Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: April 2013

References

Abdulla, F. A., and D. P. Lettenmaier (1997), Development of regional parameter estimation equations for a macroscale hydrologic model, Journal of Hydrology, 197(1–4), 230–257, doi:10.1016/S0022-1694(96)03262-3.
Abrahams, A. D. (1984), Channel networks: a geomorphological perspective, Water Resources Research, 20(2), 161–188, doi:10.1029/WR020i002p00161.
Ackoff, R. L. (1989), From data to wisdom, Journal of Applied Systems Analysis, 16, 3–9.
Acreman, M. (1990), A simple stochastic model of hourly rainfall for Farnborough, England/Un modèle stochastique simple des pluies horaires de Farnborough, Angleterre, Hydrological Sciences Journal, 35(2), 119–148.
Acreman, M. C., and C. D. Sinclair (1986), Classification of drainage basins according to their physical characteristics: an application for flood frequency analysis in Scotland, Journal of Hydrology, 84(3–4), 365–380, doi:10.1016/0022-1694(86)90134-4.
Acreman, M. C., and S. Wiltshire (1989), The regions are dead; long live the regions. Methods of identifying and dispensing with regions for flood frequency analysis, in L. Roald, K. Nordseth, and K. A. Hassel (Eds.), FRIENDS in Hydrology (Proceedings Bolkesje Symposium, April 1989), Wallingford: IAHS Publication 187, pp. 175–188.
Adams, E. A., S. A. Monroe, A. E. Springer, K. W. Blasch, and D. J. Bills (2006), Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona., Ground Water, 44(5), 630–641.
AGIS (2007), Agricultural Geo-Referenced Information System, accessed from www.agis.agric.za during March 2008.
Ahearn, E. A. (2008), Flow Durations, Low-Flow Frequencies, and Monthly Median Flows for Selected Streams in Connecticut through 2005, US Geological Survey Scientific Investigation Report 2007–5270.
Ahn, C.-H., and R. Tateishi (1994), Development of global 30-minute grid potential evapotranspiration data set, Journal of the Japanese Society of Photogrammetry and Remote Sensing, 33, 12–21.
Akan, O. A. (1993), Urban Stormwater Hydrology: A Guide to Engineering Calculations, CRC Press.
Alaouze, C. M. (1991), Transferable water entitlements which satisfy heterogeneous risk preferences, Australian Journal of Agricultural Economics, 35(2), 197–208.
Alila, Y., and A. Mtiraoui (2002), Implication of heterogeneous flood-frequency distributions on traditional stream-discharge prediction techniques, Hydrological Processes, 16, 1065–1084.
Allamano, P., P. Claps, and F. Laio (2009), An analytical model of the effects of catchment elevation on the flood frequency distribution, Water Resources Research, 45(1), 1–12, doi:10.1029/2007WR006658.
Allasia, D. G., B. C. Da Silvia, W. Collischinn, and C. E. M. Tucci (2006), Large basin simulation experience in South America, in Predictions in Ungauged Basins: Promise and Progress, Wallingford: IAHS Publication 303, pp. 360–370.
Allen, R. G., M. Tasumi, and R. Trezza (2007), Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC): Model, Journal of Irrigation and Drainage Engineering, 133(4), 380–394, doi:10.1061/(ASCE)0733-9437(2007)133:4(380).
Alley, W. M. (1984), On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models, Water Resources Research, 20(8), 1137–1149, doi:10.1029/WR020i008p01137.
Alley, W. M., and A. W. Burns (1983), Mixed-station extension of monthly streamflow records, Journal of Hydraulic Engineering, 109(10), 1272–1284, doi:10.1061/(ASCE)0733–9429(1983)109:10(1272).
Al-Rawas, G. A., and C. Valeo (2009), Characteristics of rainstorm temporal distributions in arid mountainous and coastal regions, Journal of Hydrology, 376(1–2), 318–326, doi:10.1016/j.jhydrol.2009.07.044.
Al-Rawas, G. A., and C. Valeo (2010), Relationship between wadi drainage characteristics and peak-flood flows in arid northern Oman, Hydrological Sciences Journal, 55(3), 377–393, doi:10.1080/02626661003718318.
Alsdorf, D. E., E. Rodriguez, and D. P. Lettenmaier (2007), Measuring surface water from space, Reviews of Geophysics, 45(2), 1–24, doi:10.1029/2006RG000197.1.INTRODUCTION.
Anderson, M. C., and W. P. Kustas (2008), Thermal remote sensing of drought and evapotranspiration, Eos, Trans. AGU, 89, 233–234
Anderson, R., V. Koren, and S. Reed (2006), Using SSURGO data to improve Sacramento Model a priori parameter estimates, Journal of Hydrology, 320(1–2), 103–116, doi:10.1016/j.jhydrol.2005.07.020.
Anderson, S. P., W. E. Dietrich, D. R. Montgomery, et al. (1997), Subsurface flow paths in a steep, unchanneled catchment, Water Resources Research, 33(12), 2637–2653, doi:10.1029/97WR02595.
Andreadis, K., and D. Lettenmaier (2006), Assimilating remotely sensed snow observations into a macroscale hydrology model, Advances in Water Resources, 29(6), 872–886, doi:10.1016/j.advwatres.2005.08.004.
Andreassian, V. (2004), Waters and forests: from historical controversy to scientific debate, Journal of Hydrology, 291(1–2), 1–27, doi:10.1016/j.jhydrol.2003.12.015.
Andrews, D. F. (1972), Plots of high-dimensional data, Biometrics, 28(1), 125–136, doi:10.2307/2528964.
Ao, T. Q., J. Yoshitani, K. Takeuchi, et al. (2003), Effects of block scale on runoff simulation in distributed hydrological model: BTOPMC, in Y. Tachikawa, B. E. Vieux, K. P. Georgakakos, and E. Nakakita (Eds.), Weather Radar Information and Distributed Hydrological Modelling, Wallingford: IAHS Publication 282, pp. 227–234.
Ao, T., H. Ishidaira, K. Takeuchi, et al. (2006), Relating BTOPMC model parameters to physical features of MOPEX basins, Journal of Hydrology, 320(1–2), 84–102, doi:10.1016/j.jhydrol.2005.07.006.
Apel, H., A. Thieken, B. Merz, and G. Blöschl, G. (2004), Flood risk assessment and associated uncertainty, Natural Hazards and Earth System Sciences, 4, 295–308.
Apel, H., A. H. Thieken, B. Merz, and G. Blöschl (2006), A probabilistic modelling system for assessing flood risks, Natural Hazards, 38, 79–100.
Arabie, P., L. J. Hubert, and G. De Soete (Eds.) (1996), Clustering and Classification. River Edge, NJ: World Scientific Publishing.
Archfield, S. A. (2009), Estimation of continuous daily streamflow at ungaged locations in southern New England, Ph.D. dissertation, Tufts University, Medford, MA.
Archfield, S. A., and R. M. Vogel (2010), Map correlation method: selection of a reference streamgage to estimate daily streamflow at ungaged catchments, Water Resources Research, 46(10), W10513, doi:10.1029/2009WR008481.
Archfield, S. A., R. M. Vogel, P. A. Steeves, et al. (2010), The Massachusetts Sustainable-Yield Estimator: A Decision-Support Tool to Assess Water Availability at Ungauged Stream Locations in Massachusetts, U.S. Geological Survey Scientific Investigations Report 2009–5227, with CD-ROM.
Archfield, S. A., R. Singh, T. Wagener, and R. M. Vogel (2012), Correlation as a measure of hydrologic similarity for the transfer of rainfall runoff model parameters. Unpublished manuscript, New England Water Science Center, U.S. Geological Survey, Northborough, MA, USA.
Arheimer, B. (2003), Handling scales when estimating Swedish nitrogen contribution from various sources to the Baltic Sea, Landschap, 20(2), 81–90.
Arheimer, B. (2006), Evaluation of water quantity and quality modelling in ungauged European basins, in M. Sivapalan, T. Wagener, S. Uhlenbrook, et al. (Eds.), Predictions in Ungauged Basins: Promises and Progress, Wallingford: IAHS Publication 303, pp. 103–107.
Arheimer, B., and M. Brandt (1998), Modelling nitrogen transport and retention in the catchments of southern Sweden, Ambio, 27(6), 471–480.
Arheimer, B., J. Dahné, G. Lindström, L. Marklund, and J. Strömqvist (2011), Multi-variable evaluation of an integrated model system covering Sweden (S-HYPE), in C. Abesser, G. Nützmann, M. C. Hill, G. Blöschl, and E. Lakshmanan (Eds.), Conceptual and Modelling Studies of Integrated Groundwater, Surface Water, and Ecological Systems (Proceedings Symposium H01, IUGG Congress, Melbourne, Australia, July 2011), Wallingford: IAHS Publication 345, pp. 145–150.
Arnell, N. W. (1995), Grid mapping of river discharge, Journal of Hydrology, 167(1–4), 39–56, doi:10.1016/0022–1694(94)02626-M.
Arnell, N. (1999), Climate change and global water resources, Global Environmental Change, 9(June), S31–S49, doi:10.1016/S0959–3780(99)00017–5.
Arnell, N. W., R. P. C. Brown, and N. S. Reynard (1990), Impact of Climatic Variability and Change on River Flow Regimes in the UK, Institute of Hydrology, Report 107, Wallingford.
Arnell, N. W., I. Krasovskaia, and L. Gottschalk (1993), River flow regimes in Europe, in Flow Regimes from International Experimental and Network Data (FRIEND), Volume 1, Wallingford: IAHS, pp. 112–121.
Arnold, J. G., P. M. Allen, R. Muttiah, and G. Bernhardt (1995), Automated base flow separation and recession analysis techniques, Ground Water, 33(6), 1010–1018, doi:10.1111/j.1745–6584.1995.tb00046.x.
AroraM., N. K. Goel, P. Singh, and R. D. Singh (2005), Regional flow duration curve for a Himalayan river Chenab, Nordic Hydrology, 36(2), 193–206.
ASCE (1996), Hydrology Handbook, American Society of Civil Engineering (ASCE) Task Committee on Hydrology Handbook, ASCE Publications.
Aschwanden, H. and C. Kan (1999), Die Abflussmenge Q347, Eine Standortbestimmung, Hydrologische Mitteilungen/Communications hydrologiques, Nr. 27, Bern: Le débit Landeshydrologie und geologie.
Aschwanden, H., and R. Weingartner (1985), Die Abflussregimes der Schweiz, Publikation Gewässerkunde Nr. 65, Bern.
Aschwanden, H., R. Weingartner, and Ch. Leibundgut (1986), Zur regionalen Übertragung von Mittelwerten des Abflusses, Teil II: Quantitative Abschätzung der mittleren Abflussverhältnisse. Deutsche Gewässerkundliche Mitteilungen, 30(4), 93–99.
Atkinson, S., R. A. Woods, and M. Sivapalan (2002), Climate and landscape controls on water balance model complexity over changing time scales. Water Resources Research, 38(12), 1314, doi:10.1029/2002WR001487.
Atlas of Switzerland (2010), 3rd edition, Zürich: Institute of Cartography ETH.
Australian Rainfall and Runoff (1987), A Guide to Flood Estimation, The Institution of Engineers, Australia.
Bailey, R. G. (1995), Ecosystem Geography, New York: Springer Verlag.
Baillie, M. N., J. F. Hogan, B. Ekwurzel, A. K. Wahi, and C. J. Eastoe (2007), Quantifying water sources to a semiarid riparian ecosystem, San Pedro River, Arizona, Journal of Geophysical Research, 112(G3), 1–13, doi:10.1029/2006JG000263.
Baker, V. R. (1986), Fluvial landforms in N. M. Short, Sr. and R. W. Blair, Jr. (Eds.), Geomorphology from Space, NASA.
Bakke, P. D., R. Thomas, and C. Parrett (1999), Estimation of long-term discharge statistics by regional adjustment, Journal of the American Water Resources Association, 35(4), 911–921.
Baldwin, C. K., D. G. Tarboton, and M. McKee (2002), Estimation of Long-Term Mean Monthly Runoff for Water Balance Calculations, Utah Water Research Laboratory, Utah State University, Technical Studies for the WRIA 1 Watershed Management Project, Final Draft 2 Report.
Band, L. E., P. Patterson, R. Nemani, and S. W. Running (1993), Forest ecosystem processes at the watershed scale: incorporating hillslope hydrology, Agricultural and Forest Meteorology, 63, 93–126.
Bandaragoda, C., D. Tarboton, and R. Woods (2004), Application of TOPNET in the distributed model intercomparison project, Journal of Hydrology, 298(1–4), 178–201, doi:10.1016/j.jhydrol.2004.03.038.
Bárdossy, A. (2007), Calibration of hydrological model parameters for ungauged catchments, Hydrology and Earth System Sciences, 11(2), 703–710, doi:10.5194/hess-11-703-2007.
Bari, M. A. and K. R. J. Smettem (2006), A conceptual model for daily water balance following partial clearing from forest to pasture, Hydrology and Earth System Sciences, 10, 321–337.
Barling, R. D., I. D. Moore, and R. B. Grayson (1994), A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content, Water Resources Research, 30(4), 1029–1044, doi:10.1029/93WR03346.
Barthold, F. K., T. Sayama, K. Schneider, et al. (2008), Gauging the ungauged basin: a top-down approach in a large semiarid watershed in China, Advances in Geosciences, 18(3), 3–8, doi:10.5194/adgeo-18-3-2008.
Bartolini, E., P. Allamano, F. Laio, and P. Claps (2011), Runoff regime estimation at high-elevation sites: a parsimonious water balance approach, Hydrology and Earth System Sciences, 15(5), 1661–1673, doi:10.5194/hess-15-1661-2011.
Bastiaanssen, W. G. M., and L. Chandrapala (2003), Water balance variability across Sri Lanka for assessing agricultural and environmental water use, Agricultural Water Management, 58(2), 171–192, doi:10.1016/S0378–3774(02)00128–2.
Bastiaanssen, W. G. M., M. Menenti, R. A. Feddes, and A. A. M. Holtslag (1998), A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation, Journal of Hydrology, 212–213(1–4), 198–212, doi:10.1016/S0022–1694(98)00253–4.
Bastola, S., H. Ishidaira, and K. Takeuchi (2008), Regionalisation of hydrological model parameters under parameter uncertainty: a case study involving TOPMODEL and basins across the globe, Journal of Hydrology, 357, 188–206.
Bates, B. C., A. Rahman, R. G. Mein, and P. E. Weinmann (1998), Climatic and physical factors that influence the homogeneity of regional floods in southeastern Australia, Water Resources Research, 34(12), 3369–3381, doi:10.1029/98WR02521.
Bauer, P. (2004), Flooding and salt transport in the Okavango Delta, Botswana: key issues for sustainable wetland management. Ph.D. thesis, ETH Zurich, Zurich.
Beable, M. E., and A. I. McKerchar (1982), Regional Flood Estimation in New Zealand, National Water and Soil Conservation Organisation, Water and Soil Division, Technical Report No. 20.
Becker, M., T. Georgian, H. Ambrose, J. Siniscalchi, and K. Fredrick (2004), Estimating flow and flux of ground water discharge using water temperature and velocity, Journal of Hydrology, 296(1–4), 221–233, doi:10.1016/j.jhydrol.2004.03.025.
Beckers, J., and Y. Alila (2004), A model of rapid preferential hillslope runoff contributions to peak flow generation in a temperate rain forest watershed, Water Resources Research, 40(3), 1–19, doi:10.1029/2003WR002582.
Beckinsale, R. (1969), River regimes, in R. J. Chorley, et al. (Eds.), Water, Earth, and Man: A Synthesis of Hydrology, Geomorphology, and Socio-economic Geography, London: Methuen & Co..
Bedient, P. B., and W. C. Huber (1988), Hydrology and Floodplain Analysis, New York: Addison-Wesley, pp. 360–364.
Beechie, T., E. Buhle, M. Ruckelshaus, A. Fullerton, and L. Holsinger (2006), Hydrologic regime and the conservation of salmon life history diversity, Biological Conservation, 130(4), 560–572, doi:10.1016/j.biocon.2006.01.
Bellinger, G., D. Castro and A. Mills (2004), Data, Information, Knowledge, and Wisdom. http://www.systems-thinking.org/dikw/dikw.htm.
Benito, G. (2003), Magnitude and frequency of flooding in the Tagus basin (central Spain) over the last millennium, Climatic Change, 58(1), 171–192.
BenitoG., M. Lang, M. Barriendos, et al. (2004), Use of systematic, paleoflood and historical data for the improvement of flood risk estimation: review of scientific methods. Natural Hazards, 31, 623–643.
Bergström, S. (1976), Development and Application of a Conceptual Runoff Model for Scandinavian Catchments, Norrköping: SMHI, Report No. RHO 7.
Bergström, S., G. Lindström, and A. Pettersson (2002), Multi-variable parameter estimation to increase confidence in hydrological modeling, Hydrological Processes, 16, 413–421.
Beriault, A. L., and D. J. Sauchyn (2006), Tree-ring reconstructions of streamflow in the Churchill River Basin, Northern Saskatchewan, Canadian Water Resources Journal, 31 (4), 249–262.
Best, A. E., L. Zhang, T. A. McMahon, A. W. Western (2003), Development of a model for predicting the changes in flow duration curves due to altered land use conditions, in D. A. Post (Ed.), MODSIM 2003 International Congress on Modelling and Simulation, Townsville, Australia, Canberra: MSSANZ, pp. 861–866.
Beven, K. J. (1989), Changing ideas in hydrology: the case of physically based models, Journal of Hydrology, 105, 157–172.
Beven, K. J. (2000), Uniqueness of place and process representations in hydrological modelling, Hydrology and Earth System Sciences, 4(2), 203–213.
Beven, K. (2001), How far can we go in distributed hydrological modelling?Hydrology and Earth System Sciences, 5(1), 1–12, doi:10.5194/hess-5-1-2001.
Beven, K. (2006), A manifesto for the equifinality thesis, Journal of Hydrology, 320(1–2), 18–36, doi:10.1016/j.jhydrol.2005.07.007.
Beven, K. (2007), Towards integrated environmental models of everywhere: uncertainty, data and modelling as a learning process, Hydrology and Earth System Sciences, 11, 460–467, doi:10.5194/hess-11-460-2007.
Beven, K. J., and A. M. Binley (1992), The future of distributed models: model calibration and uncertainty prediction, Hydrological Processes, 6(3), 279–298.
Beven, K. J., and J. Freer (2001), Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems, Journal of Hydrology, 249, 11–29.
Beven, K. J., and M. J. Kirkby (1979), A physically based, variable contributing area model of basin hydrology, Hydrological Sciences Bulletin, 24(1), 43–69, doi:10.1080/02626667909491834.
Beven, K. J., R. Lamb, P. Quinn, R. Romanowicz, and J. Freer (1995), TOPMODEL and GRIDTAB: A User’s Guide to the Distribution Versions, 2nd edition, CRES Technical Report TR110, Lancaster.
Bharati, L., G. Lacombe, P. Gurung, P. Jayakody, C. T. Hoanh, and V. Smakhtin (2011), The Impacts of Water Infrastructure and Climate Change on the Hydrology of the Upper Ganges River Basin, Colombo, Sri Lanka: International Water Management Institute, Research Report 142, doi:10.5337/2011.210.
Biggs, B. J. F., and M. E. Close (1989), Periphyton biomass dynamics in gravel bed rivers: the relative effects of flows and nutrients, Freshwater Biology, 22(2), 209–231, doi:10.1111/j.1365–2427.1989.tb01096.x.
Biggs, T. W., P. S. Thenkabail, M. K. Gumma, et al. (2006), Irrigated area mapping in heterogeneous landscapes with MODIS time series, ground truth and census data, Krishna Basin, India, International Journal of Remote Sensing, 27(19), 4245–4266, doi:10.1080/01431160600851801.
Biggs, T. W., A. Gaur, C. A. Scott, et al. (2007), Closing of the Krishna Basin: Irrigation Development, Streamflow Depletion, and Macroscale Hydrology. Colombo, Sri Lanka: International Water Management Institute, Research Report 111.
Biggs, T. W., C. A. Scott, A. Gaur, et al. (2008), Impacts of irrigation and anthropogenic aerosols on the water balance, heat fluxes, and surface temperature in a river basin, Water Resources Research, 44(12), doi:10.1029/2008WR006847.
Birkel, C., D. Tetzlaff, S. M. Dunn, and C. Soulsby (2010), Towards a simple dynamic process conceptualization in rainfall-runoff models using multi-criteria calibration and tracers in temperate, upland catchments, Hydrological Processes, 24, 260–275, doi:10.1002/hyp.
Birkel, C., D. Tetzlaff, S. M. Dunn, and C. Soulsby (2011), Using time domain and geographic source tracers to conceptualize streamflow generation processes in lumped rainfall-runoff models, Water Resources Research, 47, W02515, doi:10.1029/2010WR009547.
Bishop, G. D., and Church, M. R. (1992), Automated approaches for regional runoff mapping in the Northeastern United States, Journal of Hydrology, 138, 361–383.
Bishop, G. D., and Church, M. R. (1995), Mapping long-term regional runoff in the eastern United States using automated approaches, Journal of Hydrology, 169, 189–207.
Bishop, G. D., M. R. Church, J. D. Aber, et al. (1998), A comparison of mapped estimates of long-term runoff in the northeast United States, Journal of Hydrology, 206, 176–190.
Black, P. E. (1997), Watershed functions, Journal of the American Water Resources Association, 33(1), 1–11, doi:10.1111/j.1752–1688.1997.tb04077.x.
Blasch, K. W., T. P. A. Ferre, A. H. Christensen, and J. P. Hoffmann (2002), New field method to determine streamflow timing using electrical resistance sensors, Vadose Zone Journal, 1(2), 289–299, doi:10.2113/1.2.289.
Blazkova, S., and K. J. Beven (2002), Flood frequency estimation by continuous simulation for a catchment treated as ungauged (with uncertainty), Water Resources Research, 38(8), 1139.
Blazkova, S., and K. J. Beven (2004), Flood frequency estimation by continuous simulation of subcatchment rainfalls and discharges with the aim of improving dam safety assessment in a large basin in the Czech Republic, Journal of Hydrology, 292(1–4), 153–172.
Blöschl, G. (1996), Scale and Scaling in Hydrology. Habilitation thesis, Department of Hydrology and Water Resources, Vienna University of Technology, Vienna, Austria.
Blöschl, G. (1999), Scaling issues in snow hydrology, Hydrological Processes, 13, 2149–2175.
Blöschl, G. (2001), Scaling in hydrology. Hydrological Processes, 15, 709–711.
Blöschl, G. (2005a), Rainfall-runoff modeling of ungauged catchments, in M. G. Anderson (Ed.), Encyclopedia of Hydrological Sciences, Chichester: John Wiley & Sons, pp. 2061–2080.
Blöschl, G. (2005b), On the fundamentals of hydrological sciences, in M. G. Anderson (Ed.), Encyclopedia of Hydrological Science, Chichester: John Wiley & Sons, pp. 2–12.
Blöschl, G. (2005c), Statistical upscaling and downscaling in hydrology, in M. G. Anderson (Ed.), Encyclopedia of Hydrological Sciences, Chichester: John Wiley & Sons, pp. 135–154.
Blöschl, G. (2006), Hydrologic synthesis: across processes, places, and scales, Water Resources Research, 42, W03S02, doi:10.1029/2005WR004319.
Blöschl, G. (2008), Flood warning: on the value of local information, International Journal of River Basin Management, 6 (1), 41–50.
Blöschl, G. (2011), Scaling and regionalization in hydrology, in P. Wilderer (ed.), Treatise on Water Science, Volume 2, Oxford: Academic Press, pp. 519–535.
Blöschl, G. and R. Grayson (2000), Spatial observations and interpolation, in R. Grayson and G. Blöschl (Eds.), Spatial Patterns in Catchment Hydrology: Observations and Modelling, Cambridge: Cambridge University Press, pp. 17–50.
Blöschl, G. and R. Kirnbauer (1991), Point snowmelt models with different degrees of complexity: internal processes, Journal of Hydrology, 129, 127–147.
Blöschl, G. and R. Merz (2010), Landform–hydrology feedbacks, in J.-C. Otto and R. Dikau (Eds), Landform: Structure, Evolution, Process Control, Wien, Heidelberg: Springer, pp. 117–126.
Blöschl, G., and A. Montanari (2010), Climate change impacts: throwing the dice?Hydrological Processes, 24, 374–381, doi:10.1002/hyp.6075.
Blöschl, G., and M. Sivapalan (1995), Scale issues in hydrological modelling: a review, Hydrological Processes, 9(3–4), 251–290, doi:10.1002/hyp.3360090305.
Blöschl, G., and M. Sivapalan (1997), Process controls on regional flood frequency: coefficient of variation and basin scale, Water Resources Research, 33, 2967–2980.
Blöschl, G., and E. Zehe (2005), On hydrological predictability, Hydrological Processes, 19(19), 3923–3929.
Blöschl, G., R. Kirnbauer, and D. Gutknecht (1991a), Distributed snowmelt simulations in an Alpine catchment. 1. Model evaluation on the basis of snow cover patterns, Water Resources Research, 27(12), 3171–3179.
Blöschl, G., D. Gutknecht, and R. Kirnbauer (1991b), Distributed snowmelt simulations in an Alpine catchment. 2. Parameter study and model predictions, Water Resources Research, 27(12), 3181–3188.
Blöschl, G., R. B. Grayson, and M. Sivapalan (1995), On the representative elementary area (REA) concept and its utility for distributed rainfall-runoff modelling, Hydrological Processes, 9, 313–330.
Blöschl, G., S. Ardoin-Bardin, M. Bonell, et al. (2007), At what scales do climate variability and land cover change impact on flooding and low flows?Hydrological Processes, 21, 1241–1247, doi:10.1002/hyp.6669.
Blöschl, G., C. Reszler, and J. Komma (2008), A spatially distributed flash flood forecasting model, Environmental Modelling & Software, 23(4), 464–478, doi:10.1016/j.envsoft.2007.06.010.
Blöschl, G., R. Merz, J. Parajka, J. Salinas, and A. Viglione (2012), Floods in Austria, in Z. W. Kundzewicz (Ed.), Changes in Flood Risk in Europe, Wallingford: IAHS Press, pp. 169–177.
BlumeT. (2008), Hydrological processes in volcanic ash soils: measuring, modelling and understanding runoff generation in an undisturbed catchment, Ph.D. dissertation, University of Potsdam.
Blume, T., E. Zehe, and A. Bronstert (2007), Rainfall-runoff response, event-based runoff coefficients and hydrograph separation, Hydrological Sciences Journal, 52(5), 843–862, doi:10.1623/hysj.52.5.843.
Blume, T., E. Zehe, D. E. Reusser, and A. Bronstert (2008a), Investigation of runoff generation in a pristine, poorly gauged catchment in the Chilean Andes I: A multi-method experimental study, Hydrological Processes, 22, 3661–3675.
Blume, T., E. Zehe, and A. Bronstert (2008b), Investigation of runoff generation in a pristine, poorly gauged catchment in the Chilean Andes II: Qualitative and quantitative use of tracers at three spatial scales, Hydrological Processes, 22, 3676–3688.
Blume, T., E. Zehe, and A. Bronstert (2009), Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes, Hydrology and Earth System Sciences, 13(7), 1215–1233.
Bocchiola, D., De Michele, C., and Rosso, R. (2003), Review of recent advances in index flood estimation, Hydrology and Earth System Sciences, 7(3), 283–296.
Boisvenue, C., and S. W. Running (2006), Impacts of climate change on natural forest productivity: evidence since the middle of the 20th century, Global Change Biology, 12, 862–882.
Boldetti, G., Riffard, M., Andréassian, V., and Oudin, L. (2010), Dataset cleansing practices and hydrological regionalization: is there any valuable information among outliers? Hydrological Sciences Journal, 55(6), 941–951.
Bonacci, O., T. Pipan, and D. C. Culver (2008), A framework for karst ecohydrology, Environmental Geology, 56(5), 891–900, doi:10.1007/s00254–008–1189–0.
Bonell, M., J. J. McDonnell, F. N. Scatena, et al. (2006), HELPing FRIENDs in PUBs: charting a course for synergies within international water research programmes in gauged and ungauged basins, Hydrological Processes, 1874(1), 1867–1874.
Bonnin, G., D. Todd, B. Lin, et al. (2004), NOAA Atlas 14, Precipitation Frequency Atlas of the United States, Volume 1, US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, Silver Spring, MD.
Bonsal, B., and M. Regier (2007), Historical comparison of the 2001/2002 drought in the Canadian Prairies, Climate Research, 33, 229–242, doi:10.3354/cr033229.
Bonta, J. V., and B. Cleland (2003), Incorporating natural variability, uncertainty, and risk into water quality evaluations using duration curves, Journal of the American Water Resources Association, 39(6), 1481–1496, doi:10.1111/j.1752–1688.2003.tb04433.x.
Bookhagen, B., and D. W. Burbank (2010), Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge, Journal of Geophysical Research, 115, F03019, doi:10.1029/2009JF001426.
Boorman, D. B., J. M. Hollis, and A. Lilly (1995), Hydrology of Soil Types: A Hydrologically-Based Classification of the Soils of United Kingdom, Institute of Hydrology, Report No. 126, p. 146.
Borga, M., G. Dalla Fontana, and F. Cazorzi (2002), Analysis of topographic and climatic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index, Journal of Hydrology, 268(1–4), 56–71, doi:10.1016/S0022–1694(02)00118-X.
Borga, M., E. Gaume, J. D. Creutin, and L. Marchi (2008), Surveying flash flood response: gauging the ungauged extremes, Hydrological Processes, 22(18), 3883–3885, doi:10.1002/hyp.7111.
Borga, M., E. N. Anagnostou, G. Blöschl, and J. D. Creutin (2010), Flash floods: observations and analysis of hydrometeorological controls, Journal of Hydrology, 394(1–2), 1–3, doi:10.1016/j.jhydrol.2010.07.048.
Borga, M., E. N. Anagnostou, G. Blöschl, and J. D. Creutin (2011), Flash flood forecasting, warning and risk management: the HYDRATE project, Environmental Science Policy, 14(7), 834–844, doi:10.1016/j.envsci.2011.05.017.
Borgogno, F., P. D’Odorico, F. Laio, and L. Ridolfi (2009), Mathematical models of vegetation pattern formation in ecohydrology, Reviews of Geophysics, 47(2007), 1–36, doi:10.1029/2007RG000256.
Bormann, H., H. M. Holländer, T. Blume, et al. (2011a), Modellkonzept vs. Modellierer: wer oder was ist wichtiger? Vergleichende Modellanwendung am Hühnerwasser-Einzugsgebiet, in G. Blöschl and R. Merz (Eds.), Hydrologie und Wasserwirtschaft – von der Theorie zur Praxis, Beiträge zum Tag der Hydrologie 2011, 24/25 März 2011 an der Technischen Universität Wien, Austria, Forum für Hydrologie und Wasserbewirtschaftung: Heft 30.11.
Bormann, H., H. M. Holländer, T. Blume, et al. (2011b), Comparative discharge prediction from a small artificial catchment without model calibration: representation of initial hydrological catchment development, Die Bodenkultur, 62(1–4), 23–29.
Bosch, J. M., and J. D. Hewlett (1982), A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration, Journal of Hydrology, 55(1–4), 3–23, doi:10.1016/0022–1694(82)90117–2.
Botter, G., A. Porporato, I. Rodriguez-Iturbe, and A. Rinaldo (2007a), Basin-scale soil moisture dynamics and the probabilistic characterization of carrier hydrologic flows: slow, leaching-prone components of the hydrologic response, Water Resources Research, 43(2), 1–14, doi:10.1029/2006WR005043.
Botter, G., A. Porporato, E. Daly, I. Rodriguez-Iturbe, and A. Rinaldo (2007b), Probabilistic characterization of base flows in river basins: roles of soil, vegetation, and geomorphology, Water Resources Research, 43(6), 1–17, doi:10.1029/2006WR005397.
Botter, G., A. Porporato, I. Rodriguez-Iturbe, and A. Rinaldo (2009), Nonlinear storage-discharge relations and catchment streamflow regimes, Water Resources Research, 45, doi:10.1029/2008wr007658.
Botter, G., S. Basso, A. Porporato, I. Rodriguez-Iturbe, and A. Rinaldo (2010), Natural streamflow regime alterations: damming of the Piave river basin (Italy), Water Resources Research, 46(6), 1–14, doi:10.1029/2009WR008523.
Boughton, W. (2004), The Australian water balance model, Environmental Modelling & Software, 19(10), 943–956, doi:10.1016/j.envsoft.2003.10.007.
Boughton, W., and F. Chiew (2007), Estimating runoff in ungauged catchments from rainfall, PET and the AWBM model, Environmental Modelling & Software, 22(4), 476–487, doi:10.1016/j.envsoft.2006.01.009.
Bouma, J., P. Droogers, M. P. W. Sonneveld, et al. (2011), Hydropedological insights when considering catchment classification, Hydrology and Earth System Sciences, 15(6), 1909–1919, doi:10.5194/hess-15-1909-2011.
Bower, D., and D. M. Hannah (2002), Spatial and temporal variability in UK river flow regimes, in H. A. J. van Lanen, and S. Demuth (Eds.), FRIEND 2000, Regional Hydrology: Bridging the Gap between Research and Practice, Wallingford: IAHS Publication 274, pp. 457–466.
Bower, D., D. M. Hannah, and G. R. McGregor (2004), Techniques for assessing the climatic sensitivity of river flow regimes, Hydrological Processes, 18(13), 2515–2543, doi:10.1002/hyp.1479.
Bouwer, L. M., J. C. J. H. Aerts, P. Droogers, A. J. Dolman (2006), Detecting the long-term impacts from climate variability and increasing water consumption on runoff in the Krishna River basin (India), Hydrology and Earth System Sciences, 10, 703–713.
Braden, J. B., D. Brown, J. Dozier, et al. (2009), Social science in a water observing system, Water Resources Research, 45(11), 1–11, doi:10.1029/2009WR008216.
Brath, A., A. Castellarin, M. Franchini, and G. Galeati (2001), Estimating the index flood using indirect methods, Hydrological Sciences Journal, 46(3), 399–418, doi:10.1080/02626660109492835.
Brauer, C. C., A. J. Teuling, A. Overeem, Y. van der Velde, P. Hazenberg, P. M. M. Warmerdam, and R. Uijlenhoet (2011), Anatomy of extraordinary rainfall and flash flood in a Dutch lowland catchment, Hydrology and Earth System Sciences, 15(6), 1991–2005, doi:10.5194/hess-15-1991-2011.
Brázdil, R., and Z. Kundzewicz (2006), Historical hydrology (Editorial), Hydrological Sciences Journal, 51(5), 733–738, doi:10.1623/hysj.51.5.733.
Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone (1984), Classification and Regression Trees, Belmont, CA: Wadsworth International Group.
Breinlinger, R. (1995), Hydrogeographische Raumgliederung der Schweiz und ihre Bedeutung für die Hydrologie, Ph.D. thesis, Geographisches Institut der Universität Bern, Bern.
Bren, L., P. J. Lane, and D. McGuire (2006), An empirical, comparative model of changes in annual water yield associated with pine plantations in southern Australia, Australian Forestry, 69(4), 275–284.
Bronowski, J. (1956), Science and Human Values, New York: Julian Messner Inc. Available from http://www.loc.gov/catdir/description/hc042/89045631.html.
Bronstert, A., D. Niehoff, and G. Berger (2002), Effects of climate and land-use change on storm runoff generation: present knowledge and modelling capabilities, Hydrological Processes, 16(2), 509–529, doi:10.1002/hyp.326.
Bronstert, A., B. Creutzfeldt, T. Graeff, et al. (2012), Potentials and constraints of different types of soil moisture observations for flood simulations in headwater catchments, Natural Hazards, 60(3), 879–914, doi:10.1007/s11069–011–9874–9.
Brooks, P. D., P. A. Troch, M. Durcik, E. Gallo, and M. Schlegel (2011), Quantifying regional scale ecosystem response to changes in precipitation: not all rain is created equal, Water Resources Research, 47, W00J08, doi:10.1029/2010WR009762.
Brown, J. A. H. (1961), Streamflow correlation in the Snowy Mountains area, Journal of the Institution of Engineers, Australia, 33, 85–95.
Brown, A., L. Zhang, T. McMahon, A. Western, and R. Vertessy (2005), A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation, Journal of Hydrology, 310(1–4), 28–61, doi:10.1016/j.jhydrol.2004.12.010.
Broxton, P. D., P. A. Troch, and S. W. Lyon (2009), On the role of aspect to quantify water transit times in small mountainous catchments, Water Resources Research, 45(8), 1–15, doi:10.1029/2008WR007438.
Brutsaert, W., and J. L. Nieber (1977), Regionalized drought flow hydrographs from a mature glaciated plateau, Water Resources Research, 13(3), 637–643, doi:10.1029/WR013i003p00637.
Budyko, M. I. (1974), Climate and Life, translated from Russian by D. H. Miller, San Diego, CA: Academic Press. Available from http://books.google.com/books?id=Ln89Y-6KwZYC.
Bulygina, N., N. McIntyre, and H. Wheater (2009), Conditioning rainfall-runoff model parameters for ungauged catchments and land management impacts analysis, Hydrology and Earth System Sciences, 13(2), 893–904, doi:10.5194/hessd-6-1907-2009.
Burn, D. H. (1990a), An appraisal of the “region of influence” approach to flood frequency analysis, Hydrological Sciences Journal, 35(2), 149–165, doi:10.1080/02626669009492415.
Burn, D. H. (1990b), Evaluation of regional flood frequency analysis with a region of influence approach, Water Resources Research, 26(10), 2257–2265, doi:10.1029/90WR01192.
Burn, D. H. (1997), Catchment similarity for regional flood frequency analysis using seasonality measures, Journal of Hydrology, 202(1–4), 212–230, doi:10.1016/S0022–1694(97)00068–1.
Burn, D. H., and D. B. Boorman (1993), Estimation of hydrological parameters at ungauged catchments, Journal of Hydrology, 143(3–4), 429–454, doi:10.1016/0022–1694(93)90203-L.
Burn, D., and N. K. Goel (2000), The formation of groups for regional flood frequency analysis, Hydrological Sciences Journal, 45(1), 97–112, doi:10.1080/02626660009492308.
Burnash, R. J. C., R. L. Ferral, and R. A. McGuire (1973), A Generalized Streamflow Simulation System: Conceptual Modeling For Digital Computers, US National Weather Service and California Department of Water Resources, Joint Federal-State River Forecast Center, Sacramento, CA.
Burnett, B. N., G. A. Meyer, and L. D. McFadden (2008), Aspect-related microclimatic influences on slope forms and processes, northeastern Arizona, Journal of Geophysical Research, 113(F3), 1–18, doi:10.1029/2007JF000789.
Burt, T. P., and W. T. Swank (1992), Flow frequency responses to hardwood-to-grass conversion and subsequent succession, Hydrological Processes, 6(2), 179–188.
Burton, A., C. G. Kilsby, H. J. Fowler, P. S. P. Cowpertwait, and P. E. O’Connell (2008), RainSim: a spatial-temporal stochastic rainfall modelling system, Environmental Modelling & Software, 23(12), 156–1369.
Busby, M. W. (1963), Yearly Variations in Runoff for the Conterminous United States, 1931–60. U.S. Geological Survey Water-Supply Paper 1669-S, U.S. Government Printing Office, Washington, D.C.
Buttle, J. M. (2011), The effects of forest harvesting on forest hydrology and biogeochemistry, in D. F. Levia (Ed.), Forest Hydrology and Biochemistry: Synthesis of Past Research and Future Directions, Ecological Studies, 216, pp. 659–677.
Buttle, J. M., and D. L. Peters (1997), Inferring hydrological processes in a temperate basin using isotopic and geochemical hydrograph separation: a re-evaluation, Hydrological Processes, 11(6), 557–573, doi:10.1002/(SICI)1099–1085(199705)11:6<557::AID-HYP477>3.0.CO;2-Y.
Büttner, G., J. Feranec, and G. Jaffrain (2002), Corine Land Cover Update 2000: Technical Guidelines, Technical Report 89, European Environment Agency, Copenhagen. Available at http://www.eea.europa.eu/publications/technical_report_2002_89/at_download/file.
Calenda, G., C. P. Mancini, and E. Volpi (2005), Distribution of the extreme peak floods of the Tiber River from the XV century, Advances in Water Resources, 28(6), 615–625, doi:10.1016/j.advwatres.2004.09.010.
Calver, A., R. Lamb, and S. Morris (1999), River flood estimation using continuous runoff modelling, Proceedings of the Institution of Civil Engineers, Water Maritime and Energy, 136, 225–234.
Calver, A., A. L. Kay, D. A. Jones, et al. (2004), Flood frequency quantification for ungauged sites using continuous simulation: a UK approach, in C. Pahl-Wostl, S. Schmidt, A. E. Rizzoli, and A. J. Jakeman (Eds.), Complexity and Integrated Resources Management, Transactions of the 2nd Biennial iEMSs Meeting, pp. 1214–1218.
Carey, S. K., and M. K. Woo (1998), Snowmelt hydrology of two subarctic slopes, southern Yukon, Canada. Nordic Hydrology, 29, 331–346.
Carr, G., G. Blöschl, and D. P. Loucks (2012), Evaluating participation in water resource management: a review, Water Resources Research, 48, W11401, doi:10.1029/2011WR011662.
Carrillo, G., P. A. Troch, M. Sivapalan, et al. (2011), Catchment classification: hydrological analysis of catchment behavior through process-based modeling along a climate gradient, Hydrology and Earth System Sciences, 15(11), 3411–3430, doi:10.5194/hess-15-3411-2011.
Carson, E. C., and J. S. Munroe (2005), Tree-ring based streamflow reconstruction for Ashley Creek, northeastern Utah: implications for palaeohydrology of the southern Uinta Mountains, The Holocene, 15 (4), 602–611.
Casas, A., S. N. Lane, D. Yu, and G. Benito (2010), A method for parameterising roughness and topographic sub-grid scale effects in hydraulic modelling from LiDAR data, Hydrology and Earth System Sciences, 14(8), 1567–1579, doi:10.5194/hess-14-1567-2010.
Case, R. A., and G. M. MacDonald (2003), Tree ring reconstructions of streamflow for three Canadian Prairie rivers, Journal of the American Water Resources Association, 39(3), 703–716, doi:10.1111/j.1752–1688.2003.tb03686.x.
Castellarin, A., D. H. Burn, and A. Brath (2001), Assessing the effectiveness of hydrological similarity measures for flood frequency analysis, Journal of Hydrology, 241(3–4), 270–285, doi:10.1016/S0022–1694(00)00383–8.
Castellarin, A., G. Galeati, L. Brandimarte, A. Montanari, and A. Brath (2004a), Regional flow-duration curves: reliability for ungauged basins, Advances in Water Resources, 27(10), 953–965, doi:10.1016/j.advwatres.2004.08.005.
Castellarin, A., G. Camorani, and A. Brath (2007a), Predicting annual and long-term flow-duration curves in ungauged basins, Advances in Water Resources, 30(4), 937–953, doi:10.1016/j.advwatres.2006.08.006.
Castellarin, A., R. Vogel, and A. Brath (2004b), A stochastic index flow model of flow duration curves, Water Resources Research, 40(3), 1–10, doi:10.1029/2003WR002524.
Castellarin, A., R. M. Vogel, and N. C. Matalas (2005), Probabilistic behavior of a regional envelope curve, Water Resources Research, 41, w06018, doi:10.1029/2004wr003042.
Castellarin, A., R. M. Vogel, and N. C. Matalas (2007b), Multivariate probabilistic regional envelopes of extreme floods, Journal of Hydrology, 336(3–4), 376–390, doi:10.1016/j.jhydrol.2007.01.007.
Castellarin, A., D. H. Burn, A. Brath (2008), Homogeneity testing: how homogeneous do heterogeneous cross-correlated regions seem?Journal of Hydrology, 360(1–4), 67–76, doi:10.1016/j.jhydrol.2008.07.014.
Castellarin, A., R. Merz, and G. Blöschl (2009), Probabilistic envelope curves for extreme rainfall events. Journal of Hydrology, 378(3-4), 263-271, doi:10.1016/j.jhydrol.2009.09.030.
Castiglioni, S., A. Castellarin, and A. Montanari (2009), Prediction of low-flow indices in ungauged basins through physiographical space-based interpolation, Journal of Hydrology, 378(3–4), 272–280, doi:10.1016/j.jhydrol.2009.09.032.
Castiglioni, S., A. Castellarin, and A. Montanari, et al. (2011), Smooth regional estimation of low-flow indices: physiographical space based interpolation and top-kriging, Hydrology and Earth System Sciences, 15(3), 715–727, doi:10.5194/hess-15-715-2011.
Cattanéo, F. (2005), Does hydrology constrain the structure of fish assemblages in French streams? Local scale analysis, Archiv für Hydrobiologie, 164(3), 345–365, doi:10.1127/0003–9136/2005/0164–0345.
Cavadias, G. S. (1990), The canonical correlation approach to regional flood estimation: regionalisation in hydrology, in M. A. Beran, M. Brilly, A. Becker, and O. Bonacci (Eds.), Regionalization in Hydrology, Wallingford: IAHS Publication 191, pp. 171–178.
Cayan, D. R., S. A. Kemmerdiener, M. D. Dettinger, J. M. Caprio, and D. H. Peterson (2001), Changes in the onset of spring in the western United States. Bulletin of the American Meteorological Society, 82, 399–415.
Caylor, K. K., P. R. Dowty, H. H. Shugart, and S. Ringrose (2004), Relationship between small-scale structural variability and simulated vegetation productivity across a regional moisture gradient in southern Africa, Global Change Biology, 10(3), 374–382, doi:10.1046/j.1529–8817.2003.00704.x.
Cerdà, A. (1998), The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain, Canadian Journal of Soil Science, 78(2), 321–330.
Cervi, F. (2009), Analysis of the relationships between hydrogeological characteristics of mountain basins and low flow discharge: regional-scale prediction of hydrological indices in ungauged basins of the northern Apennines (Italy), Unpublished Ph.D. thesis, University of Modena and Reggio Emilia, Italy.
Cervi, F., A. Corsini, A. Ghinoi, F. Ronchetti, and M. Pellegrini (2007), Analisi della predisposizione al manifestarsi di sorgenti in area appenninica: un approccio statistico applicator all’area del Monte Modino (Provincia di Modena), Il Geologo dell’Emilia Romagna, 27, 23–30. http://www.emilia-romagna.geologi.it/rivista/2007-27_Cervi.pdf.
Chave, P. A. (2001), The EU Water Framework Directive: An Introduction, London: IWA Publishing.
Chebana, F., and T. B. M. J. Ouarda (2008), Depth and homogeneity in regional flood frequency analysis, Water Resources Research, 44(11), 879–887, doi:10.1029/WR024i006p00879.
Cheema, M. J. M., and W. G. M. Bastiaanssen (2012), Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus Basin, International Journal of Remote Sensing, 33(8), 2603–2627.
Chen, Y. D., G. Huang, Q. Shao, and C. Xu (2006), Regional analysis of low flow using L-moments for Dongjiang basin, South China, Hydrological Sciences Journal, 51(6), 1051–1064.
Cheng, L., M. A. Yaeger, A. Viglione, et al. (2012), Exploring the physical controls of regional patterns of flow duration curves: 1. Insights from statistical analyses, Hydrology and Earth System Sciences, 16, 4435–4446, doi:10.5194/hess-16-4435-2012.
Chernoff, H. (1973), The use of faces to represent points in k-dimensional space graphically, Journal of the American Statistical Association, 68(342), 361–368.
Chiew, F. H. S. (2010), Lumped conceptual rainfall-runoff models and simple water balance methods: overview and applications in ungauged and data limited regions, Geography Compass, 4(3), 206–225, doi:10.1111/j.1749-8198.2009.00318.x.
Chiew, F. H. S., and T. A. McMahon (1993), Detection of trend or change in annual flow of Australian rivers, International Journal of Climatology, 13(6), 643–653, doi:10.1002/joc.3370130605.
Chiew, F. H. S., M. C. Peel, and A. W. Western (2002), Application and testing of the simple rainfall-runoff model SIMHYD, in V. P. Singh and D. K. Frevert (Eds.), Mathematical Models of Small Watershed Hydrology and Applications, Highlands Ranch, CO: Water Resources Publications, pp. 335–367.
Chiew, F. H. S., J. Teng, J. Vaze, et al. (2009), Estimating climate change impact on runoff across southeast Australia: method, results, and implications of the modeling method, Water Resources Research, 45(10), 1–17, doi:10.1029/2008WR007338.
Chiew, F. H. S, D. G. C. Kirono, D. M. Kent, et al. (2010), Comparison of runoff modelled using rainfall from different downscaling methods for historical and future climates, Journal of Hydrology, 387, 10–23.
Chirico, G. B., A. W. Western, R. B. Grayson, and G. Blöschl (2005), On the definition of the flow width for calculating specific catchment area patterns from gridded elevation data, Hydrological Processes, 19(13), 2539–2556.
Chokmani, K., and T. B. M. J. Ouarda (2004), Physiographical space-based kriging for regional flood frequency estimation at ungauged sites, Water Resources Research, 40(12), 1–13, doi:10.1029/2003WR002983.
Chopart, S., and E. Sauquet (2008), Usage des jaugeages volants en régionalisation des débits d’étiage (Using spot gauging data to interpolate low flow characteristics), Revue des sciences de l'eau (Journal of Water Science), 21(3), 267–281.
Choquette, A. F. (1988), Regionalization of Peak Discharges for Streams in Kentucky, U.S. Geological Survey Water-Resources Investigations Report 88–4209.
Choudhury, B. J. (1999), Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model, Journal of Hydrology, 216, 99–110.
Chow, V. T. (1959), Open-Channel Hydraulics, New York: McGraw-Hill.
Chow, V. T. (Ed.) (1964), Handbook of Applied Hydrology, New York: McGraw-Hill Book Company.
Chow, V. T., D. R. Maidment, and L. W. Mays (1988), Applied Hydrology,New York: McGraw-Hill.
Ciach, G. J. (2003), Local random errors in tipping-bucket rain gauge measurements, Journal of Atmospheric and Oceanic Technology, 20(5), 752–759, doi:10.1175/1520–0426(2003)20<752:LREITB>2.0.CO;2.
Ciach, G. J., and W. F. Krajewski (1999), On the estimation of radar rainfall error variance, Advances in Water Resources, 22(6), 585–595, doi:10.1016/S0309–1708(98)00043–8.
Ciach, G. J., and W. F. Krajewski (2006), Analysis and modeling of spatial correlation structure in small-scale rainfall in Central Oklahoma, Advances in Water Resources, 29(10), 1450–1463, doi:10.1016/j.advwatres.2005.11.003.
Clapp, R. B. and G. M. Hornberger (1978), Empirical equations for some soil hydraulic properties, Water Resources Research, 14(4), 601–604, doi:10.1029/WR014i004p00601.
Claps, P. and M. Fiorentino (1997), Probabilistic flow duration curves for use in environmental planning and management, in N. B. Harmanciogluet al. (Eds.), Integrated Approach to Environmental Data Management Systems, NATO-ASI series 2(31), Dordrecht, the Netherlands: Kluwer, pp. 255–266.
Claps, P., and F. Laio (2003), Can continuous streamflow data support flood frequency analysis? An alternative to the partial duration series approach, Water Resources Research, 39(8), 1216, doi:10.1029/2002WR001868.
ClapsP., and L. Mancino (2002), Impiego di classificazioni climatiche quantitative nell’analisi regionale del deflusso annuo, in XXVIII Convegno di Idraulica e Costruzioni Idrauliche, Potenza, 2002, pp. 169–178, in Italian.
Clark, M. P., A. G. Slater, A. P. Barrett, et al. (2006), Assimilation of snow covered area information into hydrologic and land-surface models, Advances in Water Resources, 29(8), 1209–1221, doi:10.1016/j.advwatres.2005.10.001.
Clark, M. P., H. K. McMillan, D. B. G. Collins, D. Kavetski, and R. A. Woods (2011), Hydrological field data from a modeller’s perspective: Part 2: process-based evaluation of model hypotheses, Hydrological Processes, 25(4), 523–543, doi:10.1002/hyp.7902.
Clarke, R. T., E. M. Mendiondo, and L. C. Brusa (2000), Uncertainties in mean discharges from two large South American rivers due to rating curve variability, Hydrological Sciences Journal, 45(2), 221–236.
Clausen, B., and C. P. Pearson (1995), Regional frequency analysis of annual maximum streamflow drought, Journal of Hydrology, 173(1–4), 111–130, doi:10.1016/0022–1694(95)02713-Y.
Clausen, B., A. R. Young, and A. Gustard (1994), Modelling the impact of groundwater abstraction on low river flows, in P. Seuna, A. Gustard, N. W. Arnell and G. A. Cole (Eds.), FRIEND: Flow Regimes from International Experimental and Network Data, Wallingford: IAHS Publication 221, 77–86.
Cloke, H. L., and D. M. Hannah (2011), Preface – Large-scale hydrology: advances in understanding processes, dynamics and models from beyond river basin to global scale, Hydrological Processes, 25(7), 991–995, doi:10.1002/hyp.8059.
Cobby, D. M., D. C. Mason, M. S. Horritt, and P. D. Bates (2003), Two-dimensional hydraulic flood modelling using a finite-element mesh decomposed according to vegetation and topographic features derived from airborne scanning laser altimetry, Hydrological Processes, 17(10), 1979–2000, doi:10.1002/hyp.1201.
Colin, F., R. Moussa, and X. Louchart (2012), Impact of the spatial arrangement of land management practices on surface runoff for small catchments, Hydrological Processes, 26(2), 255–271, doi:10.1002/hyp.8199.
Conant, B. (2004), Delineating and quantifying ground water discharge zones using streambed temperatures, Ground Water, 42(2), 243–257.
Cong, A., and Y. Xu (1987), Effect of discharge measurement errors on flood frequency analysis, in V. P. Singh (Ed.), Application of Frequency and Risk in Water Resources, Dordrecht: D. Reidel, pp. 175–190.
Constantinescu, G. S., W. F. Krajewski, C. E. Ozdemir, and T. Tokyay (2007), Simulation of airflow around rain gauges: comparison of LES with RANS models, Advances in Water Resources, 30(1), 43–58, doi:10.1016/j.advwatres.2006.02.011.
Constantz, J., M. H. Cox, and G. W. Su (2003), Comparison of heat and bromide as ground water tracers near streams, Ground Water, 41(5), 647–656.
Coopersmith, E., M. A. Yaeger, Sheng Ye, Lei Cheng, and M. Sivapalan (2012), Exploring the physical controls of regional patterns of flow duration curves: 3. A catchment classification system based on regime curve indicators, Hydrology and Earth System Sciences, 16, 4467–4482, doi:10.5194/hess-16-4467-2012.
Cordery, I. and P. S. Cloke (1992), Economics of streamflow data collection. Water International, 17(1), 28–32. doi:10.1080/02508069208686125.
Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. R. Ginn (1984), A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils, Water Resources Research, 20(6), 682–690, doi:10.1029/WR020i006p00682.
Courault, D., B. Seguin, and A. Olioso (2005), Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches, Irrigation and Drainage Systems, 19(3–4), 223–249, doi:10.1007/s10795–005–5186–0.
Crabit, A., F. Colin, J. S. Bailly, H. Ayroles, and F. Garnier (2011a), Soft water level sensors for characterizing the hydrological behaviour of agricultural catchments, Sensors, 11(5), 4656–4673, doi:10.3390/s110504656.
Crabit, A., F. Colin, and R. Moussa (2011b), A soft hydrological monitoring approach for comparing runoff on small catchments, Hydrological Processes, 25, 2785–2800, doi:10.1002/hyp.8041.
Cressie, N. (1991), Statistics for Spatial Data, New York: Wiley.
Cressie, N., J. Frey, B. Harch, and M. Smith (2006), Spatial prediction on a river network, Journal of Agricultural Biological and Environmental Statistics, 11(2), 127–150, doi:10.1198/108571106X110649.
Croke, B. F. W., F. Andrews, A. J. Jakeman, S. M. Cuddy, and A. Luddy (2006), IHACRES Classic Plus: a redesign of the IHACRES rainfall-runoff model, Environmental Modelling & Software, 21(3), 426–427, doi:10.1016/j.envsoft.2005.07.003.
Croker, K. M., A. R. Young, M. D. Zaidman, and H. G. Rees (2003), Flow duration curve estimation in ephemeral catchments in Portugal, Hydrological Sciences Journal, 48(3), 427–439, doi:10.1623/hysj.48.3.427.45287.
Crow, W. T., and D. Ryu (2009), A new data assimilation approach for improving runoff prediction using remotely-sensed soil moisture retrievals, Hydrology and Earth System Sciences, 13(1), 1–16, doi:10.5194/hess-13-1-2009.
Crutzen, P. J. (2002), The “anthropocene”, Journal de Physique IV France, 12(10), 1–5, doi:10.1051/jp4:20020447.
Cruz, R. V., H. Harasawa, M. Lal, et al. (2007), Asia, in M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden and C. E. Hanson (Eds.), Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC, Cambridge: Cambridge University Press, 469–506.
Cunderlik, J. M., and D. H. Burn (2002), Analysis of the linkage between rain and flood regime and its application to regional flood frequency estimation, Journal of Hydrology, 261(1–4), 115–131.
Cunderlik, J. M., and T. B. M. J. Ouarda (2006), Regional flood-duration-frequency modeling in the changing environment, Journal of Hydrology, 318, 276–291.
Cunderlik, J. M., and T. B. M. J. Ouarda (2007), Regional flood-rainfall duration-frequency modeling at small ungaged sites, Journal of Hydrology, 345, 61–69, doi:10.1016/j.hydrol.2007.07.011.
Cunnane, C. (1988), Methods and merits of regional flood frequency analysis, Journal of Hydrology, 100, 269–290.
Cutore, P., G. Cristaudo, A. Campisano, et al. (2007), Regional models for the estimation of streamflow series in ungauged basins, Water Resources Management, 21(5), 789–800, doi:10.1007/s11269–006–9110–7.
CzikowskyM. J., and D. R. Fitzjarrald (2004), Evidence of seasonal changes in evapotranspiration in eastern U.S. hydrological records, Journal of Hydrometeorology, 5, 974–988.
Czikowsky, M., and D. Fitzjarrald (2009), Detecting rainfall interception in an Amazonian rain forest with eddy flux measurements, Journal of Hydrology, 377, 92–105.
Czikowsky, M. J., D. R. Fitzjarrald, M. G. Kramer, et al. (unpublished), Hydrologic response to precipitation events in the eastern Amazon Basin. www.es.ucsc.edu.
Dalrymple, T. (1960), Flood Frequency Analysis, Water Supply Paper 1543A, U.S. Geological Survey.
Dawson, C., R. Abrahart, A. Shamseldin, and R. Wilby (2006), Flood estimation at ungauged sites using artificial neural networks, Journal of Hydrology, 319(1–4), 391–409, doi:10.1016/j.jhydrol.2005.07.032.
de Boer, D. H. (1992), Hierarchies and spatial scale in process geomorphology: a review. Geomorphology, 4, 303–318.
De Marsily, G. (1986), Quantitative Hydrogeology, New York: Academic Press.
Demuth, S. (1993), Untersuchungen zum Niedrigwasser in West-Europa (European Low Flow Study), Freiburger Schriften zur Hydrologie, Band 1, Freiburg, Germany: IHF.
Demuth, S. and I. Hagemann (1994), Estimation of flow parameters applying hydrogeological area information, in P. Seuna, A. Gustard, N.W. Arnell and G.A. Cole (Eds.), FRIEND: Flow Regimes from International Experimental and Network Data, Wallingford: IAHS Publication 221, 151–157.
Demuth, S., and C. Külls (1997), Probability analysis and regional aspects of droughts in southern Germany, in D. Rosbjerg, N.-E. Boutayeb, A. Gustard, Z. W. Kundzewicz, and P. F. Rasmussen (Eds.), Sustainability of Water Resources under Increasing Uncertainty,Wallingford: IAHS Publication 240, pp. 97–104.
Demuth, S., and A. R. Young (2004), Regionalisation procedures, in L. M. Tallaksen and H. A. J. van Lanen (Eds.), Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater, Developments in Water Sciences 48, Amsterdam: Elsevier B.V., pp. 307–343.
Derx, J., A. P. Blaschke, and G. Blöschl (2010), Three-dimensional flow patterns at the river–aquifer interface: a case study at the Danube, Advances in Water Resources, 33(11), 1375–1387, doi:10.1016/j.advwatres.2010.04.013.
Dettinger, M. D., and H. F. Diaz (2000), Global characteristics of stream flow seasonality and variability, Journal of Hydrometeorology, 1(4), 289–310, doi:10.1175/1525–7541(2000)001<0289:GCOSFS>2.0.CO;2.
Dewandel, B., P. Lachassagne, R. Wyns, J. Marechal, and N. Krishnamurthy (2006), A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering, Journal of Hydrology, 330(1–2), 260–284, doi:10.1016/j.jhydrol.2006.03.026.
Dey, B., and D. C. Goswami (1984), Evaluating a model of snow cover area versus runoff against a concurrent flow correlation model in the western Himalayas, Nordic Hydrology, 15(2), 103–110.
Di Baldassarre, G., and A. Montanari (2009), Uncertainty in river discharge observations: a quantitative analysis, Hydrology and Earth System Sciences, 13, 913–921.
Di Baldassarre, G., F. Laio, and A. Montanari (2009), Design flood estimation using model selection criteria, Physics and Chemistry of the Earth Parts A/B/C, 34(10–12), 606–611, doi:10.1016/j.pce.2008.10.066.
Di BaldassarreG., A. Montanari, H. Lins, et al. (2010), Flood fatalities in Africa: from diagnosis to mitigation, Geophysical Research Letters, 37, L22402, doi:10.1029/2010GL045467.
DickinsonW. T., and H. Whiteley (1970), Watershed areas contributing to runoff, in Proceedings of the Wellington Symposium, Dec. 1970, Paris: IAHS/AISH-Unesco, IAHS Publication 96, pp. 12–26.
Diekkrüger, B., D. Söndgerath, K. C. Kersebaum, and C. W. McVoy (1995), Validity of agroecosystem models: a comparison of results of different models applied to the same data set, Ecological Modelling, 81(1–3), 3–29.
Dingman, S. L. (1981), Planning level estimates of the value of reservoirs for water supply and flow augmentation in New Hampshire, Water Resources Bulletin, 17(8), 684–690.
Di Prinzio, M., A. Castellarin, and E. Toth (2011), Data-driven catchment classification: application to the PUB problem, Hydrology and Earth System Sciences, 15, 1921–1935.
Donnelly, C., Dahné, J., Lindström, G., et al. (2009), An evaluation of multi-basin hydrological modelling for predictions in ungauged basins, in K. Yilmaz, I. Yucel, H. V. Guptaet al. (Eds.), New Approaches to Hydrological Prediction in Data Sparse Regions, Proceedings of Symposium HS2, Hyderabad, India, September 2009, Wallingford: IAHS Publication 333, 112–120.
Donohue, R., M. Roderick, and T. McVicar (2007). On the importance of including vegetation dynamics in Budyko’s hydrological model, Hydrology and Earth System Sciences, 11, 983–995.
Donohue, R. J., M. L. Roderick, and T. R. McVicar (2010), Can dynamic vegetation information improve the accuracy of Budyko’s hydrological model?Journal of Hydrology, 390(1–2), 23–34, doi:10.1016/j.jhydrol.2010.06.025.
Dooge, J. C. I. (1959), A general theory of the unit hydrograph, Journal of Geophysical Research, 64, 2, 241–256.
Dooge, J. C. I. (1986), Looking for hydrologic laws, Water Resources Research, 22(9S), 46S–58S, doi:10.1029/WR022i09Sp0046S.
Doubková, M., A. I. J. M. van Dijk, D. Sabel, W. Wagner, and G. Blöschl (2012), Evaluation of the predicted error of the soil moisture retrieval from C-band SAR by comparison against modelled soil moisture estimates over Australia, Remote Sensing of Environment, 120, 188–196, doi:10.1016/j.rse.2011.09.031.
Draper, N. R. and H. Smith (1998), Applied Regression Analysis, 3rd edition, New York: Wiley.
Drogue, G., T. Leviandier, L. Pfister, et al. (2002), The applicability of a parsimonious model for local and regional prediction of runoff, Hydrological Sciences Journal, 47, 6, 905–920.
Duan, Q., J. Schaake, and V. Koren (2001), A priori estimation of land surface model parameters, in V. Lakshmiet al. (Eds.), Land Surface Hydrology, Meteorology, and Climate: Observations and Modeling, Water Science and Application 3, Washington, DC: American Geophysical Union, pp. 77–94.
Duan, Q., J. Schaake, V. Andreassian, et al. (2006), Model parameter estimation experiment: overview of science strategy and major results of the second and third workshops, Journal of Hydrology, 320, 3–17.
Duan, L., T. Liu, X. Wang, Y. Luo, and L. Wu (2010), Development of a regional regression model for estimating annual runoff in the Hailar River Basin of China, Journal of Water Resource and Protection, 2, 934–943.
Duband, D., C. Michel, H. Garros, and J. Astier (1994), Design Flood Determination by the Gradex Method, CIGB, International Committee on Large Dams, Paris.
Dudley, R. W. (2004), Estimating Monthly, Annual, and Low 7-Day, 10-Year Streamflows for Ungaged Rivers in Maine, U.S. Geological Survey Scientific Investigations Reports 2004–5026.
Duell, L. F. W. (1994), Sensitivity of northern Sierra Nevada streamflow to climate change, Water Resources Bulletin, 30, 841–859.
Duffy, C. J. (2004), Semi-discrete dynamical model for mountain-front recharge and water balance estimation, in J. Hogan, F. Philips and B. Scanlon (2004), Groundwater Recharge in a Desert Environment: The Southwestern United States, Water Science and Application Monograph 9, American Geophysical Union, pp. 236–255.
Duncan, M. and R. Woods (2004), Flow regimes, in J. S. Harding, M. P. Mosley, C. P. Pearson and B. K. Sorrell (Eds.), Freshwaters of New Zealand, Christchurch: New Zealand Hydrological Society and New Zealand Limnological Society, pp. 7.1–7.14.
Dunn, S. M., J. J. McDonnell, and K. B. Vaché (2007), Factors influencing the residence time of catchment waters: a virtual experiment approach, Water Resources Research, 43(6), 1–14, doi:10.1029/2006WR005393.
Dunne, K. A., and C. J. Wilmott (1996), Global distribution of plant extractable water capacity of soil, International Journal of Climatology, 16, 841–859.
Dunne, T. (1978), Field studies of hillslope flow processes, in M. J. Kirkby (Ed.), Hillslope Hydrology, New York: John Wiley & Sons, pp. 227–293.
Dunne, T., and R. D. Black (1970), Partial area contributions to storm runoff in a small New England watershed, Water Resources Research, 6(5), 1296–1311, doi:10.1029/WR006i005p01296.
Dunne, T., T. R. Moore, and C. H. Taylor (1975), Recognition and prediction of runoff-producing zones in humid regions, Hydrological Sciences Bulletin, 20, 305–327.
DVWK (1983), Niedrigwasseranalyse Teil I: Statistische Untersuchung des Niedrigwasserabflusses (in German), Deutscher Verband für Wasserwirtschaft und Kulturbau, Regel 120, Hamburg and Berlin: Verlag Paul Parey.
DWA (2009), Regionalising Low Flow Characteristics (Regionalisierung von Niedrigwasserkenngrößen) (in German), Water Resources Association DWA, Hennef, Germany.
DWA (2012), Guidelines DWA-M 552 on Estimating Flood Probabilities (Merkblatt DWA-M 552 zur Ermittlung von Hochwasserwahrscheinlichkeiten) (in German), Water Resources Association DWA, Hennef, Germany.
DWAF (2005), Groundwater Resource Assessment II. Department of Water Affairs and Forestry, Pretoria, South Africa.
Dyck, S. (1976), Angewandte Hydrologie Teil I. Berechnung und Regelung des Durchflusses der Flüsse (Applied Hydrology, Part I. Calculation and Regulation of the Discharge of Streams), VEB Verlag für Bauwesen, Berlin.
Eagleson, P. S. (1970), Dynamic Hydrology, New York: McGraw-Hill.
Eagleson, P. S. (1972), Dynamics of flood frequency, Water Resources Research, 8(4), 878–898, doi:10.1029/WR008i004p00878.
Eagleson, P. S. (1982), Ecological optimality in water-limited natural soil vegetation systems, 1, theory and hypothesis, Water Resources Research, 18, 325–340, doi:10.1029/WR018i002p00341, 1982.
Eaton, B., M. Church, and D. Ham (2002), Scaling and regionalization of flood flows in British Columbia, Canada, Hydrological Processes, 16, 3245–3263.
Eder, G., M. Sivapalan, and H. P. Nachtnebel (2003), Modeling of water balances in Alpine catchment through exploitation of emergent properties over changing time scales, Hydrological Processes, 17, 2125–2149, doi:10.1002/hyp.1325.
Eng, K., and P. C. D. Milly (2007), Relating low-flow characteristics to the base flow recession time constant at partial record stream gauges, Water Resources Research, 43(1), 1–8, doi:10.1029/2006WR005293.
Eng, K., J. E. Kiang, Y. Chen, D. M. Carlisle, and G. E. Granato, (2011), Causes of systematic over- or underestimation of low streamflows by use of index-streamgage approaches in the United States, Hydrological Processes, 25, 2211–2220, doi:10.1002/hyp.7976.
Engeland, K., and L. Gottschalk (2002), Bayesian estimation of parameters in a regional hydrological model, Hydrology and Earth System Sciences, 6(5), 883–898.
Engeland, K., and H. Hisdal (2009), A comparison of low flow estimates in ungauged catchments using regional regression and the HBV-model, Water Resources Management, 23(12), 2567–2586, doi:10.1007/s11269–008–9397–7.
Engeland, K., L. Gottschalk, and L. M. Tallaksen (2001), Estimation of regional parameters in a mesoscale hydrological model, Nordic Hydrology, 32(3), 161–180.
Engeland, K., L. Gottschalk, and L. M. Tallaksen (2002), Estimation of regional parameters using soil moisture, groundwater and streamflow data from nested catchments, in Å. Killingtveit (ed.), XXII Nordic Hydrological Conference 2002, Røros, Norway, 4–7 August 2002, NHP report, 47, 451–460.
Engeland, K., I. Braud, L. Gottschalk, and E. Leblois (2006), Multi-objective regional modelling, Journal of Hydrology, 327(3–4), 339–351.
England, C. B., and H. N. Holtan (1969), Geomorphic grouping of soils in watershed engineering, Journal of Hydrology, 7, 217–225.
Engman, E. T. (1986), Roughness coefficients for routing surface runoff. Journal of Irrigation and Drainage Engineers, ASCE, 112 (1), 39–53.
Erhard-Cassegrain, A., and J. Margat (1979), Introduction à l’économie générale de l’eau, Orléans, France: BRGM.
European Parliament, Council (2000), Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, Official Journal of the European Communities, L 327, 22.12.2000, pp. 1–73.
EU (2007), Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks, EN 6.11.2007, Official Journal of the European Union, L 288/27.
Everitt, B. (1993), Cluster Analysis, London: Edward Arnold and Halsted Press.
Eysn, L., M. Hollaus, K. Schadauer, and N. Pfeifer (2012), Forest delineation based on airborne LIDAR data, Remote Sensing, 4(3), 762–783, doi:10.3390/rs4030762.
Falkenmark, M., and T. Chapman (Eds.) (1989), Comparative Hydrology, Paris: UNESCO.
Falkenmark, M., and J. Rockström (2005), Rain: The Neglected Resource, Swedish Water House Policy Brief, No. 2, SIWI.
Fan, Y., L. Toran, and R. W. Schlische (2007), Groundwater flow and groundwater-stream interaction in fractured and dipping sedimentary rocks: insights from numerical models, Water Resources Research, 43(1), 1–13, doi:10.1029/2006WR004864.
Fang, X., and J. W. Pomeroy (2007), Snowmelt runoff sensitivity analysis to drought on the Canadian prairies, Hydrological Processes, 21(19), 2594–2609.
Fang, X., and J. W. Pomeroy (2008), Drought impacts on Canadian prairie wetland snow hydrology, Hydrological Processes, 22(15), 2858–2873, doi:10.1002/hyp.7074.
Farid, A., D. C. Goodrich, R. Bryant, and S. Sorooshian (2008), Using airborne lidar to predict Leaf Area Index in cottonwood trees and refine riparian water-use estimates, Journal of Arid Environments, 72(1), 1–15, doi:10.1016/j.jaridenv.2007.04.010.
Farmer, W. H. (2012), Estimating monthly time series of streamflows at ungauged locations in the United States, Master’s Thesis, Tufts University.
Farmer, D., M. Sivapalan, and C. Jothityangkoon (2003), Climate, soil and vegetation controls upon the variability of water balance in temperate and semi-arid landscapes: downward approach to hydrological prediction, Water Resources Research, 39(2), 1035, doi:10.1029/2001WR000328.
Farquharson, F. A. K., J. R. Meigh, and J. V. Sutcliffe (1992), Regional flood frequency analysis in arid and semi-arid areas, Journal of Hydrology, 138(3–4), 487–501, doi:10.1016/0022–1694(92)90132-F.
Farr, T. G., P. A. Rosen, E. Caro, et al. (2007), The Shuttle Radar Topography Mission, Reviews of Geophysics, 45(2005), 1–33, doi:10.1029/2005RG000183.1.INTRODUCTION.
Fenicia, F., J. J. McDonnell, and H. H. G. Savenije (2008a), Learning from model improvement: on the contribution of complementary data to process understanding, Water Resources Research, 44(6), 1–13, doi:10.1029/2007WR006386.
Fenicia, F., H. H. G. Savenije, P. Matgen, and L. Pfister (2008b), Understanding catchment behavior through stepwise model concept improvement, Water Resources Research, 44(1), 1–13, doi:10.1029/2006WR005563.
Fennessey, N. M. (1994), A hydro-climatological model of daily streamflow for the northeast United States, Ph.D. dissertation, Tufts University, Department of Civil and Environmental Engineering.
Fennessey, N., and R. M. Vogel (1990), Regional flow-duration curves for ungauged sites in Massachusetts, Journal of Water Resources Planning and Management, 116(4), 530–549.
Fernandez, W., R. M. Vogel, and A. Sankarasubramanian (2000), Regional calibration of a watershed model, Hydrological Sciences Journal, 45(5), 689–707, doi:10.1080/02626660009492371.
Ferraresi, M., E. Todini, and M. Franchini (1988), Un metodo per la regionalizzazione dei deflussi medi, in XXI Convegno di Idraulica, Volume 1, L’Aquila, 1988 (in Italian), pp. 109–121.
Fiering, M. B. (1963), Use of Correlation to Improve Estimates of the Mean and Variance, U.S. Geological Survey Professional Paper 434-C, C1–C9.
Filipponi, M., P.-Y. Jeannin, and L. Tacher (2009), Evidence of inception horizons in karst conduit networks, Geomorphology, 106(1–2), 86–99, doi:10.1016/j.geomorph.2008.09.010.
Fiorentino, M., and V. Iacobellis (2001), New insights about the climatic and geologic control on the probability distribution of floods, Water Resources Research, 37(3), 721, doi:10.1029/2000WR900315.
Fischer, T., M. Veste, W. Schaaf, et al. (2010), Initial pedogenesis in a topsoil crust 3 years after construction of an artificial catchment in Brandenburg, NE Germany, Biogeochemistry, 101(1–3), 165–176, doi:10.1007/s10533–010–9464-z.
FitzHugh, T., and R. M. Vogel (2011), The impacts of dams on flood flows in the United States, River Research and Applications, 27(10), 1192–1215, doi:10.1002/rra.1417.
Fitzjarrald, D. R., O. C. Acevedo, and K. E. Moore (2001), Climatic consequences of leaf presence in the eastern United States, Journal of Climate, 14, 598–614.
Florea, L. J., and H. L. Vacher (2007), Eogenetic karst hydrology: insights from the 2004 hurricanes, Peninsular Florida, Groundwater, 45, 439–446.
Flügel, W. A. (1995), Delineating hydrological response units by geographic information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany, Hydrological Processes, 9(3–4), 423–436, doi:10.1002/hyp.3360090313.
Foody, G. M. (2002), Status of land cover classification accuracy assessment, Remote Sensing of Environment, 80(1), 185–201.
Forzieri, G., L. Guarnieri, E. R. Vivoni, F. Castelli, and F. Preti (2011), Spectral-ALS data fusion for different roughness parameterizations of forested floodplains, River Research and Applications, 27(7), 826–840, doi:10.1002/rra.1398.
Forzieri, G., F. Castelli, and F. Preti (2012), Advances in remote sensing of hydraulic roughness, International Journal of Remote Sensing, 33(2), 630–654.
FountainA. G., and W. V. Tangborn (1985), Overview of contemporary techniques, in G. Young (Ed.), Techniques for Prediction of Runoff from Glacierized Areas (A contribution by the Working Group of the IAHS Commission on Snow and Ice), Wallingford: IAHS Publication 149, pp. 27–41.
Franchini, M., and M. Suppo (1996), Regional analysis of flow duration curves for a limestone region, Water Resources Management, 10, 199–218.
Franks, S. W., P. Gineste, K. J. Beven, and P. Merot (1998), On constraining the predictions of a distributed model: the incorporation of fuzzy estimates of saturated areas into the calibration process, Water Resources Research, 34(4), 787–797.
Franzmeier, D. P., E. J. Pederson, T. J. Longwell, J. G. Byrne, and C. K. Losche (1969), Properties of some soils in the Cumberland Plateau as related to slope aspect and position, Soil Science Society of America Journal, 33(5), 755–761.
Freeze, R. A., and R. L. Harlan (1969), Blueprint for a physically-based, digitally-simulated hydrologic response model, Journal of Hydrology, 9(3), 237–258, doi:10.1016/0022–1694(69)90020–1.
Freydank, K., and S. Siebert (2008), Towards Mapping the Extent of Irrigation in the Last Century: Time Series of Irrigated Area Per Country, University of Frankfurt Hydrology Paper.
FRIEND (Flow Regimes From Experimental And Network Data) (1989), I: Hydrological Studies, II: Hydrological Data, Wallingford: IAHS.
Frisbee, M. D., F. M. Phillips, A. R. Campbell, F. Liu, and S. A. Sanchez (2011), Streamflow generation in a large, alpine watershed in the southern Rocky Mountains of Colorado: is streamflow generation simply the aggregation of hillslope runoff responses?Water Resources Research, 47(6), 1–18, doi:10.1029/2010WR009391.
Fu, B. P. (1981), On the calculation of the evaporation from land surface (in Chinese), Scientia Atmospherica Sinica, 5, 23–31.
Gaál, L., J. Szolgay, S. Kohnová, et al. (2012), Flood timescales: understanding the interplay of climate and catchment processes through comparative hydrology, Water Resources Research, 48(4), 1–21, doi:10.1029/2011WR011509.
Gallant, A. J. E., and J. Gergis (2011), An experimental streamflow reconstruction for the River Murray, Water Resources Research, 47, 1783–1988, doi:10.1029/2010WR009832.
Gallo, K. P., D. Tarpley, K. Mitchell, et al. (2001), Monthly fractional green vegetation cover associated with land cover classes of the conterminous USA, Geophysical Research Letters, 28, 2089–2092.
Gan, K. C., T. A. McMahon, and I. C. O’Neill (1991), Transposition of monthly streamflow data to ungauged catchments, Nordic Hydrology, 22(2), 109–122.
Gandin, L. S. (1963), Objective Analysis of Meteorological Fields (in Russian), Israel Program for Scientific Translations, Jerusalem.
Gannett, H. (1912), Map of the United States showing mean annual runoff, in Surface Water Supply of the United States, 1911, U.S. Geological Survey, Water Supply Papers, No. 301–312, Government Printing Office, Washington, DC, pt. II.
Ganora, D., P. Claps, F. Laio, and A. Viglione (2009), An approach to estimate nonparametric flow duration curves in ungauged basins, Water Resources Research, 45(10), 1–10, doi:10.1029/2008WR007472.
Gao, H., Q. Tang, C. R. Ferguson, E. F. Wood, and D. P. Lettenmaier (2010), Estimating the water budget of major US river basins via remote sensing, International Journal of Remote Sensing, 31(14), 3955–3978, doi:10.1080/01431161.2010.483488.
Gartsman, I. N., B. A. Kazansky, and L. M. Korytny (1976), Structural measure of river systems and its indicative characters (case study systems of the Southern Minusinsk hollow), Reports of the Institute of Geography of Siberia and the Far East, Issue 49, 54–60.
Gaume, E., V. Bain, P. Bernardara, O. Newinger, et al. (2009), A compilation of data on European flash floods, Journal of Hydrology, 367(1–2), 70–78, doi:10.1016/j.jhydrol.2008.12.028.
Gaume, E., L. Gaál, A. Viglione, et al. (2010), Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites, Journal of Hydrology, 394(1–2), 101–117, doi:10.1016/j.jhydrol.2010.01.008.
Gebert, W. A., D. J. Graczyk, and W. R. Krug (1987), Average annual runoff in the United States, 1951–80, Hydrologic Investigations Atlas, HA-70, U.S. Geological Survey, Reston, VA.
Gelfan, A. N. (2006), Physically based model of heat and water transfer in frozen soil and its parametrization by basic soil data, in M. Sivapalan, T. Wagener, S. Uhlenbrook, et al. (Eds.), Predictions in Ungauged Basins: Promises and Progress, Wallingford: IAHS Publication 303, pp. 293–304.
Germann, U., G. Galli, M. Boscacci, and M. Bolliger (2006), Radar precipitation measurement in a mountainous region, Quarterly Journal of the Royal Meteorological Society, 132(618), 1669–1692, doi:10.1256/qj.05.190.
Gerrits, A. M. J., H. H. G. Savenije, L. Hoffmann, and L. Pfister (2007), New technique to measure forest floor interception: an application in a beech forest in Luxembourg, Hydrology and Earth System Sciences, 11(2), 695–701, doi:10.5194/hess-11-695-2007.
Gerrits, A. M. J., L. Pfister, and H. H. G. Savenije (2010), Spatial and temporal variability of canopy and forest floor interception in a beech forest, Hydrological Processes, 24(21), 3011–3025, doi:10.1002/hyp.7712.
Gerwin, W., W. Schaaf, D. Biemelt, et al. (2009), The artificial catchment “Chicken Creek” (Lusatia, Germany): a landscape laboratory for interdisciplinary studies of initial ecosystem development, Ecological Engineering, 35(12), 1786–1796, doi:10.1016/j.ecoleng.2009.09.003.
Gessler, P. E., I. D. Moore, N. J. McKenzie, and P. J. Ryan (1995), Soil-landscape modelling and spatial prediction of soil attributes, International Journal of Geographical Information Systems, 9, 421–432.
Gharari, S., M. Hrachowitz, F. Fenicia, and H. H. G. Savenije (2011), Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso-scale catchment, Hydrology and Earth System Sciences, 15(11), 3275–3291, doi:10.5194/hess-15-3275-2011.
Gingras, D., and K. Adamowski (1993), Homogeneous region delineation based on annual flood generation mechanisms, Hydrological Science Journal, 38(2), 103–121.
Gioia, A., V. Iacobellis, S. Manfreda, and M. Fiorentino (2008), Runoff thresholds in derived flood frequency distributions, Hydrology and Earth System Science, 12, 1295–1307, doi:10.5194/hess-12-1295-2008.
Giosan, L., P. D. Clift, M. G. Macklin, et al. (2012), Fluvial landscapes of the Harappan civilization, Proceedings of the National Academy of Sciences of the United States of America, 109(26), E1688–E1694, doi:10.1073/pnas.1112743109.
Giri, C., Z. Zhu, and B. Reed (2005), A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets, Remote Sensing of Environment, 94(1), 123–132, doi:10.1016/j.rse.2004.09.005.
Gitau, M. W., and I. Chaubey (2010), Regionalization of SWAT model parameters for use in ungauged watersheds, Water, 2(4), 849–871, doi:10.3390/w2040849.
Gleeson, T., and A. H. Manning (2008), Regional groundwater flow in mountainous terrain: three-dimensional simulations of topographic and hydrogeologic controls, Water Resources Research, 44(10), 1–16, doi:10.1029/2008WR006848.
Glenn, E. P., A. R. Huete, P. L. Nagler, K. K. Hirschboeck, and P. Brown (2007), Integrating remote sensing and ground methods to estimate evapotranspiration, Critical Reviews in Plant Sciences, 26(3), 139–168, doi:10.1080/07352680701402503.
Glenn, E. P., P. L. Nagler, and A. R. Huete (2010), Vegetation index methods for estimating evapotranspiration by remote sensing, Surveys in Geophysics, 31(6), 531–555, doi:10.1007/s10712–010–9102–2.
Global Soil Data Task Group (2000), Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS). Data set. Available online from Oak Ridge National Laboratory Distributed Active Archive Center (http://www.daac.ornl.gov), Oak Ridge, TN, doi:10.3334/ORNLDAAC/569.
Godwin, R., and F. Martin (1975), Calculation of gross and effective drainage areas for the Prairie Provinces, in Proceedings of Canadian Hydrology Symposium, pp. 219–223.
Goodrich, D. C., L. J. Lane, R. M. Shillito, et al. (1997), Linearity of basin response as a function of scale in a semiarid watershed, Water Resources Research, 33(12), 2951–2965, doi:10.1029/97WR01422.
Goodrich, D. C., T. O. Keefer, C. L. Unkrich, et al. (2008), Long-term precipitation database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resources Research, 44, W05S04.
Goswami, M., K. M. O’Connor, and A. Y. Shamseldin (2002), Structures and performances of five rainfall-runoff models for continuous river-flow simulation, in Proceedings 1st Biennial Meeting of International Environmental Modeling and Software Society, Lugano, Switzerland, 1, 476–481.
Goswami, M., K. M. O’Connor, and K. P. Bhattarai (2007), Development of regionalisation procedures using a multi-model approach for flow simulation in an ungauged catchment, Journal of Hydrology, 333(2–4), 517–531.
Gottschalk, L. (1985), Hydrological regionalization of Sweden (Régionalisation hydrologique de la Suède), Hydrological Sciences Journal, 30(1), 65–83, doi:10.1080/02626668509490972.
Gottschalk, L. (1993a), Correlation and covariance of runoff, Stochastic Hydrology and Hydraulics, 7, 85–101.
Gottschalk, L. (1993b), Interpolation of runoff applying objective methods, Stochastic Hydrology and Hydraulics, 7, 269–281.
Gottschalk, L., and I. Krasovskaia (1998), Development of Grid-related Estimates of Hydrological Variables, Report of the WCP-Water Project B.3, WCP/WCA, Geneva, Switzerland.
Gottschalk, L., and G. Perzyna (1989), Physically based distribution function for low flow, Hydrological Sciences Journal, 35(5), 559–573.
Gottschalk, L., and R. Weingartner (1998), Distribution of peak flow derived from a distribution of rainfall volume and runoff coefficient, and a unit hydrograph, Journal of Hydrology, 208, 148–162.
Gottschalk, L., J. L. Jensen, D. Lundquist, R. Solantie, and A. Tollan (1979), Hydrologic regions in the Nordic countries, Nordic Hydrology, 10(5), 273–286.
Gottschalk, L., L. M. Tallaksen, and G. Perzyna (1997), Derivation of low flow distribution functions using recession curves, Journal of Hydrology, 194(1–4), 239–262, doi:10.1016/S0022–1694(96)03214–3.
Gottschalk, L., I. Krasovskaia, E. Leblois, and E. Sauquet (2006), Mapping mean and variance of runoff in a river basin, Hydrology and Earth System Sciences, 10(4), 469–484, doi:10.5194/hess-10-469-2006.
Gottschalk, L., E. Leblois, and J. O. Skøien (2011), Distance measures for hydrological data having a support, Journal of Hydrology, 402(3–4), 415–421.
Götzinger, J., and A. Bárdossy (2007), Comparison of four regionalisation methods for a distributed hydrological model, Journal of Hydrology, 333, 374–384.
Gou, X., F. Chen, E. Cook, et al. (2007), Streamflow variations of the Yellow River over the past 593 years in western China reconstructed from tree rings, Water Resources Research, 43(6), 1–9, doi:10.1029/2006wr005705.
Graf, W. L. (1999), Dam nation: a geographic census of American dams and their large-scale hydrologic impacts, Water Resources Research, 35, 1305–1311.
Gray, S. T., and G. J. McCabe (2010), A combined water balance and tree ring approach to understanding the potential hydrologic effects of climate change in the central Rocky Mountain region, Water Resources Research, 46(5), 1–13, doi:10.1029/2008WR007650.
Gray, D. M., P. G. Landine, and R. J. Granger (1985), Simulating infiltration into frozen Prairie soils in streamflow models, Canadian Journal of Earth Sciences, 22(3), 464–472, doi:10.1139/e85–045.
Grayson, R., and G. Blöschl (2000), Spatial modelling of catchment dynamics, in R. Grayson and G. Blöschl (Eds.), Spatial Patterns in Catchment Hydrology: Observations and Modelling, Cambridge: Cambridge University Press.
Grayson, R. B., G. Blöschl, and I. D. Moore (1995), Distributed parameter hydrologic modelling using vector elevation data: Thales and TAPES-C, in V. P. Singh (Ed.), Models of Watershed Hydrology, Highlands Ranch, CO: Water Resources Publications, pp. 669–695.
Grayson, R. B., A. W. Western, F. H. S. Chiew, and G. Blöschl (1997), Preferred states in spatial soil moisture patterns: local and nonlocal controls, Water Resources Research, 33(12), 2897–2908, doi:10.1029/97WR02174.
Grayson, R. B., G. Blöschl, A. W. Western, and T. A. McMahon (2002), Advances in the use of observed spatial patterns of catchment hydrological response, Advances in Water Resources, 25(8–12), 1313–1334, doi:10.1016/S0309–1708(02)00060-X.
GREHYS (Groupe de Recherche en Hydrologie Statistique) (1996), Inter-comparison of regional flood frequency procedures for Canadian rivers, Journal of Hydrology, 186, 85–103.
Griffis, V. W., and J. R. Stedinger (2007), The log-Pearson type 3 distribution and its application in flood frequency analysis, 2. Parameter estimation methods, Journal of Hydrological Engineering, 12(4), 492–500.
Grimaldi, S., S. C. Kao, A. Castellarin, et al. (2011), 2.18: Statistical hydrology, in P. Wilderer (Ed.-in-Chief), Treatise on Water Science, Oxford: Elsevier, pp. 479–517.
Grimaldi, S., A. Petroselli, and F. Serinaldi (2012), Design hydrograph estimation in small and ungauged watersheds: continuous simulation method versus event-based approach, Hydrological Processes, 26(20), 3124–3134.
Grimm, F. (1968), Das Abflussverhalten in Europa: Typen und regionale Gliederung, Wiss. Veröffentlichung des Dt. Instituts für Länderkunde Leipzig, Neue Folge, 25/26, 18–180.
Gruber, A. M., D. S. Reis, and J. R. Stedinger (2007), Models of regional skew based on Bayesian GLS regression, International World Environmental & Water Resources Conference, Tampa, Florida, May 15–18, 2007.
Guetter, A. K., and K. P. Georgakakos (1993), River outflow of the conterminous United States, 1939–1988, Bulletin of the American Meteorological Society, 74(10), 1873–1891.
Guillot, P. (1972), Application of the method of Gradex, in E. F. Schulz, V. A. Koelzer, and K. Mahmood (Eds.), Floods and Droughts: Proceedings of the Second International Symposium in Hydrology, Fort Collins, CO: Water Resources Publications, pp. 44–49.
Güntner, A. (2008), Improvement of global hydrological models using GRACE data, Surveys in Geophysics, 29(4–5), 375–397, doi:10.1007/s10712–008–9038-y.
Güntner, A., J. Stuck, S. Werth, et al. (2007), A global analysis of temporal and spatial variations in continental water storage, Water Resources Research, 43(5), 1–19, doi:10.1029/2006WR005247.
Gupta, H. V., T. Wagener, and Y. Liu (2008), Reconciling theory with observations: elements of a diagnostic approach to model evaluation, Hydrological Processes, 22(18), 3802–3813, doi:10.1002/hyp.
Gupta, V. K., and D. R. Dawdy (1995), Physical interpretations of regional variations in the scaling exponents of flood quantiles, in J. D. Kalma (Ed.), Scale Issues in Hydrological Modelling, Chichester: Wiley, pp. 106–119.
Gupta, V. K., O. J. Mesa, and D. R. Dawdy (1994), Multiscaling theory of flood peaks: regional quantile analysis, Water Resources Research, 30(12), 3405, doi:10.1029/94WR01791.
Guse, B., A. H. Thieken, A. Castellarin, and B. Merz (2010), Deriving probabilistic regional envelope curves with two pooling methods, Journal of Hydrology, 380(1–2), 14–26, doi:10.1016/j.jhydrol.2009.10.010.
Gustard, A. (1992), Analysis of river regimes, in P. Calow, and G. E. Petts (Eds.), The Rivers Handbook, Volume I, Oxford: Blackwell, pp. 29–47.
Gustard, A., and S. Demuth (Eds.) (2009), Manual on Low-flow Estimation and Prediction, Operational Hydrology Report No. 50, WMO-No. 1029, 57–70.
Gustard, A., D. C. W. Marshall, and M. F. Sutcliffe (1987), Low Flow Estimation in Scotland, Wallingford: Institute of Hydrology, IH Report No.101 (Unpublished).
Gustard, A., L. A. Roald, S. Demuth, H. S. Lumadjeng, and R. Gross (1989), Flow Regimes from Experimental and Network Data, Volume I: Hydrological Studies, Wallingford: Institute of Hydrology, pp. 127–159.
Gustard, A., A. Bullock, and J. M. Dixon (1992), Low Flow Estimation in the United Kingdom, Institute of Hydrology Report 108, Wallingford.
Haberlandt, U., A. D. Ebner von Eschenbach, and I. Buchwald (2008), A space-time hybrid hourly rainfall model for derived flood frequency analysis, Hydrology and Earth System Sciences, 12, 1353–1367.
Hack, J. T., and J. G. Goodlett (1960), Geomorphology and Forest Ecology of a Mountain Region in the Central Appalachians, U.S. Geological Survey Professional Paper 347.
Hackelbusch, A., T. Micevski, G. Kuczera, A. Rahman, and K. Haddad (2009), Regional flood frequency analysis for eastern New South Wales: a region of influence approach using generalised least squares log-Pearson 3 parameter regression, 32nd Hydrology and Water Resources Symposium, Newcastle, 30 Nov to 3 Dec, pp. 603–615.
Haddad, K., and A. Rahman (2011), Regional flood estimation in New South Wales Australia using generalised least squares quantile regression, Journal of Hydrologic Engineering, ASCE, 16(11), 920–925, doi:10.1061/(ASCE)HE.1943–5584.0000395.
Haddad, K., and A. Rahman, (2012), Regional flood frequency analysis in eastern Australia: Bayesian GLS regression-based methods within fixed region and ROI framework – quantile regression vs. parameter regression technique, Journal of Hydrology, 430, 142–161, doi:10.1016/j.jhydrol.2012.02.012.
Haddad, K., A. Rahman, P. E. Weinmann, G. Kuczera, and J. E. Ball (2010), Streamflow data preparation for regional flood frequency analysis: lessons from south-east Australia, Australian Journal of Water Resources, 14(1), 17–32.
Haddad, K., A. Rahman, and G. Kuczera (2011a), Comparison of ordinary and generalised least squares regression models in regional flood frequency analysis: a case study for New South Wales, Australian Journal of Water Resources, 15(2), 59–70.
Haddad, K., A. Rahman, G. Kuczera, and T. Micevski (2011b), Regional flood frequency analysis in New South Wales using Bayesian GLS regression: comparison of fixed region and region-of-influence approaches, 34th IAHR World Congress, 26 June – 1 July 2011, Brisbane, pp. 162–169.
Haddad, K., A. Rahman, and J. R. Stedinger (2012), Regional flood frequency analysis using Bayesian generalized least squares: a comparison between quantile and parameter regression techniques, Hydrological Processes, 26(7), 1008–1021, doi:10.1002/hyp.8189.
Haff, P. K. (1996), Limitations on predictive modeling in geomorphology, in L. B. Rhoads and C. E. Thorn (Eds.), The Scientific Nature of Geomorphology: Proceedings of the 27th Binghamton Symposium in Geomorphology, Chichester: Wiley, pp. 337–358.
Haines, A. T., B. L. Finlayson, and T. A. McMahon (1988), A global classification of river regimes, Applied Geography, 8(4), 255–272, doi:10.1016/0143–6228(88)90035–5.
Halihan, T., S. Mouri, and J. Puckette (2009), Evaluation of Fracture Properties of the Arbuckle-Simpson Aquifer, Oklahoma State University Report, http://www.owrb.ok.gov/studies/groundwater/arbuckle_simpson/pdf/2009_Reports/EvaluationFracturePropertiesArbuckleSimpson_Halihan.pdf
Hannah, D. M., A. M. Gurnell, and G. R. McGregor (1999), A methodology for investigation of the seasonal evolution in proglacial hydrograph form, Hydrological Processes, 13(16), 2603–2621, doi:10.1002/(SICI)1099–1085(199911)13:16<2603::AID-HYP936>3.0.CO;2–5.
Hannah, D. M., B. P. G. Smith, A. M. Gurnell, and G. R. McGregor (2000), An approach to hydrograph classification, Hydrological Processes, 14(2), 317–338, doi:10.1002/(SICI)1099–1085(20000215)14:2<317::AID-HYP929>3.0.CO;2-T.
Hannah, D. M., S. R. Kansakar, A. J. Gerrard, and G. Rees (2005), Flow regimes of Himalayan rivers of Nepal: nature and spatial patterns, Journal of Hydrology, 308(1–4), 18–32, doi:10.1016/j.jhydrol.2004.10.018.
Hannah, D. M., S. Demuth, V. Lanen, et al. (2011), Large-scale river flow archives: importance, current status and future needs, Hydrological Processes, 25(7), 1191–1200.
Hansen, M. C., R. S. DeFries, J. R. G. Townshend, and R. Sohlberg (2000), Global land cover classification at 1km spatial resolution using a classification tree approach, International Journal of Remote Sensing, 21, 1331–1364.
Hapuarachchi, H. A. P., A. S. Kiem, H. Ishidaira, J. Magome, and K. Takeuchi (2004), Eliminating uncertainty associated with classifying soil types in distributed hydrologic modelling, Proceedings of AOGS First Annual Meeting and the APHW 2nd Conference, Singapore, 5–9 July 2004, pp. 592–600.
Hapuarachchi, H. A. P., K. Takeuchi, M. Zhou, et al. (2008), Investigation of the Mekong River basin hydrology for 1980–2000 using the YHyM, Hydrological Processes, 22, 1246–1256, doi:10.1002/hyp.6934.
Harlin, J., and C. S. Kung (1992), Parameter uncertainty and simulation of design floods in Sweden, Journal of Hydrology, 137, 209–230.
Harman, C. J., P. S. C. Rao, N. B. Basu, G. S. McGrath, P. Kumar, and M. Sivapalan (2011a), Climate, soil, and vegetation controls on the temporal variability of vadose zone transport, Water Resources Research, 47, W00J13, doi:10.1029/2010WR010194.
Harman, C. J., P. A. Troch, and M. Sivapalan (2011b), Functional model of water balance variability at the catchment scale: 2. Elasticity of fast and slow runoff components to precipitation change in the continental United States, Water Resources Research, 47, W02523, doi:10.1029/2010WR009656.
Harris, D. M., J. J. McDonnell, and A. Rodhe (1995), Hydrograph separation using continuous open system isotopic mixing, Water Resources Research, 31, 157–171.
Harris, N. M., A. M. Gurnell, D. M. Hannah, and G. E. Petts (2000), Classification of river regimes: a context for hydroecology, Hydrological Processes, 14(16–17), 2831–2848.
Harrison, S. (2001), On reductionism and emergence in geomorphology, Transactions of the Institute of British Geographers, 26(3), 327–339.
Harte, J. (2002), Toward a synthesis of Newtonian and Darwinian worldviews, Physics Today, 55, 29–34, doi:10.1063/1.1522164.
Hartigan, J. A. (1975), Clustering Algorithms, New York: John Wiley & Sons.
Hartmann, G., and A. Bárdossy (2005), Investigation of the transferability of hydrological models and a method to improve model calibration, Advances in Geosciences, 5, 83–87.
Harvey, C. L., H. Dixon, and J. Hannaford (2012), An appraisal of the performance of data infilling methods for application to daily mean river flow records in the UK, Hydrology Research, 43(5), 618–636, doi:10.2166/nh.2012.110.
Hassan, F. A. (1981), Historical Nile floods and their implications for climate change, Science, 212, 1142–1145.
Hawley, M. E., and McCuen, R. H. (1982), Water yield estimation in western United States, Journal of the Irrigation and Drainage Division, ASCE, 108(1), 25–35.
HayR. C., and J. B. Stall (1974), History of Drainage Channel Improvement in the Vermilion River, Research Report 90, Illinois State Water Survey, Urbana.
Hayes, D. C. (1992), Low flow Characteristics of Streams in Virginia, US Geological Survey, Water Supply Paper 2374.
Hebson, C. S., and C. Cunnane (1987), Assessment of use of at-site and regional flood data for flood frequency estimation, in V. P. Singh (Ed.), Hydrological Frequency Modeling, Dordrecht: Reidel Publishing Company, pp. 433–448.
Hebson, C., and E. F. Wood (1982), A derived flood frequency distribution using Horton order ratios, Water Resources Research, 18(5), 1509–1518, doi:10.1029/WR018i005p01509.
Heidbüchel, I., P. A. Troch, S. W. Lyon, and M. Weiler (2012), The master transit time distribution of variable flow systems, Water Resources Research, 48, 1–19, doi:10.1029/2011WR011293.
Hellebrand, H., C. Müller, P. Matgen, F. Fenicia, and H. Savenije (2011), A process proof test for model concepts: modelling the meso-scale, Physics and Chemistry of the Earth Parts A/B/C, 36(1–4), 42–53, doi:10.1016/j.pce.2010.07.019.
Henriksen, H. J., L. Troldborg, A. L. Højberg, and J. C. Refsgaard (2008), Assessment of exploitable groundwater resources of Denmark by use of ensemble resource indicators and a numerical groundwater–surface water model, Journal of Hydrology, 348(1–2), 224–240, doi:10.1016/j.jhydrol.2007.09.056.
Herget, J. (1978), Taming the environment: the drainage district in Illinois, Journal of the Illinois State Historical Society, 71(2), 107–118.
Herman, A., V. Kumar, P. Arkin, and J. Kousky (1997), Objectively determined 10-day African rainfall estimates created for famine early warning systems, International Journal of Remote Sensing, 18(10), 2147–2159.
Hernandez, M., S. N. Miller, D. C. Goodrich, et al. (2000), Modeling runoff response to land cover and rainfall spatial variability in semi-arid watersheds, Environmental Monitoring and Assessment, 64(1), 285–298, doi:10.1023/A:1006445811859.
Herrmann, R. (1970), Fourier-Analyse des Abflussregimes im westlichen Zentralafrika, Erdkunde, 24, 120–126.
Herrmann, A., and F. Egger (1980a), Das Abflussverhalten im Flussgebiet der Isar unter Anwendung der Fourier-Analyse, Teil I. Deutsche Gewässerkundliche Mitteilungen, 24(3), 81–86.
Herrmann, A., and F. Egger (1980b), Das Abflussverhalten im Flussgebiet der Isar unter Anwendung der Fourier-Analyse, Teil II. Deutsche Gewässerkundliche Mitteilungen, 24(4/5), 132–137.
Hess, G. W. (2002), Updated Techniques for Estimating Monthly Streamflow-Duration at Ungaged and Partial-Record Sites in Central Nevada, U.S. Geological Survey Open-File Report 02-168.
Hessel, R., V. Jetten, and G. H. Zhang (2003), Estimating Manning’s n for steep slopes, Catena, 54, 77–91.
Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis (2005), Very high resolution interpolated climate surfaces for global land areas, International Journal of Climatology, 25(15), 1965–1978, doi:10.1002/joc.1276.
Hipel, K. W., and A. I. McLeod (1994), Time Series Modelling of Water Resources and Environmental Systems, Amsterdam: Elsevier Science.
Hirsch, R. M. (1979), An evaluation of some record reconstruction techniques, Water Resources Research, 15(6), 1781–1790, doi:10.1029/WR015i006p01781.
Hirsch, R.M. (1982), A comparison of four streamflow record extension techniques, Water Resources Research, 18(4), 1081–1088.
Hirschboeck, K. K. (1987), Hydroclimatically-defined mixed distributions in partial duration flood series, in V. P. Singh (Ed.), Hydrologic Frequency Modeling: Proceedings of the International Symposium on Flood Frequency and Risk Analyses, 14–17 May 1986, Louisiana State University, Baton Rouge, Norwell, MA: D. Reidel, pp. 199–212.
Hirschboeck, K. K. (1988), Flood hydroclimatology, in V. R. Baker, R. C. Kochel and P. C. Patton (Eds.), Flood Geomorphology, Hoboken, NJ: John Wiley, pp. 27–49.
Hisdal, H., and L. M. Tallaksen (2004), Hydrological drought characteristics, in L. M. Tallaksen and H. van Lanen (Eds.), Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater, Amsterdam: Elsevier, 139–198.
Hisdal, H., K. Stahl, L. M. Tallaksen, and S. Demuth (2001), Have streamflow droughts in Europe become more severe or frequent?International Journal of Climatology, 21, 317–333, doi:10.1002:joc.619.
Hisdal, H., L. M. Tallaksen, B. Clausen, E. Peters, and A. Gustard (2004), Hydrological drought characteristics, in L. M. Tallaksen and H. A. J. van Lanen (Eds.), Hydrological Drought Processes and Estimation Methods for Streamflow and Groundwater, Developments in Water Sciences 48, Amsterdam: Elsevier Science Publisher, pp. 139–198.
Hlavčová, K., J. Szolgay, M. Čistý, S. Kóhnová, and M. Kalaš (2000), Estimation of mean monthly flows in small ungauged catchments, Slovak Journal of Civil Engineering, VIII, 21–29.
Hlavčová, K., J. Parajka, J. Szolgay, and S. Kohnová (2006), Grid-based and conceptual approaches to modelling the impact of climate change on runoff, Slovak Journal of Civil Engineering, XIV, 19–29.
Ho, T. K. (1995), Random decision forest, in Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, 14–16 August, 1995, pp. 278–282.
Hoef, J. M. van, E. Peterson, and D. Theobald (2006), Spatial statistical models that use flow and stream distance, Environmental and Ecological Statistics, 13(4), 449–464, doi:10.1007/s10651–006–0022–8.
Hoesein, A. A., D. H. Pilgrim, G. W. Titmarsh, and I. Cordery (1989), Assessment of the US Conservation Service Method for estimating design floods, in M. L. Kavvas (Ed.), New Directions for Surface Water Modelling, Wallingford: IAHS Publication 181, pp. 283–291.
Höfle, B., M. Vetter, N. Pfeifer, G. Mandlburger, and J. Stötter (2009), Water surface mapping from airborne laser scanning using signal intensity and elevation data, Earth Surface Processes and Landforms, 34(12), 1635–1649.
Holko, L., and Z. Kostka, (2008), Impact of landuse on runoff in mountain catchments of different scales, Soil and Water Research, 3(3), 113–120.
HolkoL., J. Parajka, Z. Kostka, P. Skoda, and G. Blöschl (2011), Flashiness of mountain streams in Slovakia and Austria, Journal of Hydrology, 405, 392–401, doi:10.1016/j.jhydrol.2011.05.038.
Holländer, H. M., T. Blume, H. Bormann, et al. (2009), Comparative predictions of discharge from an artificial catchment (Chicken Creek) using sparse data, Hydrology and Earth System Sciences, 13, 2069–2094.
Hollaus, M., C. Aubrecht, B. Höfle, K. Steinnocher, and W. Wagner (2011), Roughness mapping on various vertical scales based on full-waveform airborne laser scanning data, Remote Sensing, 3(3), 503–523, doi:10.3390/rs3030503.
Hollis, G. E. (1975), The effect of urbanization on floods of different recurrence interval, Water Resources Research, 11, 3, 431–435.
Holmes, M. G. R., A. R. Young, A. Gustard, and R. Grew (2002), A region of influence approach to predicting flow duration curves within ungauged catchments, Hydrology and Earth System Sciences, 6(4), 721–731, doi:10.5194/hess-6-721-2002.
Hooper, R. P., and C. A. Shoemaker (1986), A comparison of chemical and isotopic hydrograph separation, Water Resources Research, 22(10), 1444–1454, doi:10.1029/WR022i010p01444.
Hortness, J. E, and C. Berenbrock (2001), Estimating Monthly and Annual Streamflow Statistics at Ungaged Sites in Idaho, U.S. Geological Survey, Boise, Idaho, Water-Resources Investigations Report 01–4093.
Hosking, J. R. M., and J. R. Wallis (1988), The effect of intersite dependence on regional flood frequency analysis, Water Resources Research, 24, 588–600.
Hosking, J. R. M., and J. R. Wallis (1993), Some statistics useful in regional frequency analysis, Water Resources Research, 29(2), 271–281, doi:10.1029/92WR01980.
Hosking, J. R. M., and J. R. Wallis (1997), Regional Frequency Analysis: An Approach Based on L-Moments, New York: Cambridge University Press.
Hossain, F. and E. N. Anagnostou (2004), Assessment of current passive-microwave- and infrared-based satellite rainfall remote sensing for flood prediction, Journal of Geophysical Research, 109(D7), 1–14, doi:10.1029/2003JD003986.
Houghton-Carr, H. (1999), Restatement and application of the flood studies report rainfall-runoff method, in Flood Estimation Handbook, Volume 4, Wallingford: Institute of Hydrology.
House, P. K., and K. K. Hirschboeck (1997), Hydroclimatological and paleohydrological context of extreme winter flooding in Arizona, 1993, in R. A. Larson and J. E. Slosson (Eds.), Storm-Induced Geological Hazards: Case Histories From the 1992–1993 Winter Storm in Southern California and Arizona, Geological Society of America Reviews in Engineering Geology, 11, pp. 1–24.
Houser, P., D. Goodrich, and K. Syed (2000), Runoff, precipitation, and soil moisture at Walnut Gulch, in R. Grayson and G. Blöschl (Eds.), Spatial Patterns in Catchment Hydrology: Observations and Modelling, Cambridge: Cambridge University Press, pp. 125–157.
Hrachowitz, M., C. Soulsby, D. Tetzlaff, J. J. C. Dawson, and I. A. Malcolm (2009), Regionalization of transit time estimates in montane catchments by integrating landscape controls, Water Resources Research, 45(5), doi:10.1029/2008WR007496.
Hrachowitz, M., C. Soulsby, D. Tetzlaff, I. A. Malcolm, and G. Schoups (2010), Gamma distribution models for transit time estimation in catchments: physical interpretation of parameters and implications for time-variant transit time assessment, Water Resources Research, 46(10), W10536, doi:10.1029/2010WR009148.
Huffman, G. J., R. F. Adler, M. M. Morrissey, et al. (2001), Global precipitation at one-degree daily resolution from multisatellite observations, Journal of Hydrometeorology, 2(1), 36–50, doi:10.1175/1525–7541(2001)002<0036:GPAODD>2.0.CO;2.
Huffman, G. J., R. F. Adler, D. T. Bolvin, et al. (2007), The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale, Journal of Hydrometeorology, 8, 33–55.
Hughes, D. A. (1997a), Rainfall-runoff modelling, in Southern Africa FRIEND, Technical Documents in Hydrology No. 15, Paris: United Nations Educational, Scientific and Cultural Organization.
Hughes, D. A. (1997b), Southern African “FRIEND”: The Application of Rainfall-Runoff Models in the SADC Region, Water Research Commission Report No. 235/1/97, Pretoria, South Africa.
Hughes, D. A. (2004), Incorporating groundwater recharge and discharge functions into an existing monthly rainfall-runoff model, Hydrological Sciences Journal, 49(2), 297–311.
Hughes, D. A. (2006), A simple model for assessing utilisable streamflow allocations in the context of the Ecological Reserve, Water SA, 32(3), 411–417.
Hughes, D. A., and S. Mantel (2010), Estimating uncertainties in simulations of natural and modified streamflow regimes in South Africa, in E. Servat, S. Demuth, A. Dezetter, and T. Daniell (Eds.), Global Change: Facing Risks and Threats to Water Resources, Proceedings of the Sixth FRIEND World Conference, Fez, Morocco, November 2010, Wallingford: IAHS Publication 340, pp. 358–364.
Hughes, D. A., and V. Smakhtin (1996), Daily flow time series patching or extension: a spatial interpolation approach based on flow duration curves, Hydrological Sciences Journal, 41(6), 851–872, doi:10.1080/02626669609491555.
Hughes, D., L. Andersson, J. Wilk, and H. Savenije (2006), Regional calibration of the Pitman model for the Okavango River, Journal of Hydrology, 331(1–2), 30–42, doi:10.1016/j.jhydrol.2006.04.047.
Hughes, D. A., E. Kapangaziwiri, and T. Sawunyama (2010), Hydrological model uncertainty assessment in southern Africa, Journal of Hydrology, 387(3–4), 221–232, doi:10.1016/j.jhydrol.2010.04.010.
Hundecha, Y., and A. Bárdossy (2004), Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalisation of a watershed model, Journal of Hydrology, 292, 281–295, doi:10.1016/j.hydrol.2004.01.2002.
Hundecha, Y., T. B. M. J. Ouarda, and A. Bárdossy (2008), Regional estimation of parameters of a rainfall-runoff model at ungauged watersheds using the “spatial” structures of the parameters within a canonical physiographic-climatic space, Water Resources Research, 44, W01427, doi:10.1029/2006WR005439.
Hurkmans, R., Z. Su, and T. J. Jackson (2004), Evaluation of satellite soil moisture retrieval algorithms using AMSR-E data, in A. J. Teuling, H. Leijnse, P. A. Troch, J. Sheffield and E. F. Wood (Eds.), International Workshop on the Terrestrial Water Cycle: Modelling and Data Assimilation Across Catchment Scales (Book of Abstracts), Report 122, Wageningen University, the Netherlands, pp. 45–49.
Hurkmans, R. T. W. L., H. De Moel, J. C. J. H. Aerts, and P. A. Troch (2008), Water balance versus land surface model in the simulation of Rhine river discharges, Water Resources Research, 44(1), 1–14, doi:10.1029/2007WR006168.
Hutchinson, M. F. (1995), Interpolating mean rainfall using thin plate smoothing splines, International Journal of Geographical Information Science, 9(4), 385–403, doi:10.1080/02693799508902045.
Hwang, T., L. E. Band, J. M. Vose, and C. Tague (2012), Ecosystem processes at the watershed scale: hydrologic vegetation gradient as an indicator for lateral hydrologic connectivity of headwater catchments, Water Resources Research, 48, W06514, doi:10.1029/2011WR011301.
Iacobellis, V., P. Claps, and M. Fiorentino (2002), Climatic control on the variability of flood distribution, Hydrology and Earth System Sciences, 6(2), 229–237.
Iacobellis, V., A. Gioia, S. Manfreda, and M. Fiorentino (2011), Flood quantiles estimation based on theoretically derived distributions: regional analysis in Southern Italy, Natural Hazards and Earth System Sciences, 11, 673–695, doi:10.5194/nhess-11-673-2011.
Ibrahim, A. B., and I. Cordery (1995), Estimation of recharge and runoff volumes from ungauged catchments in eastern Australia, Hydrological Sciences, 40(4), 499–515.
ICOLD (International Commission on Large Dams) (2009),World Register of Dams, Version updates 1998–2009, Paris: ICOLD. Available online at www.icold-cigb.net.
IH (1980), Low Flow Studies Report, Wallingford: Institute of Hydrology.
IH (1999), Flood Estimation Handbook, Wallingford: Institute of Hydrology.
Ihaka, R., and R. Gentleman (1996), R: a language for data analysis and graphics, Journal of Computational and Graphical Statistics, 5(3), 299–314, doi:10.2307/1390807.
Immerzeel, W. W., and P. Droogers (2008), Calibration of a distributed hydrological model based on satellite evapotranspiration, Journal of Hydrology, 349(3–4), 411–424.
Immerzeel, W. W., A. Gaur, and S. J. Zwart (2008), Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment, Agricultural Water Management, 95, 11–24.
Ishak, E. H., A. Rahman, S. Westra, A. Sharma, and G. Kuczera (2010), Preliminary analysis of trends in Australian flood data, in World Environmental and Water Resources Congress 2010, American Society of Civil Engineers (ASCE), 16–20 May 2010, Providence, Rhode Island, USA, pp. 120–124.
Ishidaira, H., K. Takeuchi, T. Q. Ao (2000), Hydrological simulation of large river basins in Southeast Asia, in Proceedings of the Fresh Perspectives on Hydrology and Water Resources in Southeast Asia and the Pacific, Christchurch, New Zealand, 21–24 November 2000, IHP-V Technical Document in Hydrology No. 7, pp. 53–54.
Istanbulluoglu, E., O. Yetemen, E. R. Vivoni, H. A. Gutiérrez-Jurado, and R. L. Bras (2008), Eco-geomorphic implications of hillslope aspect: inferences from analysis of landscape morphology in central New Mexico, Geophysical Research Letters, 35(14), 1–6, doi:10.1029/2008GL034477.
Jackisch, C., E. Zehe, and A. K. Singh (2011), Applying PUB to the real world: rapid data assessment, Hydrology and Earth System Sciences Discussions, 8, 7499–7554.
Jacquot, J. (2009), Numbers: Dams, from Hoover to Three Gorges to the crumbling ones, Discover Magazine, March.
Jain, S. and U. Lall (2000), Magnitude and timing of annual maximum floods: trends and large-scale climatic associations for the Blacksmith Fork River, Utah, Water Resources Research, 36(12), 3641–3651, doi:10.1029/2000WR900183.
Jamagne, M., J. Daroussin, M. Eimberck, et al. (2002), Soil Geographical Database of Eurasia and Mediterranean Countries at 1:1.000.000, 17th World Congress of Soil Science, Bangkok, Thailand.
Jarvis, A., H. I. Reuter, A. Nelson, and E. Guevara (2008), Hole-filled SRTM for the Globe Version 4. Available from the CGIAR-CSI SRTM 90m database: http://srtm.csi.cgiar.org.
Javelle, P., T. B. M. J. Ouarda, M. Lang, et al. (2002), Development of regional flood-duration-frequency curves based on the index-flood method, Journal of Hydrology, 258(1–4), 249–259.
Jax, K. (2005), Function and “functioning” in ecology: what does it mean?Oikos, 111(3), 641–648, doi:10.1111/j.1600–0706.2005.13851.x.
Jefferson, A., G. E. Grant, S. L. Lewis, and S. T. Lancaster (2010), Coevolution of hydrology and topography on a basalt landscape in the Oregon Cascade Range, USA, Earth Surface Processes and Landforms, 35(7), 803–816, doi:10.1002/esp.1976.
Jeffrey, S. J., J. O. Carter, K. B. Moodie, and A. R. Beswick (2001), Using spatial interpolation to construct a comprehensive archive of Australian climate data, Environmental Modelling & Software, 16(4), 309–330, doi:10.1016/S1364–8152(01)00008–1.
Jencso, K. G., and B. L. McGlynn (2011), Hierarchical controls on runoff generation: topographically driven hydrologic connectivity, geology, and vegetation, Water Resources Research, 47(11), 1–16, doi:10.1029/2011WR010666.
Jencso, K. G., B. L. McGlynn, M. N. Gooseff, K. E. Bencala, and S. M. Wondzell (2010), Hillslope hydrologic connectivity controls riparian groundwater turnover: implications of catchment structure for riparian buffering and stream water sources, Water Resources Research, 46(10), W10524, doi:10.1029/2009WR008818.
Jenny, H. (1941), Factors of Soil Formation, New York: McGraw-Hill.
Jenny, H. (1980), The Soil Resource, New York: Springer.
Jiapeng, H., L. Zhongmin, and Y. Zhongbo (2003), A modified rational formula for flood design in small basins, Journal of the American Water Resources Association, 39(5), 1017–1025.
Jimenez, A., C. Garcia, L. Mediero, L. Incio, and J. Garrote (2012), Map of maximum flows of intercommunity basins, Revista de Obras Publicas, 3533, 7–32.
Jingyi, Z., and M. J. Hall (2004), Regional flood frequency analysis for the Gan-Ming River basin in China, Journal of Hydrology, 296(1–4), 98–117, doi:10.1016/j.jhydrol.2004.03.018.
Johansson, B. (2002), Estimation of areal precipitation for hydrological modelling in Sweden. Ph.D. thesis, A76, Göteborg University.
Johnson, C. G. (1970), A Proposed Streamflow Data Program for Central New England, Open File Report, U.S. Geological Survey, Boston, MA.
JohnsonR. (1998), The forest cycle and low river flows: a review of UK and international studies, Forest Ecology and Management, 109(1–3), 1–7, doi:10.1016/s0378–1127(98)00231-x.
Jolly, W., R. Nemani, and S. Running (2005), A generalized bioclimatic index to predict foliar phenology in response to climate, Global Change Biology, 11, 619–632, doi:10.1111/j.1365-2486.2005.00930.x.
Jothityangkoon, C., and M. Sivapalan (2009), Framework for exploration of climatic and landscape controls on catchment water balance, with emphasis on inter-annual variability, Journal of Hydrology, 371(1–4), 154–168, doi:10.1016/j.jhydrol.2009.03.030.
Jothityangkoon, C., M. Sivapalan, and D. Farmer (2001), Process controls of water balance variability in a large semi-arid catchment: downward approach to hydrological model development, Journal of Hydrology, 254(1–4), 174–198.
Jury, W. A., and K. Roth (1990), Transfer Functions and Solute Movement Through Soil, Basel, Switzerland: Birkhäuser Verlag.
Juston, J., J. Seibert, and P.-O. Johansson (2009), Temporal sampling strategies and uncertainty in calibrating a conceptual hydrological model for a small boreal catchment, Hydrological Processes, 23(21), 3093–3109, doi:10.1002/hyp.7421.
Kalbus, E., F. Reinstorf, and M. Schirmer (2006), Measuring methods for groundwater–surface water interactions: a review, Hydrology and Earth System Sciences, 10(6), 873–887, doi:10.5194/hess-10-873-2006.
Kalinin, G. P. (1971), Global Hydrology, Jerusalem: Israel Program for Scientific Translation.
Kallis, G. (2007), When is it coevolution?Ecological Economics, 62(1), 1–6.
Kalma, J. D., T. R. McVicar, and M. F. McCabe (2008), Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data, Surveys in Geophysics, 29(4–5), 421–469, doi:10.1007/s10712–008–9037-z.
Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al. (2002), NCEP-DOE AMIP-II Reanalysis (R-2), Bulletin of the American Meteorological Society, 83(11), 1631–1643, doi:10.1175/BAMS-83-11-1631.
Kapangaziwiri, E., and D. A. Hughes (2008), Towards revised physically based parameter estimation methods for the Pitman monthly rainfall-runoff model, Water SA, 34(2), 183–192.
Kapangaziwiri, E., D. A. Hughes, and T. Wagener (2009), Towards the development of a consistent uncertainty framework for hydrological predictions in South Africa, in K. Yilmaz, I. Yucel, H. V. Guptaet al. (Eds.), New Approaches To Hydrological Prediction In Data Sparse Regions, Proceedings of Symposium HS2, Hyderabad, India, September 2009, Wallingford: IAHS Publication 333, pp. 84–93.
Katsuyama, M., N. Kabeya, and N. Ohte (2009), Elucidation of the relationship between geographic and time sources of stream water using a tracer approach in a headwater catchment, Water Resources Research, 45(6), 1–13, doi:10.1029/2008WR007458.
Katsuyama, M., M. Tani, and S. Nishimoto (2010), Connection between streamwater mean residence time and bedrock groundwater recharge/discharge dynamics in weathered granite catchments, Hydrological Processes, 24(16), 2287–2299, doi:10.1002/hyp.7741.
Kaufman, L., and P. J. Rouseeuw (1990), Finding Groups in Data: An Introduction to Cluster Analysis, New York: John Wiley & Sons.
Kay, A. L., D. A. Jones, S. M. Crooks, A. Calver, and N. S. Reynard (2006), A comparison of three approaches to spatial generalisation of rainfall-runoff models, Hydrological Processes, 20(18), 3953–3973.
Keller, R. (1968), Die Regime der Flüsse der Erde, Freiburger Geographische Hefte, 6, 65–86.
Kelliher, F. M., R. Leuning, and E.-D. Schulze (1993), Evaporation and canopy characteristics of coniferous forests and grasslands, Oecologia, 95, 153–163.
Kennard, M. J., B. J. Pusey, J. D. Olden, et al. (2010), Ecohydrological classification of natural flow regimes to support environmental flow assessments: an Australian case study, Freshwater Biology, 55, 171–193.
Kennedy, J. R. (2007), Changes in storm runoff with urbanization: the role of pervious areas in a semi-arid environment. M.S. thesis, University of Arizona.
Kennedy, J. R., D. C. Goodrich, and C. L. Unkrich (2012), Using the KINEROS2 modeling framework to evaluate the increase in storm runoff from residential development in a semi-arid environment, Journal of Hydrologic Engineering, doi:10.1061/(ASCE)HE.1943–5584.0000655.
Kerr, Y. H., P. Waldteufel, J. P. Wigneron, J. Martinuzzi, J. Font, and M. Berger (2001), Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission, IEEE Transactions on Geoscience and Remote Sensing, 39, 1729–1735.
Kerr, Y. H., P. Waldteufel, J.-P. Wigneron, et al. (2010), The SMOS Mission: new tool for monitoring key elements of the global water cycle, Proceedings of the IEEE, 98(5), 666–687.
Kiem, A. S., and D. C. Verdon-Kidd (2011), Steps toward “useful” hydroclimatic scenarios for water resource management in the Murray-Darling Basin, Water Resources Research, 47, 1–14, doi:10.1029/2010WR009803.
Kiem, A. S., S. W. Franks, and G. Kuczera (2003), Multi-decadal variability of flood risk, Geophysical Research Letters, 30(2), 1–5, doi:10.1029/2002GL015992.
Kiem, A. S., H. Ishidaira, H. P. Hapuarachchi, et al. (2008), Future hydroclimatology of the Mekong River basin simulated using the high-resolution Japan Meteorological Agency (JMA) AGCM, Hydrological Processes, 22(9), 1382–1394, doi:10.1002/hyp.
Kim, U., and J. Kaluarachchi (2008), Application of parameter estimation and regionalization methodologies to ungauged basins of the Upper Blue Nile River Basin, Ethiopia, Journal of Hydrology, 362(1–2), 39–56, doi:10.1016/j.jhydrol.2008.08.016.
Kingston, D. G., G. R. McGregor, D. M. Hannah, and D. M. Lawler (2007), Large-scale climatic controls on New England river flow, Journal of Hydrometeorology, 8, 367–379.
Kingston, D. G., M. C. Todd, R. G. Taylor, and J. R. Thompson (2009), Uncertainty in the potential evapotranspiration climate change signal, Geophysical Research Letters, 36, L20403, doi:10.1029/2009GL040267.
Kingston, D. G., D. M. Hannah, D. M. Lawler, and G. R. McGregor (2011), Regional classification, variability, and trends of northern North Atlantic river flow, Hydrological Processes, 25, 1021–1033.
Kirchner, J. W. (2003), A double paradox in catchment hydrology and geochemistry, Hydrological Processes, 17(4), 871–874, doi:10.1002/hyp.5108.
Kirchner, J. W. (2009), Catchments as simple dynamical systems: catchment characterization, rainfall-runoff modeling, and doing hydrology backward, Water Resources Research, 45(2), 1–34, doi:10.1029/2008WR006912.
Kirkby, M. J. (1978), Hillslope Hydrology, New York: John Wiley & Sons.
Kirkby, M. J. (2005), Organisation and process, in M. G. Anderson (Ed.), Encyclopedia of Hydrological Sciences, Volume 1, Chichester: John Wiley & Sons, pp. 41–58.
Kirnbauer, R., G. Blöschl, and D. Gutknecht (1994), Entering the era of distributed snow models, Nordic Hydrology, 25, 1–24.
Kirnbauer, R., G. Blöschl, P. Haas, G. Müller, and B. Merz (2005), Identifying space-time patterns of runoff generation: a case study from the Löhnersbach catchment, Austrian Alps, in U. M. Huber, H. K. M. Bugmann, and M. A. Reasoner (Eds.), Global Change and Mountain Regions: A State of Knowledge Overview, Dordrecht: Springer, pp. 309–320.
Kistler, R., E. Kalnay, W. Collins, et al. (2001), The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation, Bulletin of the American Meteorological Society, 82(2), 247–267.
Kitanidis, P. K. (1997), Introduction to Geostatistics: Applications to Hydrogeology, Cambridge: Cambridge University Press.
Kite, G. W., and P. Droogers (2000), Comparing evapotranspiration estimates from satellites, hydrological models and field data. Journal of Hydrology, 229(1–2), 3–18.
Kjeldsen, T. R. (2007), The Revitalised FSR/FEH Rainfall-Runoff Method: A User Handbook. Flood Estimation Handbook Supplementary Report No. 1, Centre for Ecology and Hydrology, Wallingford, UK (www.ceh.ac.uk/refh).
Kjeldsen, T. R., and D. Jones (2007), Estimation of an index flood using data transfer in the UK, Hydrological Sciences Journal, 52(1), 86–98.
Kjeldsen, T. R., and D. A. Jones (2009), An exploratory analysis of error components in hydrological regression modelling, Water Resources Research, 45(2), 1–13.
Kjeldsen, T. R., and D. A. Jones (2010), Predicting the index flood in ungauged UK catchments: on the link between data-transfer and spatial model error structure, Journal of Hydrology, 387(1–2), 1–9.
Klees, R., E. A. Zapreeva, H. C. Winsemius, and H. H. G. Savenije (2007), The bias in GRACE estimates of continental water storage variations, Hydrology and Earth System Sciences, 11(4), 1227–1241, doi:10.5194/hess-11-1227-2007.
Klees, R., E. A. Revtova, B. C. Gunter, et al. (2008), The design of an optimal filter for monthly GRACE gravity models, Geophysical Journal International, 175(2), 417–432, doi:10.1111/j.1365–246X.2008.03922.x.
Kleidon, A., and S. J. Schymanski (2008), Thermodynamics and optimality of the water budget on land: a review, Geophysical Research Letters, 35, L20404, doi:10.1029/2005GL025373.
Kleiner, B., and J. A. Hartigan (1981), Representing points in many dimensions by trees and castles, Journal of the American Statistical Association, 76(374), 260–269.
Klemeš, V. (1986a), Dilettantism in hydrology: transition or destiny?Water Resources Research, 22(9S), 177S–188S, doi:10.1029/WR022i09Sp0177S.
Klemeš, V. (1986b), Operational testing of hydrological simulation models, Hydrological Sciences Journal, 31(1), 13–24, doi:10.1080/02626668609491024.
Klemmedson, J. O., and B. J. Wienhold (1992),