800306Google Scholar
Bloom, B. S. (1963). Report on creativity research by the examiner’s office of the University of Chicago. In Taylor, C. W. & Barron, F. X. (Eds.), Scientific creativity: Its recognition and development (pp. 251264). New York, NY: Wiley.Google Scholar
Brannigan, A., & Wanner, R. A. (1983). Multiple discoveries in science: A test of the communication theory. Canadian Journal of Sociology, 8, 135151. doi:10.2307/3340123CrossRefGoogle Scholar
Bringmann, W. G., & Balk, M. M. (1983). Wilhelm Wundt’s publication record: A re-examination. Storia e Critica della Pssichologia, 4(1), 6186.Google ScholarPubMed
Carneiro, R. L. (1970). Scale analysis, evolutionary sequences, and the rating of cultures. In Naroll, R. & Cohn, R. (Eds.), A handbook of method in cultural anthropology (pp. 834871). New York, NY: Natural History Press.Google Scholar
Carson, S., Peterson, J. B., & Higgins, D. M. (2005). Reliability, validity, and factor structure of the Creative Achievement Questionnaire. Creativity Research Journal, 17, 3750. doi:10.1207/s15326934crj1701_4Google Scholar
Chambers, J. A. (1964). Relating personality and biographical factors to scientific creativity. Psychological Monographs, 78(7), 120. doi:10.1037/h0093862CrossRefGoogle Scholar
Cole, J., & Cole, S. (1971). Measuring the quality of sociological research: Problems in the use of the “Science Citation Index.” American Sociologist, 6, 2329.Google Scholar
Cole, J., & Cole, S. (1972). The Ortega hypothesis. Science, 178, 368375. doi:10.1126/science.178.4059.368Google Scholar
Cole, S. (1983). The hierarchy of the sciences? American Journal of Sociology, 89, 111139. doi:10.1086/227835CrossRefGoogle Scholar
Cole, S. (2004). Merton’s contribution to the sociology of science. Social Studies of Science, 34, 829844. doi:10.1177/0306312704048600Google Scholar
Cole, S., & Cole, J. R. (1967). Scientific output and recognition: A study in the operation of the reward system in science. American Sociological Review, 32, 377390. doi:10.2307/2091085Google Scholar
Comte, A. (1855). The positive philosophy of Auguste Comte (H. Martineau, Trans.). New York, NY: Blanchard. (Original work published 1839–1842.)Google Scholar
Constant, E. W., II. (1978). On the diversity of co-evolution of technological multiples: Steam turbines and Pelton water wheels. Social Studies of Science, 8, 183210. doi:10.1177/030631277800800202Google Scholar
Crane, D. (1965). Scientists at major and minor universities: A study of productivity and recognition. American Sociological Review, 30, 699714. doi:10.2307/2091138Google Scholar
Crane, D. (1967). The gatekeepers of science: Some factors affecting the selection of articles for scientific journals. American Sociologist, 2, 195201.Google Scholar
Crane, D. (1972). Invisible colleges: Diffusion of knowledge in scientific communities. Chicago, IL: University of Chicago Press.Google Scholar
Dennis, W. (1954). Productivity among American psychologists. American Psychologist, 9, 191194. doi:10.1037/h0057477Google Scholar
Dennis, W. (1955). Variations in productivity among creative workers. Scientific Monthly, 80, 277278.Google Scholar
Eagly, A. H., & Miller, D. K. (2016). Scientific eminence: Where are the women? Perspectives on Psychological Science, 11, 899904. doi:10.1177/1745691616663918Google Scholar
Egghe, L. (2005). Power laws in the information production process: Lotkaian informetrics. Oxford, England: Elsevier.CrossRefGoogle Scholar
Fanelli, D., & Glänzel, W. (2013). Bibliometric evidence for a hierarchy of the sciences. PLoS One, 8(6), e66938. doi:10.1371/journal.pone.0066938Google Scholar
Feist, G. J. (1993). A structural model of scientific eminence. Psychological Science, 4, 366371. doi:10.1111/j.1467-9280.1993.tb00583.xGoogle Scholar
Feist, G. J. (1997). Quantity, quality, and depth of research as influences on scientific eminence: Is quantity most important? Creativity Research Journal, 10, 325335. doi:10.1207/s15326934crj1004_4Google Scholar
Feist, G. J. (2014). Psychometric studies of scientific talent and eminence. In Simonton, D. K. (Ed.), The Wiley handbook of genius (pp. 6286). Oxford, England: Wiley.Google Scholar
Furnham, A., & Bonnett, C. (1992). British research productivity in psychology 1980–1989: Does the Lotka–Price law apply to university departments as it does to individuals? Personality and Individual Differences, 13, 13331341. doi:10.1016/0191-8869(92)90176-PCrossRefGoogle Scholar
Garfield, E. (1987). Mapping the world of science: Is citation analysis a legitimate evaluation tool? In Jackson, D. N. & Rushton, J. P. (Eds.), Scientific excellence: Origins and assessment (pp. 98128). Beverly Hills, CA: Sage.Google Scholar
Gibson, S. S. (1982). Scientific societies and exchange: A facet of the history of scientific communication. Journal of Library History, 17, 144163.Google Scholar
Grosul, M., & Feist, G. J. (2014). The creative person in science. Psychology of Aesthetics, Creativity, and the Arts, 8, 3043. doi:10.1037/a0034828Google Scholar
Haas, P. M. (1992). Introduction: Epistemic communities and international policy coordination. International Organization, 46, 135. doi:10.1017/S0020818300001442CrossRefGoogle Scholar
Hagstrom, W. O. (1974). Competition in science. American Sociological Review, 39, 118. doi:10.2307/2094272Google Scholar
Hedges, L. V. (1987). How hard is hard science, how soft is soft science? American Psychologist, 42, 443455. doi:10.1037/0003-066X.42.5.443Google Scholar
Hemlin, S. (1993). Scientific quality in the eyes of the scientist: A questionnaire study. Scientometrics, 27, 318. doi:10.1007/BF02017752Google Scholar
Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102, 1656916572. doi:10.1073/pnas.0507655102CrossRefGoogle ScholarPubMed
Hull, D. L. (1988). Science as a process: An evolutionary account of the social and conceptual development of science. Chicago, IL: University of Chicago Press.Google Scholar
Hull, D. L., Tessner, P. D., & Diamond, A. M. (1978). Planck’s principle: Do younger scientists accept new scientific ideas with greater alacrity than older scientists? Science, 202, 717723. doi:10.1126/science.202.4369.717Google Scholar
Hutchinson, E. G., & Zivney, T. L. (1995). The publication profile of economists. Journal of Economic Education, 26, 5979. doi:10.1080/00220485.1995.10844857Google Scholar
Inhaber, H., & Przednowek, K. (1976). Quality of research and the Nobel prizes. Social Studies of Science, 6, 3350. doi:10.1177/030631277600600102CrossRefGoogle Scholar
Kaufman, A. B., & Kaufman, J. C. (Eds.) (2018). Pseudoscience: The conspiracy against science. Cambridge, MA: MIT Press.Google Scholar
Klavans, R., & Boyack, K. W. (2009). Toward a consensus map of science. Journal of the American Society for Information Science and Technology, 60, 455476. doi:10.1002/asi.20991Google Scholar
Kornfeld, W., & Hewitt, C. E. (1981). The scientific community metaphor. IEEE Transactions on Systems, Man, and Cybernetics, 11, 2433. doi:10.1109/TSMC.1981.4308575CrossRefGoogle Scholar
Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed.). Chicago, IL: University of Chicago Press.Google Scholar
Kuhn, T. S. (2012). The structure of scientific revolutions (4th ed.). Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Lamb, D., & Easton, S. M. (1984). Multiple discovery. Avebury, England: Avebury.Google Scholar
Levin, S. G., Stephan, P. E., & Walker, M. B. (1995). Planck’s principle revisited—A note. Social Studies of Science, 25, 3555. doi:10.1177/030631295025002003Google Scholar
Lindsey, D. (1976). Distinction, achievement, and editorial board membership. American Psychologist, 31, 799804. doi:10.1037/0003-066X.31.11.799Google Scholar
Lindsey, D. (1989). Using citation counts as a measure of quality in science: Measuring what’s measurable rather than what’s valid. Scientometrics, 15, 189203. doi:10.1007/BF02017198Google Scholar
Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16, 317323. Retrieved from www.dtic.mil/dtic/tr/fulltext/u2/a054425.pdfGoogle Scholar
Macfarlane, B., & Cheng, M. J. (2008). Communism, universalism and disinterestedness: Re-examining contemporary support among academics for Merton’s scientific norms. Journal of Academic Ethics, 6, 6778. doi:10.1007/s10805-008-9055-yGoogle Scholar
McDowell, J. M. (1982). Obsolescence of knowledge and career publication profiles: Some evidence of differences among fields in costs of interrupted careers. American Economic Review, 72, 752768.Google Scholar
Merton, R. K. (1942). A note on science and democracy. Journal of Legal and Political Sociology, 1, 115126. Retrieved from www.scribd.com/doc/270306844/A-Note-on-Science-and-Democracy-by-Robert-K-MertonGoogle Scholar
Merton, R. K. (1957). Priorities in scientific discovery: A chapter in the sociology of science. American Sociological Review, 22, 635659. doi:10.2307/2089193Google Scholar
Merton, R. K. (1961a). The role of genius in scientific advance. New Scientist, 12, 306308.Google Scholar
Merton, R. K. (1961b). Singletons and multiples in scientific discovery: A chapter in the sociology of science. In Proceedings of the American Philosophical Society (Vol. 105, pp. 470486). Philadelphia, PA: American Philosophical Society.Google Scholar
Merton, R. K. (1968). The Matthew effect in science. Science, 159, 5663. doi:10.1126/science.159.3810.56Google Scholar
Merton, R. K. (1973). The sociology of science: Theoretical and empirical investigations. Chicago, IL: University of Chicago Press.Google Scholar
Mitroff, I. I. (1974). Norms and counter-norms in a group of Apollo moon scientists: A case study in the ambivalence of scientists. American Sociological Review, 39, 579595. doi:10.2307/2094423Google Scholar
Moravcsik, M. J., & Murugesan, P. (1975). Some results on the function and quality of citations. Social Studies of Science, 5, 8692. doi:10.1177/030631277500500106Google Scholar
Mulkay, M. J. (1976). Norms and ideology in science. Social Science Information, 15, 637656. doi:10.1177/053901847601500406Google Scholar
Myers, C. R. (1970). Journal citations and scientific eminence in contemporary psychology. American Psychologist, 25, 10411048. doi:10.1037/h0030149Google Scholar
O’Boyle, E., Jr., & Aguinas, H. (2012). The best and the rest: Revisiting the norm of normality of individual performance. Personnel Psychology, 65, 79119. doi:10.1111/j.1744-6570.2011.01239.xCrossRefGoogle Scholar
Ogburn, W. K., & Thomas, D. (1922). Are inventions inevitable? A note on social evolution. Political Science Quarterly, 37, 8393. doi:10.2307/2142320Google Scholar
Open Science Collaboration (2015). Estimating the reproducibility of psychological science. Science, 349, aac4716. doi:10.1126/science.aac.4716Google Scholar
Patinkin, D. (1983). Multiple discoveries and the central message. American Journal of Sociology, 89, 306323. doi:10.1086/227867Google Scholar
Planck, M. (1949). Scientific autobiography and other papers (F. Gaynor, Trans.). New York, NY: Philosophical Library.Google Scholar
Price, D. (1963). Little science, big science. New York, NY: Columbia University Press.Google Scholar
Price, D. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27, 292306. doi:10.1002/asi.4630270505Google Scholar
Price, D. (1986). Little science, big science … and beyond (2nd ed.). New York, NY: Columbia University Press.Google Scholar
Redner, S. (1998). How popular is your paper? An empirical study of the citation distribution. European Physical Journal B, 4, 131134. doi:10.1007/s100510050359Google Scholar
Rodgers, R. C., & Maranto, C. L. (1989). Causal models of publishing productivity in psychology. Journal of Applied Psychology, 74, 636649. doi:10.1037/0021-9010.74.4.636Google Scholar
Roeckelein, J. E. (1997). Psychology among the sciences: Comparisons of numbers of theories and laws cited in textbooks. Psychological Reports, 80, 131141. doi:10.2466/PR0.80.1.131–141Google Scholar
Ruscio, J., Seaman, F., D’Oriano, C., Stremlo, E., & Mahalchik, K. (2012). Measuring scholarly impact using modern citation-based indices. Measurement: Interdisciplinary Research and Perspectives, 10, 123146. doi:10.1080/15366367.2012.711147Google Scholar
Schachter, S., Christenfeld, N., Ravina, B., & Bilous, R. (1991). Speech disfluency and the structure of knowledge. Journal of Personality and Social Psychology, 60, 362367. doi:10.1037/0022-3514.60.3.362Google Scholar
Schaffer, S. (1986). Scientific discoveries and the end of natural philosophy. Social Studies of Science, 16, 387420. doi:10.1177/030631286016003001Google Scholar
Schmookler, J. (1966). Invention and economic growth. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Shadish, W. R., Jr., Tolliver, D., Gray, M., & Gupta, S. K. S. (1995). Author judgements about works they cite: Three studies from psychology journals. Social Studies of Science, 25, 477498. doi:10.1177/030631295025003003Google Scholar
Simonton, D. K. (1979). Multiple discovery and invention: Zeitgeist, genius, or chance? Journal of Personality and Social Psychology, 37, 16031616. doi:10.1037/0022-3514.37.9.1603Google Scholar
Simonton, D. K. (1992a). Leaders of American psychology, 1879–1967: Career development, creative output, and professional achievement. Journal of Personality and Social Psychology, 62, 517. doi:10.1037/0022-3514.62.1.5Google Scholar
Simonton, D. K. (1992b). The social context of career success and course for 2,026 scientists and inventors. Personality and Social Psychology Bulletin, 18, 452463. doi:10.1177/0146167292184009Google Scholar
Simonton, D. K. (2003). Scientific creativity as constrained stochastic behavior: The integration of product, process, and person perspectives. Psychological Bulletin, 129, 475494. doi:10.1037/0033-2909.129.4.475Google Scholar
Simonton, D. K. (2004). Psychology’s status as a scientific discipline: Its empirical placement within an implicit hierarchy of the sciences. Review of General Psychology, 8, 5967. doi:10.1037/1089-2680.8.1.59Google Scholar
Simonton, D. K. (2009). Varieties of (scientific) creativity: A hierarchical model of disposition, development, and achievement. Perspectives on Psychological Science, 4, 441452. doi:10.1111/j.1745-6924.2009.01152.xGoogle Scholar
Simonton, D. K. (2010). Creativity as blind-variation and selective-retention: Combinatorial models of exceptional creativity. Physics of Life Reviews, 7, 156179. doi:10.1016/j.plrev.2010.02.002Google Scholar
Simonton, D. K. (2013). Creative genius in science. In Feist, G. J. & Gorman, M. E. (Eds.), Handbook of the psychology of science (pp. 251272). New York, NY: Springer.Google Scholar
Simonton, D. K. (2015). Psychology as a science within Comte’s hypothesized hierarchy: Empirical investigations and conceptual implications. Review of General Psychology, 19, 334344. doi:10.1037/gpr0000039CrossRefGoogle Scholar
Sinatra, R., Wang, D., Deville, P., Song, C., & Barabási, A.-L. (2016). Quantifying the evolution of individual scientific impact. Science, 354, aaf5239. doi:10.1126/science.aaf5239Google Scholar
Smith, L. D., Best, L. A., Stubbs, D. A., Archibald, A. B., & Roberson-Nay, R. (2002). Constructing knowledge: The role of graphs and tables in hard and soft psychology. American Psychologist, 57, 749761. doi:10.1037/0003-066X.57.10.749Google Scholar
Stewart, J. A. (1983). Achievement and ascriptive processes in the recognition of scientific articles. Social Forces, 62, 166189. doi:10.1093/sf/62.1.166Google Scholar
Stewart, J. A. (1986). Drifting continents and colliding interests: A quantitative application of the interests perspective. Social Studies of Science, 16, 261279. doi:10.1177/0306312786016002003Google Scholar
Sulloway, F. J. (2014). Openness to scientific innovation. In Simonton, D. K. (Ed.), The Wiley handbook of genius (pp. 546563). Oxford, England: Wiley.Google Scholar
Suls, J., & Fletcher, B. (1983). Social comparison in the social and physical sciences: An archival study. Journal of Personality and Social Psychology, 44, 575580. doi:10.1037/0022–3514.44.3.575Google Scholar
Turner, S. (2007). Merton’s “norms” in political and intellectual context. Journal of Classical Sociology, 7, 161178. doi:10.1177/1468795X07078034Google Scholar
Walberg, H. J., Strykowski, B. F., Rovai, E., & Hung, S. S. (1984). Exceptional performance. Review of Educational Research, 54, 87112. doi:10.2307/1170399CrossRefGoogle Scholar
Wray, K. B. (2005). Rethinking scientific specialization. Social Studies of Science, 35, 151164. doi:10.1177/0306312705045811Google Scholar
Wray, K. B. (2010). Rethinking the size of scientific specialties: Correcting Price’s estimate. Scientometrics, 83, 471476. doi:10.1007/s11192-009-0060-8Google Scholar
Zuckerman, H. (1977). Scientific elite. New York, NY: Free Press.Google Scholar
Zuckerman, H., & Merton, R. K. (1972). Age, aging, and age structure in science. In Riley, M. W., Johnson, M., & Foner, A. (Eds.), Aging and society: Vol 3. A sociology of age stratification (pp. 292356). New York, NY: Russell Sage Foundation.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×