Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-15T19:40:12.081Z Has data issue: false hasContentIssue false

4 - Salt Marsh Hydrodynamics

from Part I - Marsh Function

Published online by Cambridge University Press:  19 June 2021

Duncan M. FitzGerald
Affiliation:
Boston University
Zoe J. Hughes
Affiliation:
Boston University
Get access

Summary

Salt marshes occupy the intertidal zone and support rich ecosystems of salt-tolerant plants and other biota (Costanza et al. 1997; Mitsch and Gosselink, 2000). These ecosystems contain channel networks that dissect marsh platforms, just as terrestrial river networks dissect hillslopes. In contrast to upland landscapes, marsh platforms are very low relief, are inundated by tides, and the channels that dissect them experience bidirectional flows (D’Alpaos et al. 2005; Hughes, 2012; Coco et al. 2013). These conditions are also present in intertidal mudflats, yet marsh platforms sit at different elevations (Fagherazzi et al. 2006), have different characteristics of their channel networks (Rinaldo et al. 1999a, 1999b; Kleinhans et al. 2009), and different hydrodynamics (Fagherazzi et al. 2012). The fundamental difference is the presence of marsh vegetation which has a profound effect on flow within marsh canopies (Nepf, 2012).

Type
Chapter
Information
Salt Marshes
Function, Dynamics, and Stresses
, pp. 53 - 81
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, M. F., Dong, P., Mamat, M., Nik, W. B. W., and Mohd, M. H. 2011. The critical shear stresses for sand and mud mixture. Applied Mathematical Sciences, 5: 5371.Google Scholar
Allen, J. R. L. 2000. Morphodynamics of Holocene salt marshes: A review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews, 19: 11551231.CrossRefGoogle Scholar
Amos, C. L., Bergamasco, A., Umgiesser, G., Cappucci, S., Cloutier, D., Denat, L., Flind, M., Bonardi, M., and Cristante, S. 2004. The stability of tidal flats in Venice Lagoon–the results of in-situ measurements using two benthic, annular flumes. Journal of Marine Systems, 51: 211241.CrossRefGoogle Scholar
Amos, C. L., Umgiesser, G., Ferrarin, C., Thompson, C. E. L. C. , Whitehouse, R. J. S., Sutherland, T. F., and Bergamasco, A. 2010. The erosion rates of cohesive sediments in Venice lagoon, Italy. Continental Shelf Research, 30: 859870.CrossRefGoogle Scholar
Balke, T., Bouma, T. J., Horstman, E. M., Webb, E. L., Erftemeijer, P. L. A., and Herman, P. M. J. 2011. Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats. Marine Ecology Progress Series, 440: 19.CrossRefGoogle Scholar
Balke, T., Klaassen, P. C., Garbutt, A., Van der Wal, D., Herman, P. M. J., and Bouma, T. J. 2012. Conditional outcome of ecosystem engineering: A case study on tussocks of the salt marsh pioneer Spartina anglica. Geomorphology, 153154: 232238.Google Scholar
Baptist, M. J., Babovic, V., Rodríguez-Uthurburu, J., Keijzer, M., Uittenbogaard, R. E., Mynett, A., and, Verwey, A. 2007. On inducing equations for vegetation resistance. Journal of Hydraulic Research, 45: 435450.CrossRefGoogle Scholar
Bayliss-Smith, T. P., Healey, R., Lailey, R., Spencer, T., and, Stoddart, D. R. 1979. Tidal flows in salt marsh creeks. Estuarine and Coastal Marine Science, 9: 235255.Google Scholar
Beeftink, W. G., and Rozema, J. 1993. The nature and functioning of salt marshes. In: Pollution of the North Sea, Salomons, W, Bayne, B. L., Duursma, E. K., and Forstner, U. (eds). Springer, Berlin, Heidelberg, pp. 5987.Google Scholar
Belliard, J.-P., Toffolon, M., Carniello, L., and D’Alpaos, A. 2015. An ecogeomorphic model of tidal channel initiation and elaboration in progressive marsh accretional contexts. Journal of Geophysical Research: Earth Surface, 120: 10401064.Google Scholar
Bendoni, M., Francalanci, S., Cappietti, L., and Solari, L. 2014. On salt marshes retreat: Experiments and modeling toppling failures induced by wind waves. Journal of Geophysical Research: Earth Surface, 119: 603620.CrossRefGoogle Scholar
Bendoni, M., Mel, R., Lanzoni, S., Francalanci, S., and Oumeraci, H. 2016. Insights into lateral marsh retreat mechanism through localized field measurements. Water Resources Research, 52: 14461464.CrossRefGoogle Scholar
Boon, J. D. I. 1975. Tidal discharge asymmetry in a salt marsh drainage system. Limnology and Oceanography, 20: 7180.Google Scholar
Bouma, T. J., Friedrichs, M., Van Wesenbeeck, B. K., Temmerman, S., Graf, G., and Herman, P. M. J. 2009. Density-dependent linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica. Oikos, 118: 260268.Google Scholar
Brivio, L., Ghinassi, M., D’Alpaos, A., Finotello, A., Fontana, A., Roner, M., and Howes, N. 2016. Aggradation and lateral migration shaping geometry of a tidal point bar: An example from salt marshes of the Northern Venice Lagoon (Italy). Sedimentary Geology, 343: 141155.Google Scholar
Callaghan, D. P., Bouma, T. J., Klaassen, P., van der Wal, D., Stive, M. J. F., and Herman, P. M. J. 2010. Hydrodynamic forcing on salt-marsh development: Distinguishing the relative importance of waves and tidal flows. Estuarine, Coastal and Shelf Science, 89: 7388.Google Scholar
Callaway, J. C., and Josselyn, M. N. 1992. The introduction and spread of smooth cordgrass Spartina alterniflora in South San Francisco Bay. Estuaries, 15: 218226.Google Scholar
Carniello, L., D’Alpaos, A., and Defina, A. 2011. Modeling wind waves and tidal flows in shallow micro-tidal basins. Estuarine, Coastal and Shelf Science, 92: 263276.Google Scholar
Carniello, L., Defina, A., and D’Alpaos, L. 2012. Modeling sand-mud transport induced by tidal currents and wind waves in shallow microtidal basins: Application to the Venice Lagoon (Italy). Estuarine, Coastal and Shelf Science, 102103: 105115.CrossRefGoogle Scholar
Chen, Y., Li, Y., Cai, T., Thompson, C., and Li, Y. 2016. A comparison of biohydrodynamic interaction within mangrove and saltmarsh boundaries. Earth Surface Processes and Landforms, 41: 19671979.CrossRefGoogle Scholar
Chen, Z., Ortiz, A., Zong, L., and Nepf, H. 2012. The wake structure behind a porous obstruction and its implications for deposition near a finite patch of emergent vegetation. Water Resources Research, 48: 112.Google Scholar
Coco, G., Zhou, Z., van Maanen, B., Olabarrieta, M., Tinoco, R., and Townend, I. H. 2013. Morphodynamics of tidal networks: Advances and challenges. Marine Geology, 346: 116.Google Scholar
Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., et al. 1997. The value of the world’s ecosystem services and natural capital. Nature, 387: 253260.CrossRefGoogle Scholar
D’Alpaos, A., Ghinassi, M., Finotello, A., Brivio, L., Bellucci, L. G. L. G., and Marani, M. 2017. Tidal meander migration and dynamics: A case study from the Venice Lagoon. Marine and Petroleum Geology, 87: 8090.Google Scholar
D’Alpaos, A., Lanzoni, S., Marani, M., Bonometto, A., Cecconi, G., and Rinaldo, A. 2007a. Spontaneous tidal network formation within a constructed salt marsh: Observations and morphodynamic modelling. Geomorphology, 91: 186197. DOI: 10.1016/j.geomorph.2007.04.013CrossRefGoogle Scholar
D’Alpaos, A., Lanzoni, S., Marani, M., Fagherazzi, S., and Rinaldo, A. 2005. Tidal network ontogeny: Channel initiation and early development. Journal of Geophysical Research: Earth Surface, 110: 114.Google Scholar
D’Alpaos, A., Lanzoni, S., Marani, M., and Rinaldo, A. 2007b. Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics. Journal of Geophysical Research: Earth Surface, 112: 117.Google Scholar
D’Alpaos, A., Lanzoni, S., Marani, M., and Rinaldo, A. 2009. On the O’Brien–Jarrett–Marchi law. Rendiconti Lincei, 20: 225236.Google Scholar
D’Alpaos, A., Lanzoni, S., Marani, M., and Rinaldo, A. 2010. On the tidal prism-channel area relations. Journal of Geophysical Research: Earth Surface, 115: 113.Google Scholar
D’Alpaos, A., Lanzoni, S., Mudd, S. M., and Fagherazzi, S. 2006. Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuarine, Coastal and Shelf Science, 69: 311324.CrossRefGoogle Scholar
D’Alpaos, A., and Marani, M. 2016. Reading the signatures of biologic-geomorphic feedbacks in salt-marsh landscapes. Advances in Water Resources, 93: 265275.CrossRefGoogle Scholar
Defina, A., Carniello, L., Fagherazzi, S., and D’Alpaos, L. 2007. Self-organization of shallow basins in tidal flats and salt marshes. Journal of Geophysical Research: Earth Surface, 112: 111.CrossRefGoogle Scholar
Di Silvio, G., Dall’Angelo, C., Bonaldo, D., Fasolato, G., Dall’Angelo, C., Bonaldo, D., and Fasolato, G. 2010. Long term model of planimetric and bathymetric evolution of a tidal lagoon. Continental Shelf Research, 30: 894903.Google Scholar
Dronkers, J. 2016. Dynamic of Coastal System. 2nd edn. World Scientific, Singapore.CrossRefGoogle Scholar
Dronkers, J. J. 1964. Tidal Computations in Rivers and Coastal Waters. North Holland, Amsterdam.Google Scholar
Fagherazzi, S., Bortoluzzi, A., Dietrich, W. E., Adami, A., Lanzoni, S., Marani, M., and Rinaldo, A. 1999. Tidal networks 1. Automatic network extraction and preliminary scaling features from digital terrain maps. Water Resources Research, 35: 38913904.Google Scholar
Fagherazzi, S., Carniello, L., D’Alpaos, L., and Defina, A. 2006. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proceedings of the National Academy of Sciences of the United States of America, 103: 83378341.Google Scholar
Fagherazzi, S., and Furbish, D. J. 2001. On the shape and widening of salt marsh creeks. Journal of Geophysical Research, 106: 991.Google Scholar
Fagherazzi, S., Gabet, E. J., and, Furbish, D. J. 2004. The effect of bidirectional flow on tidal channel planforms. Earth Surface Processes and Landforms, 29: 295309.CrossRefGoogle Scholar
Fagherazzi, S., Hannion, M., and D’Odorico, P. 2008. Geomorphic structure of tidal hydrodynamics in salt marsh creeks. Water Resources Research, 44: 112.Google Scholar
Fagherazzi, S., Kirwan, M. L., Mudd, S. M., Guntenspergen, G. R., Temmerman, S., D’Alpaos, A., van de Koppel, J. et al. 2012. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Reviews of Geophysics, 50: 128.Google Scholar
Fagherazzi, S., and Sun, T. 2004. A stochastic model for the formation of channel networks in tidal marshes. Geophysical Research Letters, 31: 14.Google Scholar
Fagherazzi, S., Wiberg, P. L., Temmerman, S., Struyf, E., Zhao, Y., and Raymond, P. A. 2013. Fluxes of water, sediments, and biogeochemical compounds in salt marshes. Ecological Processes, 2: 116.Google Scholar
Finotello, A., Lanzoni, S., Ghinassi, M., Marani, M., Rinaldo, A., and D’Alpaos, A., 2018. Field migration rates of tidal meanders recapitulate fluvial morphodynamics. Proceedings of the National Academy of Sciences of the United States of America, 115: 14631468.Google Scholar
Folkard, A. M. 2011. Flow regimes in gaps within stands of flexible vegetation: Laboratory flume simulations. Environmental Fluid Mechanics, 11: 289306.Google Scholar
Francalanci, S., Bendoni, M., Rinaldi, M., and Solari, L. 2013. Ecomorphodynamic evolution of salt marshes: Experimental observations of bank retreat processes. Geomorphology, 195: 5365.Google Scholar
French, J. R., and Stoddart, D. R. 1992. Hydrodynamics of salt marsh creek systems: Implications for marsh morphological development and material exchange. Earth Surface Processes and Landforms, 17: 235252.Google Scholar
Friedrichs, C. T. 1995. Stability shear stress and equilibrium cross-sectional of sheltered tidal channels. Journal of Coastal Research, 11: 10621074.Google Scholar
Friedrichs, C. T., and Perry, J. E. 2001. Tidal salt marsh morphodynamics: A synthesis. Journal of Coastal Research, SI: 737.Google Scholar
Gabet, E. J. 1998. Lateral migration and bank erosion in a saltmarsh tidal channel in San Francisco Bay, California. Estuaries 21: 745753.Google Scholar
Garofalo, D. 1980. The influence of wetland vegetation on tidal stream channel migration and morphology. Estuaries, 3: 258270.CrossRefGoogle Scholar
Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B., and Silliman, B. R. 2011. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic Change, 106: 729.Google Scholar
Ghinassi, M., D'alpaos, A., Gasparotto, A., Carniello, L., Brivio, L., Finotello, A., Roner, M. et al. 2018. Morphodynamic evolution and stratal architecture of translating tidal point bars: Inferences from the northern Venice Lagoon (Italy). Sedimentology, 65: 13541377.Google Scholar
Hartig, E. K., Gornitz, V., Kolker, A., Mushacke, F., and Fallon, D. 2002. Anthropogenic and climate-change impacts on salt marshes of Jamaica Bay, New York City. Wetlands, 22: 7189.Google Scholar
Horton, R. E. 1945. Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56: 151180.CrossRefGoogle Scholar
Hu, K., Chen, Q., and Wang, H. 2015a. A numerical study of vegetation impact on reducing storm surge by wetlands in a semi-enclosed estuary. Coastal Engineering, 95: 6676.Google Scholar
Hu, X., and Chen, C. T. 2005. Refraction of water waves by periodic cylinder arrays. Physical Review Letters, 95: 14.Google Scholar
Hu, Z., van Belzen, J., van der Wal, D., Balke, T., Wang, Z. B., Stive, M. and Bouma, T. J. 2015b. Windows of opportunity for salt marsh vegetation establishment on bare tidal flats: The importance of temporal and spatial variability in hydrodynamic forcing. Journal of Geophysical Research: Biogeosciences, 120: 14501469.Google Scholar
Hughes, Z. J. 2012. Tidal channels on tidal flats and marshes. In: Principles of Tidal Sedimentology, Davis, R. A. and Dalrymple, R. W. (eds). Springer, Dordrecht, pp. 269300.Google Scholar
Hughes, Z. J., FitzGerald, D. M., Wilson, C. A., Pennings, S. C., Wiçski, K., and Mahadevan, A. 2009. Rapid headward erosion of marsh creeks in response to relative sea level rise. Geophysical Research Letters, 36: 15.Google Scholar
Jarrett, J. T. 1976. Tidal prism-inlet area relationships. Joural of Waterways and Harbors, 95: 4352.Google Scholar
Julian, J. P., and Torres, R. 2006. Hydraulic erosion of cohesive riverbanks. Geomorphology, 76: 193206.Google Scholar
Kearney, W. S., and Fagherazzi, S. 2016. Salt marsh vegetation promotes efficient tidal channel networks. Nature Communications, 7: 17.Google Scholar
Kleinhans, M. G., Schuurman, F., Bakx, W., and Markies, H. 2009. Meandering channel dynamics in highly cohesive sediment on an intertidal mud flat in the Westerschelde estuary, the Netherlands. Geomorphology, 105: 261276.Google Scholar
Lanzoni, S., and Seminara, G. 1998. On tide propagation in convergent estuaries. Journal of Geophysical Research: Oceans, 103: 3079330812.Google Scholar
Lanzoni, S., and Seminara, G. 2002. Long-term evolution and morphodynamic equilibrium of tidal channels. Journal of Geophysical Research, 107: 113.Google Scholar
Leonard, L. A., and Croft, A. L. 2006. The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuarine, Coastal and Shelf Science, 69: 325336.Google Scholar
Leonard, L. A., and Luther, M. E. 1995. Flow hydrodynamics in tidal marsh canopies. Limnology and Oceanography, 40: 14741484.CrossRefGoogle Scholar
Leonardi, N., Defne, Z., Ganju, N. K., and Fagherazzi, S. 2016a. Salt marsh erosion rates and boundary features in a shallow Bay. Journal of Geophysical Research: Earth Surface, 121: 18611875.Google Scholar
Leonardi, N., and Fagherazzi, S. 2014. How waves shape salt marshes. Geology, 42: 887890.CrossRefGoogle Scholar
Leonardi, N., Ganju, N. K., and Fagherazzi, S. 2016b. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proceedings of the National Academy of Sciences, 113: 6468.Google Scholar
Leopold, L. B., Collins, J. N., and Collins, L. M. 1993. Hydrology of some tidal channels in estuarine marshland near San Francisco. Catena, 20: 469493.Google Scholar
Da Lio, C., D’Alpaos, A., and Marani, M. 2013. The secret gardener: vegetation and the emergence of biogeomorphic patterns in tidal environments. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 371: 20120367.Google Scholar
López, F., and García, M. H. 2001. Mean flow and turbulence structure of open-channel flow through non-emergent vegetation. Journal of Hydraulic Engineering, 127: 392402.Google Scholar
Marani, M., Belluco, E., D’Alpaos, A., Defina, A., Lanzoni, S., and Rinaldo, A. 2003. On the drainage density of tidal networks. Water Resources Research, 39: 111.Google Scholar
Marani, M., D’Alpaos, A., Lanzoni, S., Carniello, L., and Rinaldo, A. 2010. The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics. Journal of Geophysical Research: Earth Surface, 115: 115.Google Scholar
Marani, M., D’Alpaos, A., Lanzoni, S., and Santalucia, M. 2011. Understanding and predicting wave erosion of marsh edges. Geophysical Research Letters, 38: 15.Google Scholar
Marani, M., Lanzoni, S., Zandolin, D., Seminara, G., and Rinaldo, A. 2002. Tidal meanders. Water Resources Research, 38: 714.Google Scholar
Marchi, E. 1990. Sulla stabilità delle bocche lagunari a marea. Rendiconti Lincei, 1: 137150.Google Scholar
Mariotti, G. 2018. Marsh channel morphological response to sea level rise and sediment supply. Estuarine, Coastal and Shelf Science, 209: 89101.Google Scholar
Mitsch, W. J., and Gosselink, J. G. 2000. The value of wetlands: importance of scale and landscape setting. Ecological Economics, 35: 2533.Google Scholar
Möller, I., Spencer, T., French, J. R., Leggett, D. J., and Dixon, M. 1999. Wave transformation over saltmarshes: A field and numerical modelling study from North Norfolk, England. Estuarine, Coastal and Shelf Science, 49: 411426.Google Scholar
Morris, J. T., Sundberg, K., and Hopkinson, C. S. 2013. Salt marsh primary production and its responses to relative sea level and nutrients in estuaries at Plum Island, Massachusetts, and North Inlet, South Carolina, USA. Oceanography, 26: 7884.Google Scholar
Mudd, S. M., D’Alpaos, A., and Morris, J. T. 2010. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. Journal of Geophysical Research: Earth Surface, 115: 114.Google Scholar
Mudd, S. M., Fagherazzi, S., Morris, J. T., and Furbish, D. J. 2004. Flow, sedimentation, and biomass production on a vegetated salt marsh in South Carolina: Toward a predictive model of marsh morphologic and ecologic evolution. In: The Ecogeomorphology of Tidal Marshes, Coastal and Estuarine Studies n. 59, Fagherazzi, S., Marani, M., and Blum, L. K. (eds). American Geophysical Union, Washington, D.C., pp. 165188.Google Scholar
Myrick, R. M., and Leopold, L. B. 1963. Hydraulic geometry of a small tidal estuary. United States Geological Survey Professional Paper 422: 118.Google Scholar
Nepf, H. M. 1999. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resources Research, 35: 479489.Google Scholar
Nepf, H. M. 2012. Hydrodynamics of vegetated channels. Journal of Hydraulic Research, 50: 262279.Google Scholar
Neumeier, U., and Amos, C. L. 2006. The influence of vegetation on turbulence and flow velocities in European salt-marshes. Sedimentology, 53: 259277.Google Scholar
Nichols, M. M., Johnson, G. H., and Peebles, P. C. 1991. Modern sediments and facies model for a microtidal coastal plain estuary, the James Estuary, Virginia. Journal of Sedimentary Petrology, 61: 883899.Google Scholar
Nikora, N., and Nikora, V. 2007. A viscous drag concept for flow resistance in vegetated channels. Proceedings of the 32nd IAHR Congress, Venice.Google Scholar
O’Brien, M. P. 1969. Equilibrium flow areas of inlets on sandy coasts. Journal of Waterways and Harbors, 95: 4352.Google Scholar
Van Oyen, T., Carniello, L., D’Alpaos, A., Temmerman, S., Troch, P., and Lanzoni, S. 2014. An approximate solution to the flow field on vegetated intertidal platforms: Applicability and limitations. Journal of Geophysical Research F: Earth Surface, 119: 16821703.Google Scholar
Van Oyen, T., Lanzoni, S., D’Alpaos, A., Temmerman, S., Troch, P., and Carniello, L. 2012. A simplified model for frictionally dominated tidal flows. Geophysical Research Letters, 39: 16.Google Scholar
Pestrong, R. 1972. Tidal-flat sedimentation at cooley landing, Southwest San Francisco bay. Sedimentary Geology, 8: 251288.Google Scholar
Pethick, J. 1992. Saltmarsh geomorphology. In: Saltmarshes: Morphodynamics, Conservation and Engineering Significance, Allen, J. R. L., and Pye, K. (eds). Cambridge University Press, Cambridge, pp. 4162.Google Scholar
Pethick, J. S. 1969. Drainage in salt marshes. In: The Coastline of England and Wales. 3rd edn. Steers, J. R. (ed.). Cambridge University Press: Cambridge, pp. 752730.Google Scholar
Pethick, J. S. 1980. Velocity surges and asymmetry in tidal channels. Estuarine and Coastal Marine Science, 11: 331345.Google Scholar
Pye, K., and French, P. 1993. Erosion & Accretion Processes on British Salt Marshes. Cambridge Environmental Research Consultants.Google Scholar
Redfield, A. C. 1972. Development of a New England salt marsh. Ecological Monographs, 42: 201237.Google Scholar
Rietkerk, M., and van de Koppel, J. 2008. Regular pattern formation in real ecosystems. Trends in Ecology and Evolution, 23: 169175.Google Scholar
Rigon, R., Rinaldo, A., and Rodriguez-Iturbe, I. 1994. On landscape self-organization. Journal of Geophysical Research: Solid Earth, 99: 1197111993.Google Scholar
Rinaldo, A., Dietrich, W. E., Rigon, R., Vogel, G. K., and Rodriguez-Iturbe, I. 1995. Geomorphological signatures of varying climate. Nature, 374: 632635.Google Scholar
Rinaldo, A., Fagherazzi, S., Lanzoni, S., Marani, M., and Dietrich, W. E. 1999a. Tidal networks 2. Watershed delineation and comparative network morphology. Water Resources Research, 35: 39053917.Google Scholar
Rinaldo, A., Fagherazzi, S., Lanzoni, S., Marani, M., and Dietrich, W. E. 1999b. Tidal networks 3. Landscape-forming discharges and studies in empirical geomorphic relationships. Water Resources Research, 35: 39193929.Google Scholar
Rinaldo, A., Rodriguez-Iturbe, I., Rigon, R., Ijjasz-Vasquez, E., and Bras, R. L. 1993. Self-organized fractal river networks. Physical Review Letters, 70: 822825.Google Scholar
Rupprecht, F., Möller, I., Paul, M., Kudella, M., Spencer, T., van Wesenbeeck, B. K., Wolters, G., et al. 2017. Vegetation-wave interactions in salt marshes under storm surge conditions. Ecological Engineering, 100: 301315.Google Scholar
Salehi, M., and Strom, K. 2012. Measurement of critical shear stress for mud mixtures in the San Jacinto estuary under different wave and current combinations. Continental Shelf Research, 47: 7892.Google Scholar
Schwarz, C., Ye, Q., Wal, D., Zhang, L., Bouma, T., Ysebaert, T., and Herman, P. 2014. Impacts of salt marsh plants on tidal channels initiation and inheritance. Journal of Geophysical Research: Earth Surface, 119: 385400.Google Scholar
Shepard, C. C., Crain, C. M., and Beck, M. W. 2011. The protective role of coastal marshes: A systematic review and meta-analysis. PLOS ONE 6: e27374.Google Scholar
Shi, Z., Hamilton, L. J., and Wolanski, E. 2000. Near-bed currents and suspended sediment transport in saltmarsh canopies. Journal of Coastal Research, 16: 909914.Google Scholar
Silinski, A., Heuner, M., Schoelynck, J., Puijalon, S., Schröder, U., Fuchs, E., Troch, P., et al. 2015. Effects of wind waves versus ship waves on tidal marsh plants: A flume study on different life stages of Scirpus maritimus. PLOS ONE, 10: 116.Google Scholar
Soulsby, R. L. 1997. Dynamics of Marine Sands. Thomas Telford Publications, London.Google Scholar
Soulsby, R. L., and Clarke, S. 2005. Bed shear-stresses under combined waves and currents on smooth and rough beds. Hydraulics Research Report, 1905: TR 137.Google Scholar
Steel, T. J., and Pye, K. 1997. The development of salt marsh creek networks: Evidence from the UK. Canadian Coastal Conference, pp. 1–16.Google Scholar
Stefanon, L., Carniello, L., D’Alpaos, A., Lanzoni, S., D’Alpaos, A., and Lanzoni, S. 2010. Experimental analysis of tidal network growth and development. Continental Shelf Research 30: 950962.Google Scholar
Stefanon, L., Carniello, L., D’Alpaos, A., and Rinaldo, A. 2012. Signatures of sea level changes on tidal geomorphology: Experiments on network incision and retreat. Geophysical Research Letters, 39: 16.Google Scholar
Strahler, A. N. 1957. Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38: 913920.Google Scholar
Tambroni, N., Luchi, R., and Seminara, G. 2017. Can tide dominance be inferred from the point bar pattern of tidal meandering channels? Journal of Geophysical Research: Earth Surface, 122: 121.Google Scholar
Tanino, Y., and Nepf, H. M. 2008. Lateral dispersion in random cylinder arrays at high Reynolds number. Journal of Fluid Mechanics, 600: 339371.Google Scholar
Tanino, Y., and Nepf, H. M. 2009. Laboratory investigation of lateral dispersion within dense arrays of randomly distributed cylinders at transitional Reynolds number. Physics of Fluids, 21: 113.Google Scholar
Temmerman, S., Bouma, T. J., Govers, G., Wang, Z. B., De Vries, M. B., Herman, P. M. J., De Vries, M. B., and Herman, P. M. J. 2005. Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh. Journal of Geophysical Research: Earth Surface, 110: 118.Google Scholar
Temmerman, S., Bouma, T. J., Van de Koppel, J., Van der Wal, D., De Vries, M. B., and Herman, P. M. J. 2007. Vegetation causes channel erosion in a tidal landscape. Geology, 35: 631634.Google Scholar
Temmerman, S., Meire, P., Bouma, T. J., Herman, P. M. J., Ysebaert, T., and De Vriend, H. J. 2013. Ecosystem-based coastal defence in the face of global change. Nature, 504: 7983.Google Scholar
Temmerman, S., De Vries, M. B., and Bouma, T. J. 2012. Coastal marsh die-off and reduced attenuation of coastal floods: A model analysis. Global and Planetary Change, 9293: 267274.Google Scholar
Tonelli, M., Fagherazzi, S., and Petti, M. 2010. Modeling wave impact on salt marsh boundaries. Journal of Geophysical Research: Oceans, 115: 117.Google Scholar
Torres, R., and Styles, R. 2007. Effects of topographic structure on salt marsh currents. Journal of Geophysical Research: Earth Surface, 112: F02023.Google Scholar
Townend, I. H. 2010. An exploration of equilibrium in Venice Lagoon using an idealised form model. Continental Shelf Research, 30: 984999.Google Scholar
Tucker, G. E., Catani, F., Rinaldo, A., and Bras, R. L. 2001. Statistical analysis of drainage density from digital terrain data. Geomorphology, 36: 187202.Google Scholar
Valentine, K., Mariotti, G., and Fagherazzi, S. 2014. Repeated erosion of cohesive sediments with biofilms. Advances in Geosciences, 39: 914.Google Scholar
Vandenbruwaene, W., Bouma, T. J., Meire, P., and Temmerman, S. 2013. Bio-geomorphic effects on tidal channel evolution: Impact of vegetation establishment and tidal prism change. Earth Surface Processes and Landforms, 38: 122132.Google Scholar
Vandenbruwaene, W., Temmerman, S., Bouma, T. J., Klaassen, P. C., de Vries, M. B., Callaghan, D. P., van Steeg, P. et al. 2011. Flow interaction with dynamic vegetation patches: Implications for biogeomorphic evolution of a tidal landscape. Journal of Geophysical Research: Earth Surface, 116: 113.Google Scholar
Wamsley, T. V., Cialone, M. A., Smith, J. M., Atkinson, J. H., and Rosati, J. D. 2010. The potential of wetlands in reducing storm surge. Ocean Engineering, 37: 5968.Google Scholar
van der Wegen, M., Wang, Z. B., Savenije, H. H. G., and Roelvink, J. A. 2008. Long-term morphodynamic evoluation and energy dissipation in a coastal plain, tidal embayment. Journal of Geophysical Research: Earth Surface, 113: 122.Google Scholar
van Wesenbeeck, B. K., van De, K. oppel, J., Herman, P. M. J., and Bouma, T. J. 2008. Does scale-dependent feedback explain spatial complexity in salt-marsh ecosystems? Oikos, 117: 152159.Google Scholar
White, B. L., and Nepf, H. M. 2007. Shear instability and coherent structures in shallow flow adjacent to a porous layer. Journal of Fluid Mechanics, 593: 132.Google Scholar
White, B. L., and Nepf, H. M. 2008. A vortex-based model of velocity and shear stress in a partially vegetated shallow channel. Water Resources Research, 44: 115.Google Scholar
Yang, S. L. 1998. The role of scirpus marsh in attenuation of hydrodynamics and retention of fine sediment in the Yangtze estuary. Estuarine, Coastal and Shelf Science, 47: 227233.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×