Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T04:30:57.516Z Has data issue: false hasContentIssue false

Chapter 9 - Genetic Engineering and Society

Published online by Cambridge University Press:  04 November 2019

Todd L. Pittinsky
Affiliation:
Stony Brook University, State University of New York
Get access

Summary

Genetic engineering disrupts assumed distinctions between nature and culture, between human and nonhuman, and between the production of knowledge and the production of commercially viable products. As a result, this area of technological development continues to inspire science and technology studies (STS) researchers not only to rethink theoretical paradigms, but also to test and retest a variety of ways to intervene in science and society.

Also referred to as genetic modification, genetic engineering involves inserting, deleting, or modifying an organism’s deoxyribonucleic acid (DNA), ribonucleic acid (RNA), or proteins to change its characteristics, or traits (National Academies of Sciences, Engineering, and Medicine [NASEM], 2016b). Genetically engineered organisms are forms of biotechnology, a broad category that encompasses a variety of ways of altering biological materials and processes to make them more useful for human purposes. Although the selection of desirable traits in living organisms dates at least to the invention of agriculture, contemporary genetic approaches are particularly indebted to Darwin’s (1859/2001) research on evolution and Mendel’s (1866) study of heredity (NASEM, 2016b).

Type
Chapter
Information
Science, Technology, and Society
New Perspectives and Directions
, pp. 203 - 233
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, C. (2015). Agriculture: A new breed of edits. Nature, 528, S15S16.Google Scholar
Anderson, T. (2009, Summer). Darning genes: Biology for the homebody. H+ Magazine, 3, 3436.Google Scholar
Aspray, W. F. (1985). The scientific conceptualization of information: A survey. Annals of the History of Computing, 7(2), 117140. doi:10.1109/MAHC.1985.10018CrossRefGoogle Scholar
Attar, A., & Genus, A. (2014). Framing public engagement: A critical discourse analysis of GM Nation? Technological Forecasting & Social Change, 88, 241250. doi:10.1016/j.techfore.2014.07.005CrossRefGoogle Scholar
Avise, J. C. (2004). The hope, hype, and reality of genetic engineering: Remarkable stories from agriculture, industry, medicine, and the environment. Oxford, England: Oxford University Press.CrossRefGoogle Scholar
Balmer, A. S., & Bulpin, K. J. (2013). Left to their own devices: Post-ELSI, ethical equipment and the International Genetically Engineered Machine (iGEM) Competition. BioSocieties, 8, 311335. doi:10.1057/biosoc.2013.13Google Scholar
Baltimore, D., Berg, P., Botchan, M., Carroll, D., Charo, R. A., Church, G., … Yamamoto, K. R. (2015). A prudent path forward for genomic engineering and germline gene modification. Science, 348, 3638. doi:10.1126/science.aab1028CrossRefGoogle ScholarPubMed
Baltzegar, J., Barnes, J. C., Elsensohn, J.E., Gutzmann, N., Jones, M. S., King, S., & Sudweeks, J. (2017). Anticipating complexity in the deployment of gene drive insects in agriculture. Journal of Responsible Innovation, 5, S8197. doi:10.1080/23299460.2017.1407910CrossRefGoogle Scholar
Barben, D. (2010). Analyzing acceptance politics: Towards an epistemological shift in the public understanding of science and technology. Public Understanding of Science, 19, 274292. doi:10.1177/0963662509335459CrossRefGoogle Scholar
Barrett, G. W., Peles, J. D., & Odum, E. P. (1997). Transcending processes and the levels-of-organization concept. BioScience, 47, 531535. doi:10.2307/1313121CrossRefGoogle Scholar
Barton, K. A., & Brill, W. J. (1983). Prospects in plant genetic engineering. Science, 219, 671676. doi:10.1126/science.6297007Google Scholar
Beauchamp, C. (2013). Patenting nature: A problem of history. Stanford Technology Law Review, 257, 257311. Retrieved from https://brooklynworks.brooklaw.edu/cgi/viewcontent.cgi?referer=www.google.com/&httpsredir=1&article=1460&context=facultyGoogle Scholar
Bennett, G. (2015). The moral economy of biotechnical facility. Journal of Responsible Innovation, 2, 128132. doi:10.1080/23299460.2014.1002169CrossRefGoogle Scholar
Berg, P., Baltimore, D., Boyer, H. W., Cohen, S. N., Davis, R. W., Hogness, D. S., … Zinder, N. D. (1974). Potential biohazards of recombinant DNA molecules. Science, 185, 303. doi:10.1126/science.185.4148.303Google Scholar
Berg, P., & Singer, M. (1995). The recombinant DNA controversy: Twenty years later. Nature Biotechnology, 13, 11321134. doi:10.1038/nbt1095-1132Google Scholar
Bijker, W. E., Hughes, T. P., & Pinch, T. J. (Eds.) (1987). The social construction of technological systems: New directions in the sociology and history of technology. Cambridge, MA: MIT Press.Google Scholar
Blok, V., & Lemmens, P. (2015). The emerging concept of responsible innovation: Three reasons why it is questionable and calls for a radical transformation of the concept of innovation. In Koops, B. J., Oosterlaken, I., Romijn, H., Swierstra, T., & van den Hoven, J. (Eds.), Responsible innovation 2: Concepts, approaches, and applications (pp. 1935). Berlin, Germany: Springer International. doi:10.1007/978-3-319-17308-5_2Google Scholar
Bowker, G. (1993). How to be universal: Some cybernetic strategies, 1943–70. Social Studies of Science, 23, 107127. doi:10.1177/030631293023001004CrossRefGoogle Scholar
Brooks, S. (2015). Philanthrocapitalism, “pro-poor” agricultural biotechnology and development. In Morvaridi, B. (Ed.), New philanthropy and social justice: Debating the conceptual and policy discourse (pp. 101116). Bristol, England: Policy Press.Google Scholar
Brunk, C. G. (2006). Public knowledge, public trust: Understanding the knowledge deficit. Community Genetics, 9(3), 178183. doi:10.1159/000092654Google ScholarPubMed
Bud, R. 1998. Molecular biology and the long-term history of biotechnology. In Thackray, A. (Ed.), Private science: Biotechnology and the rise of the molecular sciences (pp. 319). Philadelphia: University of Pennsylvania Press.Google Scholar
Busch, L. (2010). Can fairy tales come true? The surprising story of neoliberalism and world agriculture. Sociologia Ruralis, 50, 331351. doi:10.1111/j.1467-9523.2010.00511.xCrossRefGoogle Scholar
Callon, M., Lascoumes, P., & Barthe, Y. (2009). Acting in an uncertain world: An essay on technical democracy. Cambridge, MA: MIT Press.Google Scholar
Calvert, J. (2012). Ownership and sharing in synthetic biology: A “diverse ecology” of the open and the proprietary? BioSocieties, 7, 169187. doi:10.1057/biosoc.2012.3Google Scholar
Campos, L. (2009). That was the synthetic biology that was. In Schmidt, M., Kelle, A., Ganguli-Mitra, A., & Vriend, H. (Eds.), Synthetic biology (pp. 521). Dordrecht, Netherlands: Springer. doi:10.1007/978-90-481-2678-1_2CrossRefGoogle Scholar
Campos, L. (2012). The BioBrickTM road. BioSocieties, 7, 115139. doi:10.1057/biosoc.2012.6CrossRefGoogle Scholar
Capron, A. M., & Schapiro, R. (2001). Remember Asilomar? Reexamining science’s ethical and social responsibility. Perspectives in Biology and Medicine, 44, 162169. doi:10.1353/pbm.2001.0022CrossRefGoogle ScholarPubMed
Carlson, R. H. (2010). Biology is technology: The promise, peril, and new business of engineering life. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Cartagena Protocol on Biosafety to the Convention on Biological Diversity, 2226 U.N.T.S. 208 (2000).Google Scholar
Charles, D. (2001). Lords of the harvest: Biotech, big money, and the future of food. Cambridge, MA: Basic Books.Google Scholar
Cohen, S. N., Chang, A. C. Y., Boyer, H., & Helling, R. B. (1973). Construction of biologically functional bacterial plasmids in vitro. Proceedings of the National Academy of Sciences of the United States of America, 70, 32403244. doi:10.1073/pnas.70.11.3240CrossRefGoogle ScholarPubMed
Collins, P. H. (1999). Will the “real” mother please stand up? The logic of eugenics and American national family planning. In Clarke, A. E. & Olesen, V. (Eds.), Revisioning women, health and healing: Feminist, cultural and technoscience perspectives (pp. 266282). New York, NY: Routledge.Google Scholar
Condit, C. M. (1999). The meanings of the gene: Public debates about human heredity. Madison: University of Wisconsin Press.Google Scholar
Cooper, M. E. (2008). Life as surplus: Biotechnology and capitalism in the neoliberal era. Seattle: University of Washington Press.Google Scholar
Curry, H. A. (2014). From garden biotech to garage biotech: Amateur experimental biology in historical perspective. British Journal for the History of Science, 47(3), 539565. doi:10.1017/S0007087413000411CrossRefGoogle Scholar
Cyranoski, D. (2016). CRISPR gene-editing tested in a person for the first time. Nature, 539, 479. doi:10.1038/nature.2016.20988Google Scholar
Darwin, C. (2001). On the origin of species by means of natural selection: or, The Preservation of favoured races in the struggle for life. London, England: Electric Book. (Original work published 1859.)Google Scholar
De Barro, P. J., Murphy, B., Jansen, C. C., & Murray, J. (2011). The proposed release of the yellow fever mosquito, Aedes aegypti containing a naturally occurring strain of Wolbachia pipientis, a question of regulatory responsibility. Journal Für Verbraucherschutz und Lebensmittelsicherheit, 6(1), 3340. doi:10.1007/s00003-011-0671-xCrossRefGoogle Scholar
Deetz, S. (1992). Democracy in an age of corporate colonization: Developments in communication and the politics of everyday life. Albany: State University of New York Press.Google Scholar
Delborne, J. A. (2008). Transgenes and transgressions: Scientific dissent as heterogeneous practice. Social Studies of Science, 38, 509541. doi:10.1177/0306312708089716CrossRefGoogle ScholarPubMed
Delborne, J. A., & Kinchy, A. J. (2008). Genetically modified organisms. In Restivo, S. & Denton, P. H. (Eds.), Battleground science and technology (Vol. 1, pp. 182195). Westport, CT: Greenwood Press.Google Scholar
Delborne, J. A., Schneider, J., Bal, R., Cozzens, S., & Worthington, R. (2013). Policy pathways, policy networks, and citizen deliberation: Disseminating the results of world wide views on global warming in the USA. Science and Public Policy, 40, 378392. doi:10.1093/scipol/scs124CrossRefGoogle Scholar
Delfanti, A. (2013). Biohackers: The politics of open science. London, England: Pluto Press.Google Scholar
DeMarchi, B. (2003). Public participation and risk governance. Science and Public Policy, 30(3), 171176.CrossRefGoogle Scholar
Didur, J. (2003). Re-embodying technoscientific fantasies: Posthumanism, genetically modified foods, and the colonization of life. Cultural Critique, 53(1), 98115. doi:10.1353/cul.2003.0021CrossRefGoogle Scholar
Dorfman, E. (2009). History of the lifeworld from Husserl to Merleau-Ponty. Philosophy Today, 53, 294303. doi:10.5840/philtoday200953317CrossRefGoogle Scholar
Dryzek, J. (1996). Democracy in capitalist times: Ideals, limits, and struggles. New York, NY: Oxford University Press.Google Scholar
El-Haj, N. A. (2007). The genetic reinscription of race. Annual Review of Anthropology, 36, 283300. doi:10.1146/annurev.anthro.34.081804.120522Google Scholar
Endy, D. (2008). Engineering biology: A talk with Drew Endy. Edge, 237. Retrieved from http://edge.org/documents/archive/edge237.html#endyGoogle Scholar
Esvelt, K. M., Smidler, A. L., Catteruccia, F., & Church, G. M. (2014). Concerning RNA-guided gene drives for the alteration of wild populations. eLife, 3, e03401. doi:10.7554/eLife.03401Google Scholar
Evans, G., & Durant, J. (1995). The relationship between knowledge and attitudes in the public understanding of science in Britain. Public Understanding of Science, 4, 5774. doi:10.1088/0963-6625/4/1/004CrossRefGoogle Scholar
Fang, F. C., & Casadevall, A. (2011). Reductionistic and holistic science. Infection and Immunity, 79, 14011404. doi:10.1128/IAI.01343-10Google Scholar
Firko, M. (2014). Request for confirmation that loblolly pine is not a regulated article. Letter to Dr. Les Pearson. Retrieved from www.aphis.usda.gov/biotechnology/downloads/reg_loi/brs_resp_arborgen_loblolly_pine.pdfGoogle Scholar
Fisher, E., Mahajan, R. L., & Mitcham, C. (2006). Midstream modulation of technology: Governance from within. Bulletin of Science, Technology & Society, 26, 485496. doi:10.1177/0270467606295402CrossRefGoogle Scholar
Frederickson, D. S. (1991). Asilomar and recombinant DNA: The end of the beginning. In Hanna, K. E. (Ed.), Biomedical politics (pp. 258292). Washington, DC: National Academies Press. Retrieved from www.ncbi.nlm.nih.gov/books/NBK234217/Google Scholar
Frow, E., & Calvert, J. (2013). “Can simple biological systems be built from standardized interchangeable parts?” Negotiating biology and engineering in a synthetic biology competition. Engineering Studies, 5, 4258. doi:10.1080/19378629.2013.764881CrossRefGoogle Scholar
Gantz, V. M., Jasinskiene, N., Tatarenkova, O., Fazekas, A., Macias, V. M., Bier, E., & James, A. A. (2015). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences, 112, E6736E6743. doi:10.1073/pnas.1521077112Google Scholar
Gieryn, T. F. (1983). Boundary-work and the demarcation of science from non-science: Strains and interests in professional ideologies of scientists. American Sociological Review, 48, 781795. doi:10.2307/2095325Google Scholar
Gilna, B., Kuzma, J., & Otts, S. S. (2014). Governance of genetic biocontrol technologies for invasive fish. Biological Invasions, 16, 12991312. doi:10.1007/s10530-012-0367-xGoogle Scholar
Glover, D. (2010). The corporate shaping of GM crops as a technology for the poor. Journal of Peasant Studies, 37(1), 6790. doi:10.1080/03066150903498754Google Scholar
Gottweis, H. (1998). Governing molecules: The discursive politics of genetic engineering in Europe and the United States. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Gustafsson, K. M., Agrawal, A. A., Lewenstein, B. V., & Wolf, S. A. (2015). The monarch butterfly through time and space: The social construction of an icon. BioScience, 65, 612622. doi:10.1093/biosci/biv045CrossRefGoogle Scholar
Guston, D. H. (2014). Understanding “anticipatory governance.” Social Studies of Science, 44, 218242. doi:10.1177/0306312713508669Google Scholar
Guston, D. H., & Sarewitz, D. (2002). Real-time technology assessment. Technology in Society, 24, 93109. doi:10.1016/S0160-791X(01)00047-1Google Scholar
Hajer, M. (2003). Policy without polity? Policy analysis and the institutional void. Policy Sciences, 36, 175195. doi:10.1023/A:1024834510939CrossRefGoogle Scholar
Haraway, D. (1990). A manifesto for cyborgs: Science, technology and socialist feminism in the 1980s. In Nicholson, L. (Ed.), Feminism, postmodernism (pp. 190233). New York, NY: Routledge.Google Scholar
Haraway, D. (1997). Modest_witness@secondmillennium.femaleman_meets_ OncoMouse: Feminism and technoscience. New York, NY: Routledge.Google Scholar
Harding, S. G. (2004). The feminist standpoint theory reader: Intellectual and political controversies. New York, NY: Routledge.Google Scholar
Hartzog, M. (2017). Inventing mosquitoes: Tracing the topology of vectors for human disease. In Walsh, L. & Boyle, C. (Eds.), Topologies as techniques for a post-critical rhetoric (pp. 7598). Cham, Switzerland: Palgrave Macmillan.CrossRefGoogle Scholar
Harvey, D. (2005). A brief history of neoliberalism. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Hayles, K. (1999). How we became posthuman: Virtual bodies in cybernetics, literature, and informatics. Chicago, IL: University of Chicago Press.Google Scholar
Herrick, C. (2005). “Cultures of GM”: Discourses of risk and labelling of GMOs in the UK and EU. Area, 37, 286294. doi:10.1111/j.1475-4762.2005.00632.xCrossRefGoogle Scholar
Hess, D. J. (2013). Neoliberalism and the history of STS theory: Toward a reflexive sociology. Social Epistemology, 27(2), 177193.CrossRefGoogle Scholar
Hilbeck, A., Binimelis, R., Defarge, N., Steinbrecher, R., Székács, A., Wickson, F., … Wynne, B. (2015). No scientific consensus on GMO safety. Environmental Sciences Europe, 27, 4. doi:10.1186/s12302-014-0034-1CrossRefGoogle Scholar
Horvath, P., & Barrangou, R. (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science, 327, 1770. doi:10.1126/science.1179555Google Scholar
Huang, S., Weigel, D., Beachy, R. N., & Li, J. (2016). A proposed regulatory framework for genome-edited crops. Nature Genetics, 48(2), 109111. doi:10.1038/ng.3484Google Scholar
Husserl, E. (1962). Ideas (W. R. B. Gibson, Trans.). New York, NY: Collier. (Original work published 1913.)Google Scholar
James, C. (2014). Global status of commercialized biotech/GM crops: 2014 (ISAAA Brief No. 49). Ithaca, NY: ISAAA.Google Scholar
Jansen, K., & Gupta, A. (2009). Anticipating the future: “Biotechnology for the poor” as unrealized promise? Futures, 41(7), 436445.Google Scholar
Jasanoff, S. (1987). Contested boundaries in policy-relevant science. Social Studies of Science, 17, 195230. doi:10.1177/030631287017002001CrossRefGoogle Scholar
Jasanoff, S. (1995). Product, process, or programme: Three cultures and the regulation of biotechnology. In Bauer, M. (Ed.), Resistance to new technology: Nuclear power information technology and biotechnology (pp. 311331). Cambridge, England: Cambridge University Press.Google Scholar
Jasanoff, S. (2004a). Afterword. In Jasanoff, S. (Ed.), States of knowledge: The co-production of science and the social order (pp. 274282). London, England: Routledge.Google Scholar
Jasanoff, S. (2004b). Ordering knowledge, ordering society. In Jasanoff, S. (Ed.), States of knowledge: The co-production of science and the social order (pp. 1345). London, England: Routledge.CrossRefGoogle Scholar
Jasanoff, S. (2011a). Designs on nature: Science and democracy in Europe and the United States. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Jasanoff, S. (2011b). Introduction: Rewriting life, reframing rights. In Reframing rights: Bioconstitutionalism in the genetic age (pp. 127). Cambridge, MA: MIT Press.Google Scholar
Jasanoff, S., Hurlbut, J. B., & Saha, K. (2015). CRISPR democracy: Gene editing and the need for inclusive deliberation. Issues in Science and Technology, 32(1), 2532.Google Scholar
Joss, S. (1998). Danish consensus conferences as a model of participatory technology assessment: An impact study of consensus conferences on Danish parliament and Danish public debate. Science and Public Policy, 25, 222.Google Scholar
Kay, L. E. (2000). Who wrote the book of life? A history of the genetic code. Stanford, CA: Stanford University Press.Google Scholar
Keller, E. F. (1995). Refiguring life: Metaphors of twentieth-century biology. New York, NY: Columbia University Press.CrossRefGoogle Scholar
Keller, E. F. (2000). Century of the gene. Cambridge, MA: Harvard University Press.Google Scholar
Kelty, C. M. (2010). Outlaws, hackers, victorian amateurs: diagnosing public participation in the life sciences today. Jcom, 9(01), C03.CrossRefGoogle Scholar
Kera, D. (2012). Hackerspaces and DIYbio in Asia: Connecting science and community with open data, kits and protocols. Journal of Peer Production, 2. Retrieved from http://peerproduction.net/issues/issue-2/peer-reviewed-papers/diybio-in-asia/Google Scholar
Kevles, D. J. (1994). Ananda Chakrabarty wins a patent: Biotechnology, law, and society, 1972–1980. Historical Studies in the Physical and Biological Sciences, 25, 111135. doi:10.2307/27757736Google Scholar
Kevles, D. J. (2008). Protections, privileges, and patents: Intellectual property in American horticulture, the late nineteenth century to 1930. Proceedings of the American Philosophical Society, 152, 207213.Google Scholar
Kinchy, A. (2012). Seeds, science, and struggle: The global politics of transgenic crops. Cambridge, MA: MIT Press.Google Scholar
Kleinman, D. L. (1998). Untangling context: Understanding a university laboratory in the commercial world. Science, Technology, & Human Values, 23, 285314. doi:10.1177/016224399802300302Google Scholar
Kleinman, D. L., & Kinchy, A. J. (2007). Against the neoliberal steamroller? The biosafety protocol and the social regulation of agricultural biotechnologies. Agriculture and Human Values, 24, 195206. doi:10.1007/s10460-006-9049-6CrossRefGoogle Scholar
Kleinman, D. L., & Kloppenburg, J. R. (1991). Aiming for the discursive high ground: Monsanto and the biotechnology controversy. Sociological Forum, 6, 427447. doi:10.1007/BF01114471CrossRefGoogle Scholar
Kleinman, D. L., & Vallas, S. P. (2001). Science, capitalism, and the rise of the “knowledge worker”: The changing structure of knowledge production in the United States. Theory and Society, 30, 451492. doi:10.1023/A:1011815518959Google Scholar
Klintman, M. (2002). The genetically modified (GM) food labelling controversy: Ideological and epistemic crossovers. Social Studies of Science, 32, 71–91. doi:10.1177/0306312702032001004Google Scholar
Kloppenburg, J. R. (2004). First the seed: The political economy of plant biotechnology. Madison: University of Wisconsin Press.Google Scholar
Knight, T. (2003). Idempotent vector design for standard assembly of biobricks. Retrieved from http://dspace.mit.edu/handle/1721.1/21168Google Scholar
Koch, T. (2010). Enhancing who? Enhancing what? Ethics, bioethics, and transhumanism. Journal of Medicine and Philosophy, 35, 685699. doi:10.1093/jmp/jhq051Google Scholar
Kokotovich, A., & Kuzma, J. (2014). Conflicting futures: Environmental regulation of plant targeted genetic modification. Bulletin of Science, Technology & Society, 34, 108120. doi:10.1177/0270467614565695Google Scholar
Krimsky, S. (1991). Biotechnics & society: The rise of industrial genetics. New York, NY: Praeger.Google Scholar
Krimsky, S. (2015). An illusory consensus behind GMO health assessment. Science, Technology & Human Values, 40, 883914. doi:10.1177/0162243915598381Google Scholar
Kuzma, J. (2013). Properly paced? Examining the past and present governance of GMOs in the United States. In Marchant, G. E., Abbott, K. W., & Allenby, B. (Eds.), Innovative governance models for emerging technologies (pp. 176197). Northampton, MA: Edward Elgar.Google Scholar
Kuzma, J., Romanchek, J., & Kokotovich, A. (2008). Upstream oversight assessment for agrifood nanotechnology: A case studies approach. Risk Analysis, 28, 10811098. doi:10.1111/j.1539-6924.2008.01071.x/pdfGoogle Scholar
Kuzma, J., & Tanji, T. (2010). Unpackaging synthetic biology: Identification of policy problems and options (SSRN Scholarly Paper No. ID 1451425). Rochester, NY: Social Science Research Network. Retrieved from http://papers.ssrn.com/abstract=1451425Google Scholar
Landrain, T., Meyer, M., Perez, A. M., & Sussan, R. (2013). Do-it-yourself biology: Challenges and promises for an open science and technology movement. Systems and Synthetic Biology, 7, 115126. doi:10.1007/s11693-013-9116-4CrossRefGoogle ScholarPubMed
Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Cambridge, MA: Harvard University Press.Google Scholar
Latour, B. (2004). Why has critique run out of steam? From matters of fact to matters of concern. Critical Inquiry, 30, 225248. doi:10.1086/421123Google Scholar
Latour, B. (2012). We have never been modern. Cambridge, MA: Harvard University Press.Google Scholar
Lave, R., Mirowski, P., & Randalls, S. (2010). Introduction: STS and neoliberal science. Social Studies of Science, 40, 659675. doi:10.1177/0306312710378549Google Scholar
Lavery, J. V., Tinadana, P. O., Scott, T. W., Harrington, L. C., Ramsey, J. M., Ytuarte-Nuñez, C., & James, A. A. (2010). Towards a framework for community engagement in global health research. Trends in Parasitology, 26, 279283. doi:10.1016/j.pt.2010.02.009Google Scholar
Law, J., & Lien, M. E. (2013). Slippery: Field notes in empirical ontology. Social Studies of Science, 43, 363378. doi:10.1177/0306312712456947Google Scholar
Ledford, H. (2015). CRISPR, the disruptor. Nature, 522, 2024. doi:10.1038/522020aGoogle Scholar
Lombardo, P. A. (2003). Taking eugenics seriously: Three generations of - are enough. Florida State University Law Review, 30, 191218. doi:10.2139/ssrn.418102Google Scholar
Lombardo, P. A. (2008). Three generations, no imbeciles: Eugenics, the Supreme Court, and Buck v. Bell. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Maddox, B. (2002). Rosalind Franklin: The dark lady of DNA. New York, NY: HarperCollins.Google Scholar
Martineau, B. (2001). First fruit: The creation of the flavr savr tomato and the birth of biotech foods. New York, NY: McGraw-Hill.Google Scholar
McAfee, K. (2003a). Corn culture and dangerous DNA: Real and imagined consequences of maize transgene flow in Oaxaca. Journal of Latin American Geography, 2(1), 1842. doi:10.1353/lag.2004.0008Google Scholar
McAfee, K. (2003b). Neoliberalism on the molecular scale. Economic and genetic reductionism in biotechnology battles. Geoforum, 34, 203219. doi:10.1016/S0016-7185(02)00089-1Google Scholar
McCarthy, J., & Prudham, W. S. (2004). Neoliberal nature and the nature of neoliberalism. Geoforum, 35, 275283. doi:10.1016/j.geoforum.2003.07.003Google Scholar
Mendel, G. (1866). Versuche über Pflanzen-hybriden. Verh. naturf. Ver. Briinn, 4, 347.Google Scholar
Merleau-Ponty, M. (1962). Phenomenology of perception. New York, NY: Humanities Press.Google Scholar
Montenegro, M. (2016). Opinion: CRISPR is coming to agriculture—with big implications for food, farmers, consumers and nature. Ensia. Retrieved from http://ensia.com/voices/crispr-is-coming-to-agriculture-with-bigimplications-for-food-farmers-consumers-and-nature/Google Scholar
Mouffe, C. (2000). The democratic paradox. New York, NY: Verso.Google Scholar
National Academies of Sciences, Engineering, and Medicine (2016a). Gene drives on the horizon: Advancing science, navigating uncertainty, and aligning research with public values. Washington, DC: Author.Google Scholar
National Academies of Sciences, Engineering, and Medicine (2016b). Genetically engineered crops: Experiences and prospects. Washington, DC: Author.Google Scholar
National Academies of Sciences, Engineering, and Medicine (2017). Human genome editing: Science, ethics, and governance. Washington, DC: Author.Google Scholar
North Carolina State University Integrative Graduate Education and Research Traineeship Program (2013). What can genetic engineering offer? Island mice: Conserving island biodiversity. Retrieved from https://research.ncsu.edu/ges/igert/igert-research/island-mice-conserving-island-biodiversity/island-mice-what-can-genetic-engineering-offer/Google Scholar
Novikoff, A. B. (1945). The concept of integrative levels and biology. Science, 101, 209215. doi:10.1126/science.101.2618.209CrossRefGoogle ScholarPubMed
Oye, K. A., Esvelt, K., Appleton, E., Catteruccia, F., Church, G., Kuiken, T., … Collins, J. P. (2014). Regulating gene drives. Science, 345, 626628. doi:10.1126/science.1254287CrossRefGoogle ScholarPubMed
Pennisi, E. (2013). The CRISPR craze. Science, 341, 833836. doi:10.1126/science.341.6148.833Google Scholar
Peterson, M. N., Peterson, M. J., & Peterson, T. R. (2005). Conservation and the myth of consensus. Conservation Biology, 19, 762767. doi:10.1111/j.1523-1739.2005.00518.xGoogle Scholar
Pidgeon, N. F., Poortinga, W., Rowe, G., Horlick‐Jones, T., Walls, J., & O’Riordan, T. (2005). Using surveys in public participation processes for risk decision making: The case of the 2003 British GM nation? Public debate. Risk Analysis, 25, 467479. doi:10.1111/j.1539-6924.2005.00603.xGoogle Scholar
Pottage, A., & Marris, C. (2012). The cut that makes a part. BioSocieties, 7, 103114. doi:10.1057/biosoc.2012.1Google Scholar
Powell, M., Colin, M., Kleinman, D. L., Delborne, J., & Anderson, A. (2011). Imagining ordinary citizens? Conceptualized and actual participants for deliberations on emerging technologies. Science as Culture, 20, 3770. doi:10.1080/09505430903567741Google Scholar
Rask, M., & Worthington, R. (2015). Governing biodiversity through democratic deliberation. Abingdon, England: Routledge.Google Scholar
Rask, M., Worthington, R., & Lammi, M. (Eds.) (2012). Citizen participation in global environmental governance. London, England: Earthscan.Google Scholar
Reiss, M. J., & Straughan, R. (1996). Improving nature? The science and ethics of genetic engineering. Cambridge, England: Cambridge University Press.Google Scholar
Roco, M. C., & Bainbridge, W. S. (2002). Converging technologies for improving human performance. Dordrecht, Netherlands: National Science Foundation.Google Scholar
Rowe, G., Horlick-Jones, T., Walls, J., & Pidgeon, N. (2005). Difficulties in evaluating public engagement initiatives: Reflections on an evaluation of the UK GM Nation? Public debate about transgenic crops. Public Understanding of Science, 14, 331352. doi:10.1177/0963662505056611Google Scholar
Schnabel, L., Breitwieser, L., & Hawbaker, A. (2016). Subjectivity in feminist science and technology studies: Implications and applications for sociological research. Sociology Compass, 10, 318329. doi:10.1111/soc4.12364Google Scholar
Schurman, R., & Munro, W. A. (2010). Fighting for the future of food: Activists versus agribusiness in the struggle over biotechnology. Minneapolis: University of Minnesota Press.Google Scholar
Schuurbiers, D., & Fisher, E. (2009). Lab-scale intervention. EMBO Reports, 10, 424427. doi:10.1038/embor.2009.80Google Scholar
Schyfter, P., Frow, E., & Calvert, J. (2013). Synthetic biology: Making biology into an engineering discipline. Engineering Studies, 5, 15. doi:10.1080/19378629.2013.763647Google Scholar
Seifert, F. (2013). Diffusion and policy learning in the nanotechnology field: Movement actors and public dialogues in Germany and France. In Konrad, K., Coenen, C., Dijkstra, A. M., Milburn, C., & van Lente, H. (Eds.), Shaping emerging technologies: Governance, innovation, discourse (pp. 6782). Amsterdam, Netherlands: IOS Press.Google Scholar
Selya, R. (2003). Essay review: Defined by DNA: The intertwined lives of James Watson and Rosalind Franklin. Journal of the History of Biology, 36, 591597. doi:10.1023/B:HIST.0000004575.1Google Scholar
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379423. doi:10.1002/j.1538-7305.1948.tb01338.xGoogle Scholar
Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, “translations” and boundary objects: Amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology, 1907–39. Social Studies of Science, 19, 387420. doi:10.1177/030631289019003001Google Scholar
Stilgoe, J., & Guston, D. (2017). Responsible research & innovation. In Felt, U., Fouche, R., Miller, C. A., & Smith-Doerr, L. (Eds.), The handbook of science and technology studies (4th ed., pp. 407434). Cambridge, MA: MIT Press.Google Scholar
Stilgoe, J., Owen, R., & Macnaghten, P. (2013). Developing a framework for responsible innovation. Research Policy, 42, 15681580. doi:10.1016/j.respol.2013.05.008Google Scholar
Sturgis, P., & Allum, N. (2004). Science in society: Re-evaluating the deficit model of public attitudes. Public Understanding of Science, 13, 5574. doi:10.1177/0963662504042690Google Scholar
Sturgis, P., Cooper, H., & Fife-Schaw, C. (2005). Attitudes to biotechnology: Estimating the opinions of a better-informed public. New Genetics and Society, 24, 3156. doi:10.1080/14636770500037693Google Scholar
Sunder Rajan, K. (2006). Biocapital: The constitution of postgenomic life. Durham, NC: Duke University Press.Google Scholar
Thacker, E. (2003). What is biomedia? Configurations, 11(1), 4779. doi:10.1353/con.2004.0014Google Scholar
Thacker, E. (2004). Biomedia. Minneapolis: University of Minnesota Press.Google Scholar
Thompson, C. (2005). Making parents: The ontological choreography of reproductive technologies. Cambridge, MA: MIT Press.Google Scholar
US Department of Agriculture, Animal and Plant Health Inspection Service (2017). Petitions for determination of nonregulated status. Retrieved from www.aphis.usda.gov/aphis/ourfocus/biotechnology/permits-notifications-petitions/petitions/petition-statusGoogle Scholar
Van Oudheusden, M. (2014). Where are the politics in responsible innovation? European governance, technology assessments, and beyond. Journal of Responsible Innovation, 1(1), 6786.CrossRefGoogle Scholar
Wajcman, J. (2009). Feminist theories of technology. Cambridge Journal of Economics, 34, 143152. doi:10.1093/cje/ben057Google Scholar
Wilsdon, J., & Willis, R. (2004). See-through science: Why public engagement needs to move upstream. London, England: Demos.Google Scholar
Wolbring, G. (2008). The politics of ableism. Development, 51, 252258. doi:10.1057/dev.2008.17Google Scholar
Wolbring, G. (2010). Human enhancement through the ableism lens. Dilemata, 3. Retrieved from www.dilemata.net/revista/index.php/dilemata/article/view/31Google Scholar
Wylie, A., & Sismondo, S. (2015). Standpoint theory, in science. In Wright, J. D. (Ed.), International encyclopedia of the social and behavioral sciences (2nd ed., pp. 324330). Oxford, England: Elsevier.Google Scholar
Wynne, B. (2005). Reflexing complexity post-genomic knowledge and reductionist returns in public science. Theory, Culture & Society, 22(5), 6794. doi:10.1177/0263276405057192Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×