Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T03:06:08.794Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 January 2015

Henriette Elvang
Affiliation:
University of Michigan, Ann Arbor
Yu-tin Huang
Affiliation:
National Taiwan University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] M. L., Mangano and S. J., Parke, “Multiparton amplitudes in gauge theories,”Phys. Rept. 200, 301 (1991) [hep-th/0509223].Google Scholar
[2] M., Srednicki, Quantum Field Theory, Cambridge, UK: Cambridge University Press (2007).Google Scholar
[3] L. J., Dixon, “Calculating scattering amplitudes efficiently,” In Boulder 1995, QCD and beyond, 539–582 [hep-ph/9601359].
[4] L. J., Dixon, “Scattering amplitudes: the most perfect microscopic structures in the universe,”J. Phys. A 44, 454001 (2011) [arXiv:1105.0771 [hep-th]].Google Scholar
[5] S. J., Parke and T. R., Taylor, “An amplitude for n gluon scattering,”Phys. Rev. Lett. 56, 2459 (1986).Google Scholar
[6] K., Kampf, J., Novotny, and J., Trnka, “Tree-level amplitudes in the nonlinear sigma model,”JHEP 1305, 032 (2013) [arXiv:1304.3048 [hep-th]].Google Scholar
[7] R., Kleiss and H., Kuijf, “Multi-gluon cross-sections and five jet production at hadron colliders,”Nucl. Phys. B 312, 616 (1989).Google Scholar
[8] V., Del Duca, L. J., Dixon, and F., Maltoni, “New color decompositions for gauge amplitudes at tree and loop level,”Nucl. Phys. B 571, 51 (2000) [hep-ph/9910563].Google Scholar
[9] Z., Bern, J. J. M., Carrasco, and H., Johansson, “New relations for gauge-theory amplitudes,”Phys. Rev. D 78, 085011 (2008) [arXiv:0805.3993 [hep-ph]].Google Scholar
[10] C. F., Berger, V., Del Duca, and L. J., Dixon, “Recursive construction of Higgs-plus-multiparton loop amplitudes: The last of the phi-nite loop amplitudes,”Phys. Rev. D 74, 094021 (2006) [Erratum-ibid. D 76, 099901 (2007)] [hep-ph/0608180];Google Scholar
S. D., Badger, E. W. N., Glover, and K., Risager, “One-loop phi-MHV amplitudes using the unitarity bootstrap,”JHEP 0707, 066 (2007) [arXiv:0704.3914 [hep-ph]];Google Scholar
L. J., Dixon and Y., Sofianatos, “Analytic one-loop amplitudes for a Higgs boson plus four partons,”JHEP 0908, 058 (2009) [arXiv:0906.0008 [hep-ph]];Google Scholar
S., Badger, E. W., Nigel Glover, P., Mastrolia, and C., Williams, “One-loop Higgs plus four gluon amplitudes: Full analytic results,”JHEP 1001, 036 (2010) [arXiv:0909.4475 [hep-ph]].Google Scholar
[11] L. J., Dixon, “A brief introduction to modern amplitude methods,” [arXiv:1310.5353 [hep-ph]].
[12] F. A., Berends and W. T., Giele, “Recursive calculations for processes with n gluons,”Nucl. Phys. B 306, 759 (1988).Google Scholar
F. A., Berends, W. T., Giele, and H., Kuijf, “Exact and approximate expressions for multi-gluon scattering,”Nucl. Phys. B 333, 120 (1990).Google Scholar
[13] R., Britto, F., Cachazo, and B., Feng, “New recursion relations for tree amplitudes of gluons,”Nucl. Phys. B 715, 499 (2005) [hep-th/0412308].Google Scholar
[14] R., Britto, F., Cachazo, B., Feng, and E., Witten, “Direct proof of tree-level recursion relation in Yang–Mills theory,”Phys. Rev. Lett. 94, 181602 (2005) [hep-th/0501052].Google Scholar
[15] F., Cachazo, P., Svrcek, and E., Witten, “MHV vertices and tree amplitudes in gauge theory,”JHEP 0409, 006 (2004) [hep-th/0403047].Google Scholar
[16] B., Feng, J., Wang, Y., Wang, and Z., Zhang, “BCFW recursion relation with nonzero boundary contribution,”JHEP 1001, 019 (2010) [arXiv:0911.0301 [hep-th]].Google Scholar
[17] E., Conde and S., Rajabi, “The twelve-graviton next-to-MHV amplitude from Risager's construction,”JHEP 1209, 120 (2012) [arXiv:1205.3500 [hep-th]].Google Scholar
[18] N., Arkani-Hamed and J., Kaplan, “On tree amplitudes in gauge theory and gravity,”JHEP 0804, 076 (2008) [arXiv:0801.2385 [hep-th]].Google Scholar
[19] C., Cheung, “On-shell recursion relations for generic theories,”JHEP 1003, 098 (2010) [arXiv:0808.0504 [hep-th]].Google Scholar
[20] P., Benincasa, C., Boucher-Veronneau, and F., Cachazo, “Taming tree amplitudes in general relativity,”JHEP 0711, 057 (2007) [hep-th/0702032 [HEP-TH]].Google Scholar
[21] H., Kawai, D. C., Lewellen, and S. H. H., Tye, “A relation between tree amplitudes of closed and open strings,”Nucl. Phys. B 269, 1 (1986).Google Scholar
[22] S., Sannan, “Gravity as the limit of the type II superstring theory,”Phys. Rev. D 34, 1749 (1986).Google Scholar
[23] N., Arkani-Hamed, F., Cachazo, C., Cheung, and J., Kaplan, “A duality for the S matrix,”JHEP 1003, 020 (2010) [arXiv:0907.5418 [hep-th]].Google Scholar
[24] A., Hodges, “Eliminating spurious poles from gauge-theoretic amplitudes,”JHEP 1305, 135 (2013) [arXiv:0905.1473 [hep-th]].Google Scholar
[25] M., Spradlin, A., Volovich, and C., Wen, “Three applications of a bonus relation for gravity amplitudes,”Phys. Lett. B 674, 69 (2009) [arXiv:0812.4767 [hep-th]].Google Scholar
[26] T., Cohen, H., Elvang, and M., Kiermaier, “On-shell constructibility of tree amplitudes in general field theories,”JHEP 1104, 053 (2011) [arXiv:1010.0257 [hep-th]].Google Scholar
[27] H., Elvang, D. Z., Freedman, and M., Kiermaier, “Recursion relations, generating functions, and unitarity sums in N = 4 SYM theory,”JHEP 0904, 009 (2009) [arXiv:0808.1720 [hep-th]].Google Scholar
[28] K., Risager, “A direct proof of the CSW rules,”JHEP 0512, 003 (2005) [hep-th/ 0508206].Google Scholar
[29] H., Elvang, D. Z., Freedman, and M., Kiermaier, “Proof of the MHV vertex expansion for all tree amplitudes in N = 4 SYM theory,”JHEP 0906, 068 (2009) [arXiv:0811.3624 [hep-th]].Google Scholar
[30] L. J., Dixon, E. W. N., Glover, and V. V., Khoze, “MHV rules for Higgs plus multi-gluon amplitudes,”JHEP 0412, 015 (2004) [hep-th/0411092].Google Scholar
[31] S. D., Badger, E. W. N., Glover, and V. V., Khoze, “MHV rules for Higgs plus multi-parton amplitudes,”JHEP 0503, 023 (2005) [hep-th/0412275].Google Scholar
[32] A., Brandhuber, B., Spence, and G., Travaglini, “Tree-level formalism,”J. Phys. A 44, 454002 (2011) [arXiv:1103.3477 [hep-th]].Google Scholar
[33] A., Gorsky and A., Rosly, “From Yang–Mills Lagrangian to MHV diagrams,”JHEP 0601, 101 (2006) [hep-th/0510111];Google Scholar
P., Mansfield, “The Lagrangian origin of MHV rules,”JHEP 0603, 037 (2006) [hep-th/0511264];Google Scholar
J. H., Ettle and T. R., Morris, “Structure of the MHV-rules Lagrangian,”JHEP 0608, 003 (2006) [hep-th/0605121];Google Scholar
J. H., Ettle, C.-H., Fu, J. P., Fudger, P. R. W., Mansfield, and T. R., Morris, “S-matrix equivalence theorem evasion and dimensional regularisation with the canonical MHV Lagrangian,”JHEP 0705, 011 (2007) [hep-th/0703286];Google Scholar
H., Feng and Y.-t., Huang, “MHV Lagrangian for N = 4 super Yang–Mills,”JHEP 0904, 047 (2009) [hep-th/0611164].Google Scholar
[34] R., Boels, L. J., Mason, and D., Skinner, “From twistor actions to MHV diagrams,”Phys. Lett. B 648, 90 (2007) [hep-th/0702035].Google Scholar
[35] N. E. J., Bjerrum-Bohr, D. C., Dunbar, H., Ita, W. B., Perkins, and K., Risager, “MHV-vertices for gravity amplitudes,”JHEP 0601, 009 (2006) [hep-th/0509016].Google Scholar
[36] M., Bianchi, H., Elvang, and D. Z., Freedman, “Generating tree amplitudes in N = 4 SYM and N = 8 SG,”JHEP 0809, 063 (2008) [arXiv:0805.0757 [hep-th]].Google Scholar
[37] J., Wess and J., Bagger, Supersymmetry and Supergravity, Princeton, USA: University Press (1992).Google Scholar
[38] M. T., Grisaru and H. N., Pendleton, “Some properties of scattering amplitudes in supersymmetric theories,”Nucl. Phys. B 124, 81 (1977);Google Scholar
M. T., Grisaru, H. N., Pendleton, and P., van Nieuwenhuizen, “Supergravity and the S matrix,”Phys. Rev. D 15, 996 (1977).Google Scholar
[39] D. Z., Freedman and A., Van Proeyen, Supergravity, Cambridge, UK: Cambridge University Press (2012).
[40] L., Brink, J. H., Schwarz, and J., Scherk, “Supersymmetric Yang–Mills theories,”Nucl. Phys. B 121, 77 (1977).Google Scholar
[41] A., Ferber, “Supertwistors and conformal supersymmetry,”Nucl. Phys. B 132, 55 (1978).Google Scholar
[42] H., Elvang, D. Z., Freedman, and M., Kiermaier, “Solution to the Ward identities for superamplitudes,”JHEP 1010, 103 (2010) [arXiv:0911.3169 [hep-th]].Google Scholar
[43] H., Elvang, D. Z., Freedman, and M., Kiermaier, “SUSY Ward identities, super-amplitudes, and counterterms,”J. Phys. A 44, 454009 (2011) [arXiv:1012.3401 [hep-th]].Google Scholar
[44] M., Kiermaier and S. G., Naculich, “A super MHV vertex expansion for N = 4SYM theory,”JHEP 0905, 072 (2009) [arXiv:0903.0377 [hep-th]].Google Scholar
[45] N., Arkani-Hamed, “What is the simplest QFT?,” talk given at the Paris Workshop Wonders of Gauge Theory and Supergravity, 24 June 2008.Google Scholar
[46] A., Brandhuber, P., Heslop, and G., Travaglini, “A note on dual superconformal symmetry of the N = 4 super Yang–Mills S-matrix,”Phys. Rev. D 78, 125005 (2008) [arXiv:0807.4097 [hep-th]].Google Scholar
[47] N., Arkani-Hamed, F., Cachazo, and J., Kaplan, “What is the simplest quantum field theory?,”JHEP 1009, 016 (2010) [arXiv:0808.1446 [hep-th]].Google Scholar
[48] Z., Bern, J. J. M., Carrasco, H., Ita, H., Johansson, and R., Roiban, “On the structure of supersymmetric sums in multi-loop unitarity cuts,”Phys.Rev.D 80, 065029 (2009) [arXiv:0903.5348 [hep-th]].Google Scholar
[49] J. M., Drummond and J. M., Henn, “All tree-level amplitudes in N = 4SYM,”JHEP 0904, 018 (2009) [arXiv:0808.2475 [hep-th]].Google Scholar
[50] J. M., Drummond, J., Henn, G. P., Korchemsky, and E., Sokatchev, “Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang–Mills theory,”Nucl. Phys. B 828, 317 (2010) [arXiv:0807.1095 [hep-th]].Google Scholar
[51] J. M., Drummond, M., Spradlin, A., Volovich, and C., Wen, “Tree-level amplitudes in N = 8 supergravity,”Phys. Rev. D 79, 105018 (2009) [arXiv:0901.2363 [hep-th]].Google Scholar
[52] J. M., Drummond, “Hidden simplicity of gauge theory amplitudes,”Class. Quant. Grav. 27, 214001 (2010) [arXiv:1010.2418 [hep-th]].Google Scholar
[53] R., Penrose, “Twistor algebra,”J. Math. Phys. 8, 345 (1967).Google Scholar
[54] E., Witten, “Perturbative gauge theory as a string theory in twistor space,”Commun. Math. Phys. 252, 189 (2004) [hep-th/0312171].Google Scholar
[55] P. A. M., Dirac, “Wave equations in conformal space,”Annals Math. 37, 429 (1936).Google Scholar
[56] W., Siegel, “Embedding versus 6D twistors,” [arXiv:1204.5679 [hep-th]].
[57] W., Siegel, “Fields,” [hep-th/9912205].
[58] J. M., Drummond, J., Henn, V. A., Smirnov, and E., Sokatchev, “Magic identities for conformal four-point integrals,”JHEP 0701, 064 (2007) [hep-th/0607160].Google Scholar
[59] J. M., Drummond, J. M., Henn, and J., Plefka, “Yangian symmetry of scattering amplitudes in N = 4 super Yang–Mills theory,”JHEP 0905, 046 (2009) [arXiv:0902.2987 [hep-th]].Google Scholar
[60] L. J., Mason and D., Skinner, “Dual superconformal invariance, momentum twistors and grassmannians,”JHEP 0911, 045 (2009) [arXiv:0909.0250 [hep-th]].Google Scholar
N., Arkani-Hamed, F., Cachazo, and C., Cheung, “The Grassmannian origin of dual superconformal invariance,”JHEP 10033, 036 (2010) [arXiv: 0909.0483 [hep-th]].Google Scholar
H., Elvang, Y.-t., Huang, C., Keeler, et al., “Grassmannians for scattering amplitudes in 4d N = 4 SYM and 3d ABJM,” 2014 [arXiv: 1410.0621 [hep.th]].Google Scholar
[61] R., Roiban, “Review of AdS/CFT integrability, Chapter V1: Scattering amplitudes – a brief introduction,”Lett. Math. Phys. 99, 455 (2012) [arXiv:1012.4001 [hep-th]].Google Scholar
[62] Lorenzo, Magnea, Lecture notes on Perturbative QCD at the National School of Theoretical Physics of the University of Parma (2008). http://personalpages.to.infn.it/~magnea/QCD.pdf
[63] L. V., Bork, D. I., Kazakov, G. S., Vartanov, and A. V., Zhiboedov, “Construction of infrared finite observables in N = 4 super Yang–Mills theory,”Phys. Rev. D 81, 105028 (2010) [arXiv:0911.1617 [hep-th]].Google Scholar
[64] Z., Bern, G., Chalmers, L. J., Dixon, and D. A., Kosower, “One loop N gluon amplitudes with maximal helicity violation via collinear limits,”Phys. Rev. Lett. 72, 2134 (1994) [hep-ph/9312333].Google Scholar
[65] G., Mahlon, “Multi-gluon helicity amplitudes involving a quark loop,”Phys.Rev.D 49, 4438 (1994) [hep-ph/9312276].Google Scholar
[66] Z., Bern, L. J., Dixon, and D. A., Kosower, “Dimensionally regulated pentagon integrals,”Nucl. Phys. B 412, 751 (1994) [hep-ph/9306240].Google Scholar
[67] Z., Bern, L. J., Dixon, D. C., Dunbar, and D. A., Kosower, “One loop n point gauge theory amplitudes, unitarity and collinear limits,”Nucl. Phys. B 425, 217 (1994) [hep-ph/9403226];Google Scholar
Z., Bern, L. J., Dixon, D. C., Dunbar, and D. A., Kosower, “Fusing gauge theory tree amplitudes into loop amplitudes,”Nucl. Phys. B 435, 59 (1995) [hep-ph/9409265].Google Scholar
[68] J. J. M., Carrasco and H., Johansson, “Generic multiloop methods and application to N = 4 super-Yang–Mills,”J Phys. A 44, 454004 (2011) [arXiv:1103.3298 [hep-th]].Google Scholar
[69] Z., Bern and Y.-t., Huang, “Basics of generalized unitarity,”J. Phys. A 44, 454003 (2011) [arXiv:1103.1869 [hep-th]].Google Scholar
[70] H., Ita, “Susy theories and QCD: Numerical approaches,”J. Phys. A 44, 454005 (2011) [arXiv:1109.6527 [hep-th]].Google Scholar
[71] R., Britto, “Loop amplitudes in gauge theories: Modern analytic approaches,”J Phys. A 44, 454006 (2011) [arXiv:1012.4493 [hep-th]].Google Scholar
[72] W. L., van Neerven and J. A. M., Vermaseren, “Large loop integrals,”Phys. Lett. B 137, 241 (1984).Google Scholar
[73] Z., Bern, L. J., Dixon, and D. A., Kosower, “Dimensionally regulated one loop integrals,”Phys. Lett. B 302, 299 (1993) [Erratum-ibid. B318, 649 (1993)] [hep-ph/9212308].Google Scholar
[74] Z., Bern, L. J., Dixon, and D. A., Kosower, “Dimensionally regulated pentagon integrals,”Nucl. Phys. B 412, 751 (1994) [hep-ph/9306240].Google Scholar
[75] L. M., Brown and R. P., Feynman, “Radiative corrections to Compton scattering,”Phys. Rev. 85, 231 (1952);Google Scholar
G., 't Hooft and M. J. G., Veltman, “Scalar one loop integrals,”Nucl. Phys. B 153, 365 (1979).Google Scholar
[76] G., Passarino and M. J. G., Veltman, “One loop corrections for e+ e− annihilation into mu+ mu− in the Weinberg model,”Nucl. Phys. B 160, 151 (1979).Google Scholar
[77] R. K., Ellis, Z., Kunszt, K., Melnikov, and G., Zanderighi, “One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts,”Phys. Rept. 518, 141 (2012) [arXiv:1105.4319 [hep-ph]].Google Scholar
[78] H., Johansson, D. A., Kosower, and K. J., Larsen, “An overview of maximal unitarity at two loops,”PoSLL 2012, 066 (2012) [arXiv:1212.2132 [hep-th]].Google Scholar
[79] C., Anastasiou, R., Britto, B., Feng, Z., Kunszt, and P., Mastrolia, “D-dimensional unitarity cut method,”Phys. Lett. B 645, 213 (2007) [hep-ph/0609191];Google Scholar
R., Britto and B., Feng, “Integral coefficients for one-loop amplitudes,”JHEP 0802, 095 (2008) [0711.4284 [hep-ph]];Google Scholar
R., Britto and B., Feng, “Unitarity cuts with massive propagators and algebraic expressions for coefficients,”Phys. Rev. D 75, 105006 (2007) [hep-ph/0612089];Google Scholar
G., Ossola, C. G., Papadopoulos, and R., Pittau, “Reducing full one-loop amplitudes to scalar integrals at the integrand level,”Nucl. Phys. B 763, 147 (2007) [hep-ph/0609007];Google Scholar
R., Britto, B., Feng, and P., Mastrolia, “Closed-form decomposition of one-loop massive amplitudes,”Phys. Rev. D 78, 025031 (2008) [0803.1989 [hep-ph]];Google Scholar
D., Forde, “Direct extraction of one-loop integral coefficients,”Phys. Rev. D 75, 125019 (2007) [0704.1835 [hep-ph]];Google Scholar
[80] Z., Bern and A. G., Morgan, “Massive loop amplitudes from unitarity,”Nucl. Phys. B 467, 479 (1996) [hep-ph/9511336];Google Scholar
Z., Bern, L. J., Dixon, and D. A., Kosower, “Progress in one-loop QCD computations,”Ann. Rev. Nucl. Part. Sci. 46, 109 (1996) [hep-ph/9602280].Google Scholar
[81] S. D., Badger, “Direct extraction of one loop rational terms,”JHEP 0901, 049 (2009) [0806.4600 [hep-ph]].Google Scholar
[82] M. B., Green, J. H., Schwarz, and L., Brink, “N = 4 Yang-Mills and N = 8 supergravity as limits of string theories,”Nucl. Phys. B 198, 474 (1982).Google Scholar
[83] Z., Bern, N. E. J., Bjerrum-Bohr, and D. C., Dunbar, “Inherited twistor-space structure of gravity loop amplitudes,”JHEP 0505, 056 (2005) [hep-th/0501137];Google Scholar
N. E. J., Bjerrum-Bohr, D. C., Dunbar, H., Ita, W. B., Perkins, and K., Risager, “The no-triangle hypothesis for N = 8 supergravity,”JHEP 0612, 072 (2006) [hepth/0610043];Google Scholar
N. E. J., Bjerrum-Bohr and P., Vanhove, “Absence of triangles in maximal supergravity amplitudes,”JHEP 0810, 006 (2008) [arXiv:0805.3682 [hep-th]].Google Scholar
[84] Z., Bern, J. J., Carrasco, D., Forde, H., Ita, and H., Johansson, “Unexpected cancellations in gravity theories,”Phys. Rev. D 77, 025010 (2008) [arXiv:0707.1035 [hep-th]].Google Scholar
[85] S., Lal and S., Raju, “The next-to-simplest quantum field theories,”Phys. Rev. D 81, 105002 (2010) [arXiv:0910.0930 [hep-th]].Google Scholar
[86] D. C., Dunbar, J. H., Ettle, and W. B., Perkins, “Perturbative expansion of N < 8 supergravity,”Phys. Rev. D 83, 065015 (2011) [arXiv:1011.5378 [hep-th]].Google Scholar
[87] H., Elvang, Y.-t., Huang, and C., Peng, “On-shell superamplitudes in N < 4 SYM,”JHEP 1109, 031 (2011) [arXiv:1102.4843 [hep-th]].Google Scholar
[88] Y.-t., Huang, D. A., McGady, and C., Peng, “One-loop renormalization and the S-matrix,” [arXiv:1205.5606 [hep-th]].
[89] N., Marcus, “Composite anomalies in supergravity,”Phys. Lett. B 157, 383 (1985).Google Scholar
[90] P., di Vecchia, S., Ferrara, and L., Girardello, “Anomalies of hidden local chiral symmetries in sigma models and extended supergravities,”Phys. Lett. B 151, 199 (1985).Google Scholar
[91] J. M., Drummond, J., Henn, G. P., Korchemsky, and E., Sokatchev, “Generalized unitarity for N = 4 super-amplitudes,”Nucl. Phys. B 869, 452 (2013) [arXiv:0808.0491 [hep-th]].Google Scholar
[92] A., Brandhuber, P., Heslop, and G., Travaglini, “One-loop amplitudes in N = 4 super Yang–Mills and anomalous dual conformal symmetry,”JHEP 0908, 095 (2009) [arXiv:0905.4377 [hep-th]].Google Scholar
[93] H., Elvang, D. Z., Freedman, and M., Kiermaier, “Dual conformal symmetry of 1-loop NMHV amplitudes in N = 4 SYM theory,”JHEP 1003, 075 (2010) [arXiv:0905.4379 [hep-th]].Google Scholar
[94] G. P., Korchemsky and E., Sokatchev, “Symmetries and analytic properties of scattering amplitudes in N = 4 SYM theory,”Nucl. Phys. B 832, 1 (2010) [arXiv:0906.1737 [hep-th]].Google Scholar
[95] J., Gluza, K., Kajda, and D. A., Kosower, “Towards a basis for planar two-loop integrals,”Phys. Rev. D 83, 045012 (2011) [arXiv:1009.0472 [hep-th]].Google Scholar
[96] D. A., Kosower and K. J., Larsen, “Maximal unitarity at two loops,”Phys. Rev. D 85, 045017 (2012) [arXiv:1108.1180 [hep-th]];Google Scholar
H., Johansson, D. A., Kosower, and K. J., Larsen, “Two-loop maximal unitarity with external masses,”Phys. Rev. D 87, 025030 (2013) [arXiv:1208.1754 [hep-th]].Google Scholar
[97] S., Badger, H., Frellesvig, and Y., Zhang, “Hepta-cuts of two-loop scattering amplitudes,”JHEP 1204, 055 (2012) [arXiv:1202.2019 [hep-ph]].Google Scholar
[98] Y., Zhang, “Integrand-level reduction of loop amplitudes by computational algebraic geometry methods,”JHEP 1209, 042 (2012) [arXiv:1205.5707 [hep-ph]].Google Scholar
[99] M., Sgaard, “Global residues and two-loop hepta-cuts,”JHEP 1309, 116 (2013) [arXiv:1306.1496 [hep-th]].Google Scholar
[100] A. V., Smirnov and A. V., Petukhov, “The number of master integrals is finite,”Lett. Math. Phys. 97, 37 (2011) [arXiv:1004.4199 [hep-th]].Google Scholar
[101] C., Anastasiou, Z., Bern, L. J., Dixon, and D. A., Kosower, “Planar amplitudes in maximally supersymmetric Yang–Mills theory,”Phys. Rev. Lett. 91, 251602 (2003) [hep-th/0309040].Google Scholar
[102] Z., Bern, L. J., Dixon, and V. A., Smirnov, “Iteration of planar amplitudes in maximally supersymmetric Yang–Mills theory at three loops and beyond,”Phys. Rev. D 72, 085001 (2005) [hep-th/0505205].Google Scholar
[103] Z., Bern, J. S., Rozowsky, and B., Yan, “Two loop four gluon amplitudes in N = 4 super Yang–Mills,”Phys. Lett. B 401, 273 (1997) [hep-ph/9702424].Google Scholar
[104] Z., Bern, M., Czakon, D. A., Kosower, R., Roiban, and V. A., Smirnov, “Two-loop iteration of five-point N = 4 super-Yang–Mills amplitudes,”Phys. Rev. Lett. 97, 181601 (2006) [hep-th/0604074].Google Scholar
[105] F., Cachazo, M., Spradlin, and A., Volovich, “Iterative structure within the five-particle two-loop amplitude,”Phys. Rev. D 74, 045020 (2006) [hep-th/0602228].Google Scholar
[106] L. F., Alday and J., Maldacena, “Comments on gluon scattering amplitudes via AdS/CFT,”JHEP 0711, 068 (2007) [arXiv:0710.1060 [hep-th]].Google Scholar
[107] L. F., Alday and J. M., Maldacena, “Gluon scattering amplitudes at strong coupling,”JHEP 0706, 064 (2007) [arXiv:0705.0303 [hep-th]].Google Scholar
[108] Z., Bern, L. J., Dixon, D. A., Kosower, et al., “The two-loop six-gluonMHV amplitude in maximally supersymmetric Yang–Mills theory,”Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465 [hep-th]].Google Scholar
[109] F., Cachazo, M., Spradlin, and A., Volovich, “Leading singularities of the two-loop six-particle MHV amplitude,”Phys.Rev. D 78, 105022 (2008) [arXiv:0805.4832 [hep-th]].Google Scholar
[110] V., Del Duca, C., Duhr, and V. A., Smirnov, “An analytic result for the two-loop hexagon Wilson loop in N = 4SYM,”JHEP 1003, 099 (2010) [arXiv:0911.5332 [hep-ph]].Google Scholar
[111] V., Del Duca, C., Duhr, and V. A., Smirnov, “The two-loop hexagon Wilson loop in N = 4 SYM,”JHEP 1005, 084 (2010) [arXiv:1003.1702 [hep-th]].Google Scholar
[112] A. B., Goncharov, M., Spradlin, C., Vergu, and A., Volovich, “Classical polylogarithms for amplitudes and Wilson loops,”Phys. Rev. Lett. 105, 151605 (2010) [arXiv:1006.5703 [hep-th]].Google Scholar
[113] E. W., Nigel Glover and C., Williams, “One-loop gluonic amplitudes from single unitarity cuts,”JHEP 0812, 067 (2008) [0810.2964 [hep-th]];Google Scholar
I., Bierenbaum, S., Catani, P., Draggiotis, and G., Rodrigo, “A tree-loop duality relation at two loops and beyond,”JHEP 1010, 073 (2010) [arXiv:1007.0194 [hep-ph]];Google Scholar
H., Elvang, D. Z., Freedman, and M., Kiermaier, “Integrands for QCD rational terms and N = 4 SYM frommassive CSW rules,”JHEP 1206, 015 (2012) [arXiv:1111.0635 [hep-th]].Google Scholar
[114] S., Caron-Huot, “Loops and trees,”JHEP 1105, 080 (2011) [arXiv:1007.3224 [hep-ph]].Google Scholar
[115] N., Arkani-Hamed, J. L., Bourjaily, F., Cachazo, S., Caron-Huot, and J., Trnka, “The all-loop integrand for scattering amplitudes in planar N = 4 SYM,”JHEP 1101, 041 (2011) [arXiv:1008.2958 [hep-th]].Google Scholar
[116] R. H., Boels, “On BCFW shifts of integrands and integrals,”JHEP 1011, 113 (2010) [arXiv:1008.3101 [hep-th]].Google Scholar
[117] Z., Bern, J. J. M., Carrasco, H., Johansson, and D. A., Kosower, “Maximally supersymmetric planar Yang–Mills amplitudes at five loops,”Phys.Rev. D 76, 125020 (2007) [0705.1864 [hep-th]].Google Scholar
[118] R., Britto, F., Cachazo, and B., Feng, “Generalized unitarity and one-loop amplitudes in N = 4 super-Yang–Mills,”Nucl. Phys. B 725, 275 (2005) [hep-th/0412103];Google Scholar
E. I., Buchbinder and F., Cachazo, “Two-loop amplitudes of gluons and octa-cuts in N = 4 super Yang–Mills,”JHEP 0511, 036 (2005) [hep-th/0506126].Google Scholar
[119] N., Arkani-Hamed, J. L., Bourjaily, F., Cachazo, and J., Trnka, “Local integrals for planar scattering amplitudes,”JHEP 1206, 125 (2012) [arXiv:1012.6032 [hep-th]].Google Scholar
For extensions, see J. L., Bourjaily, S., Caron-Huot, and J., Trnka, “Dual-conformal regularization of infrared loop divergences and the chiral box expansion,” [arXiv:1303.4734 [hep-th]].
[120] N., Arkani-Hamed, J. L., Bourjaily, F., Cachazo, et al., “Scattering amplitudes and the positive Grassmannian,” [arXiv:1212.5605 [hep-th]].
[121] F., Cachazo, “Sharpening the leading singularity,” [arXiv:0803.1988 [hep-th]].
[122] J. M., Drummond and L., Ferro, “Yangians, Grassmannians and T-duality,”JHEP 1007, 027 (2010) [arXiv:1001.3348 [hep-th]].Google Scholar
[123] J. M., Drummond and L., Ferro, “The Yangian origin of the Grassmannian integral,”JHEP 1012, 010 (2010) [arXiv:1002.4622 [hep-th]];Google Scholar
G. P., Korchemsky and E., Sokatchev, “Superconformal invariants for scattering amplitudes in N = 4 SYM theory,”Nucl. Phys. B 839, 377 (2010) [arXiv:1002.4625 [hep-th]].Google Scholar
[124] R., Roiban, M., Spradlin, and A., Volovich, “On the tree level S matrix of Yang–Mills theory,”Phys. Rev. D 70, 026009 (2004) [hep-th/0403190].Google Scholar
[125] M., Spradlin and A., Volovich, “From twistor string theory to recursion relations,”Phys. Rev. D 80, 085022 (2009) [arXiv:0909.0229 [hep-th]].Google Scholar
[126] N., Arkani-Hamed, J., Bourjaily, F., Cachazo, and J., Trnka, “Unification of residues and Grassmannian dualities,”JHEP 1101, 049 (2011) [arXiv:0912.4912 [hep-th]].Google Scholar
[127] J. L., Bourjaily, J., Trnka, A., Volovich, and C., Wen, “The Grassmannian and the twistor string: Connecting all trees in N = 4 SYM,”JHEP 1101, 038 (2011) [arXiv:1006.1899 [hep-th]].Google Scholar
[128] M., Bullimore, L. J., Mason, and D., Skinner, “Twistor-strings, Grassmannians and leading singularities,”JHEP 1003, 070 (2010) [arXiv:0912.0539 [hep-th]].Google Scholar
[129] L., Dolan and P., Goddard, “Complete equivalence between gluon tree amplitudes in twistor string theory and in gauge theory,”JHEP 1206, 030 (2012) [arXiv:1111.0950 [hep-th]].Google Scholar
[130] N., Arkani-Hamed, J. L., Bourjaily, F., Cachazo, A., Hodges, and J., Trnka, “A note on polytopes for scattering amplitudes,”JHEP 1204, 081 (2012) [arXiv:1012.6030 [hep-th]].Google Scholar
[131] M., Bullimore, L. J., Mason, and D., Skinner, “MHV diagrams in momentum twistor space,”JHEP 1012, 032 (2010) [arXiv:1009.1854 [hep-th]].Google Scholar
[132] N., Arkani-Hamed and J., Trnka, “The amplituhedron,” [arXiv:1312.2007 [hep-th]];
N., Arkani-Hamed and J., Trnka, “Into the amplituhedron,” [arXiv:1312.7878 [hep-th]].
[133] L., Mason and D., Skinner, “Amplitudes at weak coupling as polytopes in AdS5,”J. Phys. A 44, 135401 (2011) [arXiv:1004.3498 [hep-th]].Google Scholar
[134] H., Nastase and H. J., Schnitzer, “Twistor and polytope interpretations for subleading color one-loop amplitudes,”Nucl. Phys. B 855, 901 (2012) [arXiv:1104.2752 [hep-th]].Google Scholar
[135] R., Boels, “Covariant representation theory of the Poincaré algebra and some of its extensions,”JHEP 1001, 010 (2010) [arXiv:0908.0738 [hep-th]].Google Scholar
[136] S., Caron-Huot and D., O'Connell, “Spinor helicity and dual conformal symmetry in ten dimensions,”JHEP 1108, 014 (2011) [arXiv:1010.5487 [hep-th]].Google Scholar
[137] R. H., Boels and D., O'Connell, “Simple superamplitudes in higher dimensions,”JHEP 1206, 163 (2012) [arXiv:1201.2653 [hep-th]].Google Scholar
[138] S., Davies, “One-loop QCD and Higgs to partons processes using six-dimensional helicity and generalized unitarity,”Phys. Rev. D 84, 094016 (2011) [arXiv:1108.0398 [hep-ph]].Google Scholar
[139] Z., Bern, J. J., Carrasco, T., Dennen, Y.-t., Huang, and H., Ita, “Generalized unitarity and six-dimensional helicity,”Phys. Rev. D 83, 085022 (2011) [arXiv:1010.0494 [hep-th]].Google Scholar
[140] N., Craig, H., Elvang, M., Kiermaier, and T., Slatyer, “Massive amplitudes on the Coulomb branch of N = 4SYM,”JHEP 1112, 097 (2011) [arXiv:1104.2050 [hep-th]].Google Scholar
[141] C., Cheung and D., O'Connell, “Amplitudes and spinor-helicity in six dimensions,”JHEP 0907, 075 (2009) [arXiv:0902.0981 [hep-th]].Google Scholar
[142] T., Dennen, Y.-t., Huang, and W., Siegel, “Supertwistor space for 6D maximal super Yang–Mills,”JHEP 1004, 127 (2010) [arXiv:0910.2688 [hep-th]].Google Scholar
[143] A., Brandhuber, D., Korres, D., Koschade, and G., Travaglini, “One-loop amplitudes in six-dimensional (1,1) theories from generalised unitarity,”JHEP 1102, 077 (2011) [arXiv:1010.1515 [hep-th]];Google Scholar
C., Saemann, R., Wimmer, and M., Wolf, “A twistor description of six-dimensional N = (1,1) super Yang–Mills theory,”JHEP 1205, 020 (2012) [arXiv:1201.6285 [hep-th]].Google Scholar
[144] T., Dennen and Y.-t., Huang, “Dual conformal properties of six-dimensional maximal super Yang–Mills amplitudes,”JHEP 1101, 140 (2011) [arXiv:1010.5874 [hep-th]].Google Scholar
[145] T., Chern, “Superconformal field theory in six dimensions and supertwistor,” [arXiv:0906.0657 [hep-th]];
M., Chiodaroli, M., Gunaydin, and R., Roiban, “Superconformalsymmetry, and maximal supergravity in various dimensions,”JHEP 1203, 093 (2012) [arXiv:1108.3085 [hep-th]];Google Scholar
L. J., Mason, R. A., Reid-Edwards, and A., Taghavi-Chabert, “Conformal field theories in six-dimensional twistor space,”J. Geom. Phys. 62, 2353 (2012) [arXiv:1111.2585 [hep-th]];Google Scholar
C., Saemann and M., Wolf, “On twistors and conformal field theories from six dimensions,”J. Math. Phys. 54, 013507 (2013) [arXiv:1111.2539 [hep-th]].Google Scholar
[146] B., Czech, Y.-t., Huang, and M., Rozali, “Amplitudes for multiple M5 branes,”JHEP 1210, 143 (2012) [arXiv:1110.2791 [hep-th]].Google Scholar
[147] C., Saemann and M., Wolf, “Non-Abelian tensor multiplet equations from twistor space,” [arXiv:1205.3108 [hep-th]].
[148] Y.-t., Huang and A. E., Lipstein, “Amplitudes of 3D and 6D maximal superconformal theories in supertwistor space,”JHEP 1010, 007 (2010) [arXiv:1004.4735 [hep-th]].Google Scholar
[149] L. F., Alday, J. M., Henn, J., Plefka, and T., Schuster, “Scattering into the fifth dimension of N = 4 super Yang–Mills,”JHEP 1001, 077 (2010) [arXiv:0908.0684 [hep-th]].Google Scholar
[150] A., Agarwal, N., Beisert, and T., McLoughlin, “Scattering in mass-deformed N ≥ 4 Chern–Simons models,”JHEP 0906, 045 (2009) [arXiv:0812.3367 [hep-th]].Google Scholar
[151] A., Gustavsson, “Algebraic structures on parallel M2-branes,”Nucl. Phys. B 811, 66 (2009) [arXiv:0709.1260 [hep-th]].Google Scholar
[152] J., Bagger and N., Lambert, “Gauge symmetry and supersymmetry of multiple M2-branes,”Phys.Rev. D 77, 065008 (2008) [arXiv:0711.0955 [hep-th]].Google Scholar
[153] M. A., Bandres, A. E., Lipstein, and J. H., Schwarz, “N = 8 superconformal Chern–Simons theories,”JHEP 0805, 025 (2008) [arXiv:0803.3242 [hep-th]].Google Scholar
[154] J., Gomis, G., Milanesi, and J. G., Russo, “Bagger-Lambert theory for general Lie algebras,”JHEP 0806, 075 (2008) [arXiv:0805.1012 [hep-th]].Google Scholar
[155] S., Benvenuti, D., Rodriguez-Gomez, E., Tonni, and H., Verlinde, “N = 8 superconformal gauge theories and M2 branes,”JHEP 0901, 078 (2009) [arXiv:0805.1087 [hep-th]].Google Scholar
[156] P. -M., Ho, Y., Imamura, and Y., Matsuo, “M2 to D2 revisited,”JHEP 0807, 003 (2008) [arXiv:0805.1202 [hep-th]].Google Scholar
[157] T., Bargheer, F., Loebbert, and C., Meneghelli, “Symmetries of tree-level scattering amplitudes in N = 6 superconformal Chern–Simons theory,”Phys. Rev. D 82, 045016 (2010) [arXiv:1003.6120 [hep-th]].Google Scholar
[158] O., Aharony, O., Bergman, D. L., Jafferis, and J., Maldacena, “N = 6 superconformal Chern–Simons-matter theories, M2-branes and their gravity duals,”JHEP 0810, 091 (2008) [arXiv:0806.1218 [hep-th]].Google Scholar
[159] M., Benna, I., Klebanov, T., Klose, and M., Smedback, “Superconformal Chern–Simons theories and AdS(4)/CFT(3) correspondence,”JHEP 0809, 072 (2008) [arXiv:0806.1519 [hep-th]].Google Scholar
[160] M. A., Bandres, A. E., Lipstein, and J. H., Schwarz, “Studies of the ABJM theory in a formulation with manifest SU(4) R-symmetry,”JHEP 0809, 027 (2008) [arXiv:0807.0880 [hep-th]].Google Scholar
[161] A., Gustavsson, “Selfdual strings and loop space Nahm equations,”JHEP 0804, 083 (2008) [arXiv:0802.3456 [hep-th]];Google Scholar
J., Bagger and N., Lambert, “Three-algebras and N = 6 Chern–Simons gauge theories,”Phys. Rev. D 79, 025002 (2009) [arXiv:0807.0163 [hep-th]].Google Scholar
[162] D., Gang, Y.-t., Huang, E., Koh, S., Lee, and A. E., Lipstein, “Tree-level recursion relation and dual superconformal symmetry of the ABJM theory,”JHEP 1103, 116 (2011) [arXiv:1012.5032 [hep-th]].Google Scholar
[163] Y.-t., Huang and A. E., Lipstein, “Dual superconformal symmetry of N = 6 Chern–Simons theory,”JHEP 1011, 076 (2010) [arXiv:1008.0041 [hep-th]].Google Scholar
[164] T., Bargheer, N., Beisert, F., Loebbert, and T., McLoughlin, “Conformal anomaly for amplitudes in N = 6 superconformal Chern–Simons theory,”J. Phys. A 45, 475402 (2012) [arXiv:1204.4406 [hep-th]].Google Scholar
[165] M. S., Bianchi, M., Leoni, A., Mauri, S., Penati, and A., Santambrogio, “One loop amplitudes In ABJM,”JHEP 1207, 029 (2012) [arXiv:1204.4407 [hep-th]].Google Scholar
[166] A., Brandhuber, G., Travaglini, and C., Wen, “All one-loop amplitudes in N = 6 superconformal Chern–Simons theory,”JHEP 1210, 145 (2012) [arXiv:1207.6908 [hep-th]].Google Scholar
[167] W. -M., Chen and Y.-t., Huang, “Dualities for loop amplitudes of N = 6 Chern–Simons matter theory,”JHEP 1111, 057 (2011) [arXiv:1107.2710 [hep-th]];Google Scholar
[168] A., Brandhuber, G., Travaglini, and C., Wen, “A note on amplitudes in N = 6 superconformal Chern–Simons theory,”JHEP 1207, 160 (2012) [arXiv:1205.6705 [hep-th]].Google Scholar
[169] M. S., Bianchi, M., Leoni, A., Mauri, S., Penati, and A., Santambrogio, “Scattering amplitudes/Wilson loop duality in ABJM theory,”JHEP 1201, 056 (2012) [arXiv:1107.3139 [hep-th]].Google Scholar
[170] S., Caron-Huot and Y.-t., Huang, “The two-loop six-point amplitude in ABJM theory,”JHEP 1303, 075 (2013) [arXiv:1210.4226 [hep-th]].Google Scholar
[171] S., Lee, “Yangian invariant scattering amplitudes in supersymmetric Chern–Simons theory,”Phys. Rev. Lett. 105, 151603 (2010) [arXiv:1007.4772 [hep-th]].Google Scholar
[172] Y. -t., Huang, C., Wen, and D., Xie, “The positive orthogonal Grassmannian and loop amplitudes of ABJM,” [arXiv:1402.1479 [hep-th]].
[173] Y.-t., Huang and S., Lee, “A new integral formula for supersymmetric scattering amplitudes in three dimensions,”Phys. Rev. Lett. 109, 191601 (2012) [arXiv:1207.4851 [hep-th]].Google Scholar
[174] O. T., Engelund and R., Roiban, “A twistor string for the ABJ(M) theory,” [arXiv:1401.6242 [hep-th]].
[175] S., Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, USA: John Wiley & Sons (1972).Google Scholar
[176] R. M., Wald, General Relativity, Chicago, USA: University Press (1984).Google Scholar
[177] S. M., Carroll, Spacetime and Geometry: An Introduction to General Relativity, San Francisco, USA: Addison-Wesley (2004).Google Scholar
[178] H., Elvang and D. Z., Freedman, unpublished notes (2007).
[179] B. S., DeWitt, “Quantum theory of gravity. 2. The manifestly covariant theory,”Phys. Rev. 162, 1195 (1967);Google Scholar
B. S., DeWitt, “Quantum theory of gravity. 3. Applications of the covariant theory,”Phys. Rev. 162, 1239 (1967);Google Scholar
M. J. G., Veltman, “Quantum theory of gravitation,”Conf. Proc. C 7507281, 265 (1975).Google Scholar
[180] F. A., Berends, W. T., Giele, and H., Kuijf, “On relations between multi-gluon and multigraviton scattering,”Phys. Lett. B 211, 91 (1988).Google Scholar
[181] J., Bedford, A., Brandhuber, B. J., Spence, and G., Travaglini, “A recursion relation for gravity amplitudes,”Nucl. Phys. B 721, 98 (2005) [hep-th/0502146].Google Scholar
[182] H., Elvang and D. Z., Freedman, “Note on graviton MHV amplitudes,”JHEP 0805, 096 (2008) [arXiv:0710.1270 [hep-th]].Google Scholar
[183] D., Nguyen, M., Spradlin, A., Volovich, and C., Wen, “The tree formula for MHV graviton amplitudes,”JHEP 1007, 045 (2010) [arXiv:0907.2276 [hep-th]].Google Scholar
[184] Z., Bern, L. J., Dixon, M., Perelstein, and J. S., Rozowsky, “Multileg one loop gravity amplitudes from gauge theory,”Nucl. Phys. B 546, 423 (1999) [hep-th/9811140].Google Scholar
[185] Z., Bern and A. K., Grant, “Perturbative gravity from QCD amplitudes,”Phys. Lett. B 457, 23 (1999) [hep-th/9904026].Google Scholar
[186] Z., Bern, L. J., Dixon, D. C., Dunbar, et al., “On perturbative gravity and gauge theory,”Nucl. Phys. Proc. Suppl. 88, 194 (2000) [hep-th/0002078].Google Scholar
[187] W., Siegel, “Two vierbein formalism for string inspired axionic gravity,”Phys. Rev. D 47, 5453 (1993) [hep-th/9302036].Google Scholar
[188] Z., Bern, “Perturbative quantum gravity and its relation to gauge theory,”Living Rev. Rel 5, 5 (2002) [gr-qc/0206071].Google Scholar
[189] D. Z., Freedman, “Some beautiful equations of mathematical physics,” In ICTP (ed.): The Dirac Medals of the ICTP 199325–53, and CERN Geneva - TH.-7367 (94/07,rec.Sep.) [hep-th/9408175].
[190] S. J., Gates, M. T., Grisaru, M., Rocek, and W., Siegel, “Superspace or one thousand and one lessons in supersymmetry,”Front. Phys. 58, 1 (1983) [hep-th/0108200].Google Scholar
[191] B., de Wit and D. Z., Freedman, “On SO(8) extended supergravity,”Nucl. Phys. B 130, 105 (1977).Google Scholar
[192] E., Cremmer and B., Julia, “The N = 8 supergravity theory. 1. The Lagrangian,”Phys. Lett. B 80, 48 (1978);Google Scholar
E., Cremmer and B., Julia, “The SO(8) supergravity,”Nucl. Phys. B 159, 141 (1979).Google Scholar
[193] B., de Wit and H., Nicolai, “N = 8 supergravity,”Nucl. Phys. B 208, 323 (1982).Google Scholar
[194] A., Hodges, “A simple formula for gravitational MHV amplitudes,” [arXiv:1204.1930[hep-th]].
[195] F., Cachazo, L., Mason, and D., Skinner, “Gravity in twistor space and its Grassmannian formulation,” [arXiv:1207.4712 [hep-th]].
[196] S., He, “A link representation for gravity amplitudes,” [arXiv:1207.4064 [hep-th]].
[197] F., Cachazo and Y., Geyer, “A ‘twistor string’ inspired formula for tree-level scattering amplitudes in N = 8 SUGRA,” [arXiv:1206.6511 [hep-th]].
[198] D., Skinner, “Twistor strings for N = 8 supergravity,” [arXiv:1301.0868 [hep-th]].
[199] F., Cachazo, S., He, and E. Y., Yuan, “Scattering equations and KLT orthogonality,” [arXiv:1306.6575 [hep-th]].
[200] F., Cachazo, S., He, and E. Y., Yuan, “Scattering of massless particles in arbitrary dimension,” [arXiv:1307.2199 [hep-th]].
[201] S. L., Adler, “Consistency conditions on the strong interactions implied by a partially conserved axial vector current,”Phys. Rev. 137, B1022 (1965).Google Scholar
[202] S. R., Coleman, “Secret symmetry: An introduction to spontaneous symmetry breakdown and gauge fields,”Subnucl. Ser. 11, 139 (1975).Google Scholar
[203] M., Kiermaier, “The Coulomb-branch S-matrix from massless amplitudes,” [arXiv:1105.5385 [hep-th]].
[204] G. 't, Hooft and M. J. G., Veltman, “One loop divergencies in the theory of gravitation,”Annales Poincare Phys. Theor. A 20, 69 (1974).Google Scholar
[205] M. H., Goroff and A., Sagnotti, “Quantum gravity at two loops,”Phys. Lett. B 160, 81 (1985).Google Scholar
[206] A. E. M., van de Ven, “Two loop quantum gravity,”Nucl. Phys. B 378, 309 (1992).Google Scholar
[207] S., Deser and P., van Nieuwenhuizen, “One loop divergences of quantized Einstein–Maxwell fields,”Phys.Rev. D 10, 401 (1974).Google Scholar
[208] M. T., Grisaru, P., van Nieuwenhuizen, and J. A. M., Vermaseren, “One loop renor-malizability of pure supergravity and of Maxwell–Einstein theory in extended supergravity,”Phys. Rev. Lett. 37, 1662 (1976).Google Scholar
[209] M. T., Grisaru, “Two loop renormalizability of supergravity,”Phys. Lett. B 66, 75 (1977).Google Scholar
[210] E., Tomboulis, “On the two loop divergences of supersymmetric gravitation,”Phys. Lett. B 67, 417 (1977).Google Scholar
[211] S., Deser, J. H., Kay, and K. S., Stelle, “Renormalizability properties of supergravity,”Phys. Rev. Lett. 38, 527 (1977).Google Scholar
[212] Z., Bern, L. J., Dixon, and R., Roiban, “Is N = 8 supergravity ultraviolet finite?,”Phys. Lett. B 644, 265 (2007) [hep-th/0611086].Google Scholar
[213] Z., Bern, J. J., Carrasco, L. J., Dixon, et al., “Three-loop superfiniteness of N = 8 supergravity,”Phys. Rev. Lett. 98, 161303 (2007) [hep-th/0702112].Google Scholar
[214] Z., Bern, J. J. M., Carrasco, L. J., Dixon, H., Johansson, and R., Roiban, “Manifest ultraviolet behavior for the three-loop four-point amplitude of N = 8 supergravity,”Phys. Rev. D 78, 105019 (2008) [arXiv:0808.4112 [hep-th]].Google Scholar
[215] P. S., Howe and K. S., Stelle, “Supersymmetry counterterms revisited,”Phys. Lett. B 554, 190 (2003) [hep-th/0211279].Google Scholar
[216] Z., Bern, J. J., Carrasco, L. J., Dixon, H., Johansson, and R., Roiban, “The ultraviolet behavior of N = 8 supergravity at four loops,”Phys. Rev. Lett. 103, 081301 (2009) [arXiv:0905.2326 [hep-th]].Google Scholar
[217] Z., Bern, J. J. M., Carrasco, L. J., Dixon, H., Johansson, and R., Roiban, “The complete four-loop four-point amplitude in N = 4 super-Yang-Mills theory,”Phys. Rev. D 82, 125040 (2010) [arXiv:1008.3327 [hep-th]].Google Scholar
[218] J., BjornssonandM. B., Green, “5 loops in 24/5 dimensions,”JHEP 1008, 132 (2010) [arXiv:1004.2692 [hep-th]].Google Scholar
[219] H., Elvang, D. Z., Freedman, and M., Kiermaier, “A simple approach to counterterms in N = 8 supergravity,”JHEP 1011, 016 (2010) [arXiv:1003.5018 [hep-th]].Google Scholar
[220] H., Elvang and M., Kiermaier, “Stringy KLT relations, global symmetries, and E7(7) violation,”JHEP 1010, 108 (2010) [arXiv:1007.4813 [hep-th]].Google Scholar
[221] N., Beisert, H., Elvang, D. Z., Freedman, et al., “E7(7) constraints on counterterms in N = 8 supergravity,”Phys. Lett. B 694, 265 (2010) [arXiv:1009.1643 [hep-th]].Google Scholar
[222] P., van Nieuwenhuizen and C. C., Wu, “On integral relations for invariants constructed from three riemann tensors and their applications in quantum gravity,”J. Math. Phys. 18, 182 (1977).Google Scholar
[223] G., Bossard, C., Hillmann, and H., Nicolai, “E7(7) symmetry in perturbatively quantised N = 8 supergravity,”JHEP 1012, 052 (2010) [arXiv:1007.5472 [hep-th]].Google Scholar
[224] D. Z., Freedman and E., Tonni, “The D2kR4 invariants of N = 8 supergravity,”JHEP 1104, 006 (2011) [arXiv:1101.1672 [hep-th]].Google Scholar
[225] S., Deser and J. H., Kay, “Three loop counterterms for extended supergravity,”Phys. Lett. B 76, 400 (1978).Google Scholar
[226] J. M., Drummond, P. J., Heslop, and P. S., Howe, “A note on N = 8 counterterms,” [arXiv:1008.4939 [hep-th]].
[227] G., Bossard and H., Nicolai, “Counterterms vs. dualities,”JHEP 1108, 074 (2011) [arXiv:1105.1273 [hep-th]].Google Scholar
[228] R., Kallosh and T., Kugo, “The footprint of E(7(7)) amplitudes of N = 8 supergravity,”JHEP 0901, 072 (2009) [arXiv:0811.3414 [hep-th]];Google Scholar
R., Kallosh, “E7(7) symmetry and finiteness of N = 8 supergravity,”JHEP 1203, 083 (2012) [arXiv:1103.4115 [hep-th]];Google Scholar
R., Kallosh, “N = 8 counterterms and E7(7) current conservation,”JHEP 1106, 073 (2011) [arXiv:1104.5480 [hep-th]];Google Scholar
R., Kallosh and T., Ortin, “New E77 invariants and amplitudes,”JHEP 1209, 137 (2012) [arXiv:1205.4437 [hep-th]];Google Scholar
M., Gunaydin and R., Kallosh, “Obstruction to E7(7) deformation in N = 8 supergravity,” [arXiv:1303.3540 [hep-th]];
J. J. M., Carrasco and R., Kallosh, “Hidden supersymmetry may imply duality invariance,” [arXiv:1303.5663 [hep-th]].
[229] S., Stieberger and T. R., Taylor, “Complete six-gluon disk amplitude in superstring theory,”Nucl. Phys. B 801, 128 (2008) [arXiv:0711.4354 [hep-th]].Google Scholar
[230] J., Broedel and L. J., Dixon, “R**4 counterterm and E(7)(7) symmetry in maximal supergravity,”JHEP 1005, 003 (2010) [arXiv:0911.5704 [hep-th]].Google Scholar
[231] N., Berkovits, “New higher-derivative R**4 theorems,”Phys. Rev. Lett. 98, 211601 (2007) [arXiv:hep-th/0609006];Google Scholar
M. B., Green, J. G., Russo, and P., Vanhove, “Non-renormalisation conditions in type II string theory and maximal supergravity,”JHEP 0702, 099 (2007) [arXiv:hep-th/0610299];Google Scholar
M. B., Green, J. G., Russo, and P., Vanhove, “Ultraviolet properties of maximal supergravity,”Phys. Rev. Lett. 98, 131602 (2007) [arXiv:hep-th/0611273];Google Scholar
M. B., Green, J. G., Russo, and P., Vanhove, “Modular properties of two-loop maximal supergravity and connections with string theory,”JHEP 0807, 126 (2008) [arXiv:0807.0389 [hep-th]];Google Scholar
N., Berkovits, M. B., Green, J. G., Russo, and P., Vanhove, “Non-renormalization conditions for four-gluon scattering in supersymmetric string and field theory,”JHEP 0911, 063 (2009) [arXiv:0908.1923 [hep-th]];Google Scholar
P., Vanhove, “The critical ultraviolet behaviour of N = 8 supergravity amplitudes,” [arXiv:1004.1392 [hep-th]].
[232] Z., Bern, J. J. M., Carrasco, L. J., Dixon, H., Johansson, and R., Roiban, “Simplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudes,”Phys. Rev. D 85, 105014 (2012) [arXiv:1201.5366 [hep-th]].Google Scholar
[233] P. S., Howe and U., Lindstrom, “Higher order invariants in extended supergravity,”Nucl. Phys. B 181, 487 (1981).Google Scholar
[234] R. E., Kallosh, “Counterterms in extended supergravities,”Phys. Lett. B 99, 122 (1981).Google Scholar
[235] G., Bossard, P. S., Howe, K. S., Stelle, and P., Vanhove, “The vanishing volume of D = 4 superspace,”Class. Quant. Grav. 28, 215005 (2011) [arXiv:1105.6087 [hep-th]].Google Scholar
[236] N., Berkovits, “Super Poincare covariant quantization of the superstring,”JHEP 0004, 018 (2000) [hep-th/0001035].Google Scholar
[237] M. B., Green, H., Ooguri, and J. H., Schwarz, “Nondecoupling of maximal supergravity from the superstring,”Phys. Rev. Lett. 99, 041601 (2007) [arXiv:0704.0777 [hep-th]].Google Scholar
[238] T., Banks, “Arguments against a finite N = 8 supergravity,” [arXiv:1205.5768 [hep-th]].
[239] M., Bianchi, S., Ferrara, and R., Kallosh, “Perturbative and non-perturbative N = 8 supergravity,”Phys. Lett. B 690, 328 (2010) [arXiv:0910.3674 [hep-th]].Google Scholar
[240] Z., Bern, S., Davies, T., Dennen, Y.-t., Huang, and J., Nohle, “Color-kinematics duality for pure Yang–Mills and gravity at one and two loops,” [arXiv:1303.6605 [hep-th]].
[241] Z., Bern, S., Davies, T., Dennen, A. V., Smirnov, and V. A., Smirnov, “The ultraviolet properties of N = 4 supergravity at four loops,”Phys. Rev. Lett. 111, 231302 (2013) [arXiv:1309.2498 [hep-th]].Google Scholar
[242] Z., Bern, L. J., Dixon, D. C., Dunbar, M., Perelstein, and J. S., Rozowsky, “On the relationship between Yang–Mills theory and gravity and its implication for ultraviolet divergences,”Nucl. Phys. B 530, 401 (1998) [hep-th/9802162].Google Scholar
[243] D. C., Dunbar, B., Julia, D., Seminara, and M., Trigiante, “Counterterms in type I supergravities,”JHEP 0001, 046 (2000) [hep-th/9911158].Google Scholar
[244] Z., Bern, S., Davies, T., Dennen, and Y.-t., Huang, “Ultraviolet cancellations in half-maximal supergravity as a consequence of the double-copy structure,”Phys. Rev. D 86, 105014 (2012) [arXiv:1209.2472 [hep-th]].Google Scholar
[245] Z., Bern, S., Davies, T., Dennen, and Y.-t., Huang, “Absence of three-loop four-point divergences in N = 4 supergravity,”Phys. Rev. Lett. 108, 201301 (2012) [arXiv:1202.3423 [hep-th]];Google Scholar
[246] M., Fischler, “Finiteness calculations for O(4) through O(8) extended supergravity and O(4) supergravity coupled to selfdual O(4) matter,”Phys. Rev. D 20, 396 (1979).Google Scholar
[247] Z., Bern, S., Davies, and T., Dennen, “The ultraviolet structure of half-maximal supergravity with matter multiplets at two and three loops,” [arXiv:1305.4876 [hep-th]].
[248] G., Bossard, P. S., Howe, and K. S., Stelle, “Invariants and divergences in half-maximal supergravity theories,” [arXiv:1304.7753 [hep-th]].
[249] D., Vaman and Y.-P., Yao, “Constraints and generalized gauge transformations on tree-level gluon and graviton amplitudes,”JHEP 1011, 028 (2010) [arXiv:1007.3475 [hep-th]].Google Scholar
[250] R. H., Boels and R. S., Isermann, “On powercounting in perturbative quanturn gravity theories through color-kinematic duality,”JHEP 1306, 017 (2013) [arXiv:1212.3473].Google Scholar
[251] Z., Bern, T., Dennen, Y.-t., Huang, and M., Kiermaier, “Gravity as the square of gauge theory,”Phys.Rev. D 82, 065003 (2010) [arXiv:1004.0693 [hep-th]].Google Scholar
[252] M., Kiermaier, Talk at Amplitudes 2010, May 2010 at QMUL, London, UK. http://www.strings.ph.qmul.ac.uk/~theory/Amplitudes2010/Google Scholar
[253] N. E. J., Bjerrum-Bohr, P. H., Damgaard, T., Sondergaard, and P., Vanhove, “The momentum kernel of gauge and gravity theories,”JHEP 1101, 001 (2011) [arXiv:1010.3933 [hep-th]].Google Scholar
[254] C. R., Mafra, O., Schlotterer, and S., Stieberger, “Explicit BCJ numerators from pure spinors,”JHEP 1107, 092 (2011) [arXiv:1104.5224 [hep-th]];Google Scholar
C.-H., Fu, Y.-J., Du, and B., Feng, “An algebraic approach to BCJ numerators,”JHEP 1303, 050 (2013) [arXiv:1212.6168 [hep-th]].Google Scholar
[255] N. E. J., Bjerrum-Bohr, P. H., Damgaard, and P., Vanhove, “Minimal basis for gauge theory amplitudes,”Phys. Rev. Lett. 103, 161602 (2009) [0907.1425 [hep-th]];Google Scholar
S., Stieberger, “Open & closed vs. pure open string disk amplitudes,” [arXiv: 0907.2211 [hep-th]];
C. R., Mafra and O., Schlotterer, “The structure of n-point one-loop open superstring amplitudes,” [arXiv:1203.6215 [hep-th]];
O., Schlotterer and S., Stieberger, “Motivic multiple zeta values and superstring amplitudes,” [arXiv:1205.1516 [hep-th]];
J., Broedel, O., Schlotterer, and S., Stieberger, “Polylogarithms, multiple zeta values and superstring amplitudes,” [arXiv:1304.7267 [hep-th]].
[256] S. H., Henry Tye and Y., Zhang, “Dual identities inside the gluon and the graviton scattering amplitudes,”JHEP 1006, 071 (2010) [Erratum-ibid>. 1104, 114 (2011)] [arXiv:1003.1732 [hep-th]].Google Scholar
[257] B., Feng, R., Huang, and Y., Jia, “Gauge amplitude identities by on-shell recursion relation in s-matrix program,”Phys. Lett. B 695, 350 (2011) [arXiv:1004.3417 [hep-th]].Google Scholar
[258] F., Cachazo, “Fundamental BCJ relation in N = 4 SYM from the connected formulation,” [arXiv:1206.5970 [hep-th]].
[259] N. E. J., Bjerrum-Bohr, P. H., Damgaard, R., Monteiro, and D., O'Connell, “Algebras for amplitudes,”JHEP 1206, 061 (2012) [arXiv:1203.0944 [hep-th]].Google Scholar
[260] R., Monteiro and D., O'Connell, “The kinematic algebra from the self-dual sector,”JHEP 1107, 007 (2011) [arXiv:1105.2565 [hep-th]].Google Scholar
[261] M., Tolotti and S., Weinzierl, “Construction of an effective Yang-Mills Lagrangian with manifest BCJ duality,” [arXiv:1306.2975 [hep-th]].
[262] Z., Bern, J. J. M., Carrasco, and H., Johansson, “Perturbative quantum gravity as a double copy of gauge theory,”Phys. Rev. Lett. 105, 061602 (2010) [arXiv:1004.0476 [hep-th]].Google Scholar
[263] J. J., Carrasco and H., Johansson, “Five-point amplitudes in N = 4 super-Yang-Mills theory and N = 8 supergravity,”Phys. Rev. D 85, 025006 (2012) [arXiv:1106.4711 [hep-th]].Google Scholar
[264] N. E. J., Bjerrum-Bohr, T., Dennen, R., Monteiro, and D., O'Connell, “Integrand oxidation and one-loop colour-dual numerators inN = 4 gauge theory,” [arXiv:1303.2913 [hep-th]].
[265] R. H., Boels, R. S., Isermann, R., Monteiro, and D., O'Connell, “Colour-kinematics duality for one-loop rational amplitudes,”JHEP 1304, 107 (2013) [arXiv:1301.4165 [hep-th]].Google Scholar
[266] J. J. M., Carrasco, M., Chiodaroli, M., Günaydin, and R., Roiban, “One-loop four-point amplitudes in pure and matter-coupled N ≤ 4 supergravity,”JHEP 1303, 056 (2013) [arXiv:1212.1146 [hep-th]].Google Scholar
[267] M., Chiodaroli, Q., Jin, and R., Roiban, “Color/kinematics duality for general abelian orbifolds of N = 4 super Yang-Mills theory,”JHEP 1401, 152 (2014) [arXiv:1311.3600 [hep-th]].Google Scholar
[268] J., Nohle, “Color-kinematics duality in one-loop four-gluon amplitudes with matter,” [arXiv:1309.7416 [hep-th]].
[269] Z., Bern, C., Boucher-Veronneau, and H., Johansson, “N ≥ 4 supergravity amplitudes from gauge theory at one loop,”Phys. Rev. D 84, 105035 (2011) [arXiv:1107.1935 [hep-th]];Google Scholar
C., Boucher-Veronneau and L. J., Dixon, “N ≥ 4 supergravity amplitudes from gauge theory at two loops,”JHEP 1112, 046 (2011) [arXiv:1110.1132 [hep-th]].Google Scholar
[270] M. T., Grisaru and W., Siegel, “Supergraphity. 2. Manifestly covariant rules and higher loop muteness,”Nucl. Phys. B 201, 292 (1982) [Erratum-ibid. B 206, 496 (1982)].Google Scholar
[271] S., Ferrara, R., Kallosh, and A., Van Proeyen, “Conjecture on hidden superconformal symmetry of N = 4 supergravity,”Phys. Rev. D 87, 025004 (2013) [arXiv:1209.0418 [hep-th]].Google Scholar
[272] J., Broedel and L. J., Dixon, “Color-kinematics duality and double-copy construction for amplitudes from higher-dimension operators,”JHEP 1210, 091 (2012) [arXiv:1208.0876 [hep-th]].Google Scholar
[273] R. H., Boels, B. A., Kniehl, O. V., Tarasov, and G., Yang, “Color-kinematic duality for form factors,”JHEP 1302, 063 (2013) [arXiv:1211.7028 [hep-th]];Google Scholar
[274] T., Bargheer, S., He, and T., McLoughlin, “New relations for three-dimensional supersymmetric scattering amplitudes,”Phys. Rev. Lett. 108, 231601 (2012) [arXiv:1203.0562 [hep-th]].Google Scholar
[275] Y.-t., Huang and H., Johansson, “Equivalent D = 3 supergravity amplitudes from double copies of three-algebra and two-algebra gauge theories,” [arXiv:1210.2255 [hep-th]].
[276] A., Zee, “Quantum field theory in a nutshell,”Princeton, USA: Princeton University Press (2010).
[277] M. D., Schwartz, Quantum Field Theory and the Standard Model, Cambridge, UK: Cambridge University Press (2013).Google Scholar
[278] J. M., Henn and J. C., Plefka, “Scattering amplitudes in gauge theories,”Lecture Notes in Physics 883Heidelbera: Springer (2014).Google Scholar
[279] M., Wolf, “A first course on twistors, integrability and gluon scattering amplitudes,”J. Phys. A 43, 393001 (2010) [arXiv:1001.3871 [hep-th]].Google Scholar
[280] Z., Bern, L. J., Dixon, and D. A., Kosower, “On-shell methods in perturbative QCD,”Annals Phys. 322, 1587 (2007) [arXiv:0704.2798 [hep-ph]].Google Scholar
[281] M. E., Peskin, “Simplifying multi-jet QCD computation,” [arXiv:1101.2414 [hep-ph]].
[282] J. F., Donoghue, “Introduction to the effective field theory description of gravity,” gr-qc/9512024.
[283] L. J., Dixon, “Ultraviolet behavior of N = 8 supergravity,” [arXiv:1005.2703 [hep-th]].
[284] Z., Bern, P., Gondolo, and M., Perelstein, “Neutralino annihilation into two photons,”Phys. Lett. B 411, 86 (1997) [hep-ph/9706538];Google Scholar
Z., Bern, A., De Freitas, and L. J., Dixon, “Two loop helicity amplitudes for gluon–gluon scattering in QCD and supersymmetric Yang–Mills theory,”JHEP 0203, 018 (2002) [hep-ph/0201161];Google Scholar
Z., Bern, A., De Freitas, and L. J., Dixon, “Two loop helicity amplitudes for quark gluon scattering in QCD and gluino gluon scattering in supersymmetric Yang–Mills theory,”JHEP 0306, 028 (2003) [hep-ph/0304168].Google Scholar
[285] S. J., Bidder, N. E. J., Bjerrum-Bohr, D. C., Dunbar, and W. B., Perkins, “One-loop gluon scattering amplitudes in theories with N < 4 supersymmetries,”Phys. Lett. B 612, 75 (2005) [hep-th/0502028].Google Scholar
[286] R., Britto, E., Buchbinder, F., Cachazo, and B., Feng, “One-loop amplitudes of gluons in SQCD,”Phys. Rev. D 72, 065012 (2005) [hep-ph/0503132].Google Scholar
[287] S., Lal and S., Raju, “Rational terms in theories with matter,”JHEP 1008, 022 (2010) [arXiv:1003.5264 [hep-th]].Google Scholar
[288] S., Dittmaier, “Weyl-van der Waerden formalism for helicity amplitudes of massive particles,”Phys. Rev. D 59, 016007 (1998) [hep-ph/9805445].Google Scholar
[289] R., Boels and C., Schwinn, “CSW rules for massive matter legs and glue loops,”Nucl. Phys. Proc. Suppl. 183, 137 (2008) [arXiv:0805.4577 [hep-th]].Google Scholar
[290] R. H., Boels, “No triangles on the moduli space of maximally supersymmetric gauge theory,”JHEP 1005, 046 (2010) [arXiv:1003.2989 [hep-th]].Google Scholar
[291] P., Ferrario, G., Rodrigo, and P., Talavera, “Compact multigluonic scattering amplitudes with heavy scalars and fermions,”Phys. Rev. Lett. 96, 182001 (2006) [hep-th/0602043].Google Scholar
[292] D., Forde and D. A., Kosower, “All-multiplicity amplitudes with massive scalars,”Phys. Rev. D 73, 065007 (2006) [hep-th/0507292].Google Scholar
[293] G., Rodrigo, “Multigluonic scattering amplitudes of heavy quarks,”JHEP 0509, 079 (2005) [hep-ph/0508138].Google Scholar
[294] C., Cheung, D., O'Connell, and B., Wecht, “BCFW recursion relations and string theory,”JHEP 1009, 052 (2010) [arXiv:1002.4674 [hep-th]].Google Scholar
[295] R. H., Boels, D., Marmiroli, and N. A., Obers, “On-shell recursion in string theory,”JHEP 1010, 034 (2010) [arXiv:1002.5029 [hep-th]].Google Scholar
[296] K., Kampf, J., Novotny, and J., Trnka, “Recursion relations for tree-level amplitudes in the SU(N) non-linear sigma model,”Phys. Rev. D 87, 081701 (2013) [arXiv:1212.5224 [hep-th]].Google Scholar
[297] Z., Bern, L. J., Dixon, and D. A., Kosower, “The last of the finite loop amplitudes in QCD,”Phys.Rev. D 72, 125003 (2005) [hep-ph/0505055].Google Scholar
[298] B., Feng and M., Luo, “An introduction to on-shell recursion relations,” [arXiv:1111.5759 [hep-th]].
[299] J. M., Drummond, G. P., Korchemsky, and E., Sokatchev, “Conformal properties of four-gluon planar amplitudes and Wilson loops,”Nucl. Phys. B 795, 385 (2008) [arXiv:0707.0243 [hep-th]].Google Scholar
[300] N., Berkovits and J., Maldacena, “Fermionic T-duality, dual superconformal symmetry, and the amplitude/Wilson loop connection,”JHEP 0809, 062 (2008) [arXiv:0807.3196 [hep-th]].Google Scholar
[301] N., Beisert, R., Ricci, A. A., Tseytlin, and M., Wolf, “Dual superconformal symmetry from AdS(5) x S**5 superstring integrability,”Phys. Rev. D 78, 126004 (2008) [arXiv:0807.3228 [hep-th]].Google Scholar
[302] A., Brandhuber, P., Heslop, and G., Travaglini, “MHV amplitudes in N = 4 super Yang-Mills and Wilson loops,”Nucl. Phys. B 794, 231 (2008) [arXiv:0707.1153 [hep-th]].Google Scholar
[303] L. J., Mason and D., Skinner, “The complete planar S-matrix of N = 4 SYM as a Wilson loop in twistor space,”JHEP 1012, 018 (2010) [arXiv:1009.2225 [hep-th]].Google Scholar
[304] S., Caron-Huot, “Notes on the scattering amplitude / Wilson loop duality,”JHEP 1107, 058 (2011) [arXiv:1010.1167 [hep-th]].Google Scholar
[305] B., Eden, P., Heslop, G. P., Korchemsky, and E., Sokatchev, “The super-correlator/superamplitude duality: Part I,”Nucl. Phys. B 869, 329 (2013) [arXiv:1103.3714 [hep-th]]; Part II, Nucl. Phys. B 869, 378 (2013) [arXiv:1103.4353 [hep-th]].Google Scholar
[306] L. F., Alday, B., Eden, G. P., Korchemsky, J., Maldacena, and E., Sokatchev, “From correlation functions to Wilson loops,”JHEP 1109, 123 (2011) [arXiv:1007.3243 [hep-th]].Google Scholar
[307] T., Adamo, M., Bullimore, L., Mason, and D., Skinner, “A proof of the supersym-metric correlation function / Wilson loop correspondence,”JHEP 1108, 076 (2011) [arXiv:1103.4119 [hep-th]].Google Scholar
[308] L. F., Alday and R., Roiban, “Scattering amplitudes, Wilson loops and the string/gauge theory correspondence,”Phys. Rept. 468, 153 (2008) [arXiv:0807.1889 [hep-th]].Google Scholar
[309] R. M., Schabinger, “One-loop N = 4 super Yang-Mills scattering amplitudes in d dimensions, relation to open strings and polygonal Wilson loops,”J. Phys. A 44, 454007 (2011) [arXiv:1104.3873 [hep-th]].Google Scholar
[310] J. M., Henn, “Duality between Wilson loops and gluon amplitudes,”Fortsch. Phys. 57, 729 (2009) [arXiv:0903.0522 [hep-th]].Google Scholar
[311] T., Adamo, M., Bullimore, L., Mason, and D., Skinner, “Scattering amplitudes and Wilson loops in twistor space,”J. Phys. A 44, 454008 (2011) [arXiv:1104.2890 [hep-th]].Google Scholar
[312] L. F., Alday, D., Gaiotto, J., Maldacena, A., Sever, and P., Vieira, “An operator product expansion for polygonal null Wilson loops,”JHEP 1104, 088 (2011) [arXiv:1006.2788 [hep-th]].Google Scholar
[313] B., Basso, A., Sever, and P., Vieira, “Space-time S-matrix and flux-tube S-matrix at finite coupling,”Phys. Rev. Lett. 111, 091602 (2013) [arXiv:1303.1396 [hep-th]].Google Scholar
[314] B., Basso, A., Sever, and P., Vieira, “Space-time S-matrix and flux tube S-matrix II. Extracting and matching data,”JHEP 1401, 008 (2014) [arXiv:1306.2058 [hep-th]].Google Scholar
[315] B., Basso, A., Sever, and P., Vieira, “Space-time S-matrix and flux-tube S-matrix III. The two-particle contributions,” [arXiv:1402.3307 [hep-th]].
[316] L. J., Dixon, J. M., Drummond, M., von Hippel, and J., Pennington, “Hexagon functions and the three-loop remainder function,”JHEP 1312, 049 (2013) [arXiv:1308.2276 [hep-th]].Google Scholar
[317] L. J., Dixon, J. M., Drummond, C., Duhr, and J., Pennington, “The four-loop remainder function and multi-Regge behavior at NNLLA in planar N = 4 super-Yang-Mills theory,” [arXiv:1402.3300 [hep-th]].
[318] R., Penrose and W., Rindler, Spinors and Space-Time, vol. 2, Cambridge: Cambridge University Press (1986).Google Scholar
[319] R., Ward and R., Wells, Twistor Geometry and Field Theory, Cambridge: Cambridge University Press (1990).Google Scholar
[320] S., Huggett and P., Tod, An Introduction to Twistor Theory, Student Texts 4, London: London Mathematical Society (1985).Google Scholar
[321] F., Cachazo and P., Svrcek, “Lectures on twistor strings and perturbative Yang–Mills theory,”PoS RTN 2005, 004 (2005) [hep-th/0504194].Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Henriette Elvang, University of Michigan, Ann Arbor, Yu-tin Huang, National Taiwan University
  • Book: Scattering Amplitudes in Gauge Theory and Gravity
  • Online publication: 05 January 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107706620.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Henriette Elvang, University of Michigan, Ann Arbor, Yu-tin Huang, National Taiwan University
  • Book: Scattering Amplitudes in Gauge Theory and Gravity
  • Online publication: 05 January 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107706620.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Henriette Elvang, University of Michigan, Ann Arbor, Yu-tin Huang, National Taiwan University
  • Book: Scattering Amplitudes in Gauge Theory and Gravity
  • Online publication: 05 January 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107706620.017
Available formats
×