Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T09:38:32.826Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 September 2016

Kris Myny
Affiliation:
IMEC, Leuven
Jan Genoe
Affiliation:
IMEC, Leuven
Wim Dehaene
Affiliation:
Katholieke Universiteit Leuven, Belgium
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Street, R. A., “Thin-film transistors,” Advanced Materials, vol. 21, no. 20, pp. 20072022, 2009.CrossRefGoogle Scholar
Wagner, S., Gleskova, H., Cheng, I.-C., and Wu, M., “Silicon for thin-film transistors,” Thin Solid Films, vol. 430, no. 1–2, pp. 1519, Apr. 2003.CrossRefGoogle Scholar
Powell, M. J., “Charge trapping instabilities in amorphous silicon-silicon nitride thin-film transistors,” Applied Physics Letters, vol. 43, no. 6, pp. 597599, Sep. 1983.CrossRefGoogle Scholar
Powell, M. J., van Berkel, C., and Hughes, J. R., “Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors,” Applied Physics Letters, vol. 54, no. 14, pp. 13231325, Apr. 1989.CrossRefGoogle Scholar
Libsch, F. R. and Kanicki, J., “Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous thin-film transistors,” Applied Physics Letters, vol. 62, no. 11, pp. 12861288, Mar. 1993.CrossRefGoogle Scholar
Nathan, A., Chaji, G. R., and Ashtiani, S. J., “Driving schemes for a-Si and LTPS AMOLED displays,” Journal of Display Technology, vol. 1, no. 2, pp. 267277, Dec. 2005.CrossRefGoogle Scholar
He, Y., Hattori, R., and Kanicki, J., “Improved a-Si:H TFT pixel electrode circuits for active-matrix organic light emitting displays,” IEEE Transactions on Electron Devices, vol. 48, no. 7, pp. 13221325, Jul. 2001.CrossRefGoogle Scholar
Goh, J.-C., Jang, J., Cho, K.-S., and Kim, C.-K., “A new a-Si:H thin-film transistor pixel circuit for active-matrix organic light-emitting diodes,” IEEE Electron Device Letters, vol. 24, no. 9, pp. 583585, Sep. 2003.Google Scholar
Lee, J.-H., Kim, J.-H., and Han, M.-K., “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED,” IEEE Electron Device Letters, vol. 26, no. 12, pp. 897899, Dec. 2005.Google Scholar
Kumar, A., Nathan, A., and Jabbour, G. E., “Does TFT Mobility Impact Pixel Size in AMOLED Backplanes?IEEE Transactions on Electron Devices, vol. 52, no. 11, pp. 23862394, Nov. 2005.CrossRefGoogle Scholar
Yamamoto, Y., “Technological innovation of thin-film transistors: Technology development, history, and future,” Japanese Journal of Applied Physics, vol. 51, p. 060001, 2012.CrossRefGoogle Scholar
Brotherton, S. D., “Polycrystalline silicon thin film transistors,” Semiconductor Science and Technology, vol. 10, no. 6, pp. 721738, Jun. 1995.CrossRefGoogle Scholar
Choi, J. B., Chang, Y. J., Park, C. H., Choi, B. R., Kim, H. S., and Park, K. C., “TFT backplane technologies for AMLCD and AMOLED applications,” Journal of the Korean Physical Society, vol. 54, no. 925, p. 549, Jan. 2009.CrossRefGoogle Scholar
Uchikoga, S. and Ibaraki, N., “Low temperature poly-Si TFT-LCD by excimer laser anneal,” Thin Solid Films, vol. 383, no. 1–2, pp. 1924, Feb. 2001.CrossRefGoogle Scholar
Ohwada, J.-I., Takabatake, M., Ono, Y. A., Mimura, A., Ono, K., and Konishi, N., “Peripheral circuit integrated poly-Si TFT LCD with gray scale representation,” IEEE Transactions on Electron Devices, vol. 36, no. 9, pp. 19231928, Sep. 1989.CrossRefGoogle Scholar
Yang, J. Y., Kim, S.-H., Park, Y.-I., Lim, K.-M., and Kim, C.-D., “P-2: A novel structure of AMLCD panel using poly-Si CMOS TFT,” SID Symposium Digest of Technical Papers, vol. 35, no. 1, pp. 224227, 2004.CrossRefGoogle Scholar
Goh, J.-C., Chung, H.-J., Jang, J., and Han, C.-H., “A new pixel circuit for active matrix organic light emitting diodes,” IEEE Electron Device Letters, vol. 23, no. 9, pp. 544546, Sep. 2002.Google Scholar
Fan, C.-L., Shang, M.-C., Lin, W.-C., Chang, H.-C., Chao, K.-C., and Guo, B.-L., “LTPS-TFT pixel circuit compensating for TFT threshold voltage shift and IR-drop on the power line for AMOLED displays,” Advances in Materials Science and Engineering, vol. 2012, pp. 15, 2012.CrossRefGoogle Scholar
Klauk, H., “Organic thin-film transistors,” Chemical Society Reviews, vol. 39, no. 7, pp. 26432666, 2010.CrossRefGoogle ScholarPubMed
Herwig, P. T. and Müllen, K., “A Soluble Pentacene Precursor: Synthesis, Solid-State Conversion into Pentacene and Application in a Field-Effect Transistor,” Advanced Materials, vol. 11, no. 6, pp. 480483, 1999.3.0.CO;2-U>CrossRefGoogle Scholar
Chen, J., Subramanian, S., Parkin, S. R., Siegler, M., Gallup, K., Haughn, C., Martin, D. C., and Anthony, J. E., “The influence of side chains on the structures and properties of functionalized pentacenes,” Journal of Materials Chemistry, vol. 18, no. 17, p. 1961, 2008.CrossRefGoogle Scholar
Kobayashi, N., Sasaki, M., and Nomoto, K., “Stable peri-Xanthenoxanthene thin-film transistors with efficient carrier injection,” Chemistry of Materials, vol. 21, no. 3, pp. 552556, Feb. 2009.CrossRefGoogle Scholar
Yoo, B., Jones, B. A., Basu, D., Fine, D., Jung, T., Mohapatra, S., Facchetti, A., Dimmler, K., Wasielewski, M. R., Marks, T. J., and Dodabalapur, A., “High-performance solution-deposited n-channel organic transistors and their complementary circuits,” Advanced Materials, vol. 19, no. 22, pp. 40284032, 2007.CrossRefGoogle Scholar
Kang, M. J., Doi, I., Mori, H., Miyazaki, E., Takimiya, K., Ikeda, M., and Kuwabara, H., “Alkylated Dinaphtho[2,3-b:2′,3′-f]Thieno[3,2-b]Thiophenes (Cn-DNTTs): Organic semiconductors for high-performance thin-film transistors,” Advanced Materials, vol. 23, no. 10, pp. 12221225, 2011.CrossRefGoogle Scholar
Lunt, R. R., Lassiter, B. E., Benziger, J. B., and Forrest, S. R., “Organic vapor phase deposition for the growth of large area organic electronic devices,” Applied Physics Letters, vol. 95, no. 23, pp. 233305–233305–3, Dec. 2009.CrossRefGoogle Scholar
Rolin, C., Steudel, S., Vicca, P., Genoe, J., and Heremans, P., “Functional pentacene thin films grown by in-line organic vapor phase deposition at web speeds above 2 m/min,” Applied Physics Express, vol. 2, no. 8, p. 086503, 2009.CrossRefGoogle Scholar
Rolin, C., Vasseur, K., Niesen, B., Willegems, M., Müller, R., Steudel, S., Genoe, J., and Heremans, P., “Vapor phase growth of functional pentacene films at atmospheric pressure,” Advanced Functional Materials, vol. 22, no. 23, pp. 50505059, 2012.CrossRefGoogle Scholar
Gelinck, G. H., Geuns, T. C. T., and de Leeuw, D. M., “High-performance all-polymer integrated circuits,” Applied Physics Letters, vol. 77, no. 10, pp. 14871489, Sep. 2000.CrossRefGoogle Scholar
Noh, Y.-Y., Zhao, N., Caironi, M., and Sirringhaus, H., “Downscaling of self-aligned, all-printed polymer thin-film transistors,” Nature Nanotechnology, vol. 2, no. 12, pp. 784789, 2007.CrossRefGoogle ScholarPubMed
Hambsch, M., Reuter, K., Stanel, M., Schmidt, G., Kempa, H., Fügmann, U., Hahn, U., and Hübler, A. C., “Uniformity of fully gravure printed organic field-effect transistors,” Materials Science and Engineering: B, vol. 170, no. 13, pp. 9398, Jun. 2010.Google Scholar
Daami, A., Bory, C., Benwadih, M., Jacob, S., Gwoziecki, R., Chartier, I., Coppard, R., Serbutoviez, C., Maddiona, L., Fontana, E., and Scuderi, A., “Fully printed organic CMOS technology on plastic substrates for digital and analog applications,” in IEEE International Solid-State Circuits Conference (ISSCC), 2011, pp. 328–330.Google Scholar
Shin, A., Hwang, S. J., Yu, S. W., and Sung, M. Y., “Design of organic TFT pixel electrode circuit for active-matrix OLED displays,” Journal of Computers, vol. 3, no. 3, pp. 15, 2008.CrossRefGoogle Scholar
Vaidya, V., Soggs, S., Kim, J., Haldi, A., Haddock, J. N., Kippelen, B., and Wilson, D. M., “Comparison of pentacene and amorphous silicon AMOLED display driver circuits,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 5, pp. 11771184, Jun. 2008.CrossRefGoogle Scholar
Liu, P.-T. and Chu, L.-W., “Innovative voltage driving pixel circuit using organic thin-film transistor for AMOLEDs,” Journal of Display Technology, vol. 5, no. 6, pp. 224227, Jun. 2009.CrossRefGoogle Scholar
Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M., and Hosono, H., “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, no. 5623, pp. 12691272, May 2003.CrossRefGoogle ScholarPubMed
Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., and Hosono, H., “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488492, Nov. 2004.CrossRefGoogle ScholarPubMed
Fortunato, E., Barquinha, P., and Martins, R., “Oxide semiconductor thin-film transistors: A review of recent advances,” Advanced Materials, vol. 24, no. 22, pp. 29452986, 2012.CrossRefGoogle ScholarPubMed
Park, J. S., Maeng, W.-J., Kim, H.-S., and Park, J.-S., “Review of recent developments in amorphous oxide semiconductor thin-film transistor devices,” Thin Solid Films, vol. 520, no. 6, pp. 16791693, Jan. 2012.CrossRefGoogle Scholar
Jeong, J. K., Jeong, J. H., Choi, J. H., Im, J. S., Kim, S. H., Yang, H. W., Kang, K. N., Kim, K. S., Ahn, T. K., Chung, H.-J., Kim, M., Gu, B. S., Park, J.-S., Mo, Y.-G., Kim, H. D., and Chung, H. K., “3.1: Distinguished paper: 12.1-Inch WXGA AMOLED display driven by indium-gallium-zinc oxide TFTs array,” SID Symposium Digest of Technical Papers, vol. 39, no. 1, pp. 14, 2008.CrossRefGoogle Scholar
Kim, Y.-H., Heo, J.-S., Kim, T.-H., Park, S., Yoon, M.-H., Kim, J., Oh, M. S., Yi, G.-R., Noh, Y.-Y., and Park, S. K., “Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films,” Nature, vol. 489, no. 7414, pp. 128132, Sep. 2012.CrossRefGoogle ScholarPubMed
Shimoda, T. and Inoue, S., “Surface free technology by laser annealing (SUFTLA),” in IEEE International Electron Devices Meeting (IEDM), 1999, pp. 289–292.Google Scholar
Lifka, H., Tanase, C., McCulloch, D., Van de Weijer, P., and French, I., “53.4: Ultra-Thin Flexible OLED Device,” SID Symposium Digest of Technical Papers, vol. 38, no. 1, pp. 15991602, 2007.CrossRefGoogle Scholar
Inoue, S., Utsunomiya, S., Saeki, T., and Shimoda, T., “Surface-free technology by laser annealing (SUFTLA) and its application to poly-Si TFT-LCDs on plastic film with integrated drivers,” IEEE Transactions on Electron Devices, vol. 49, no. 8, pp. 13531360, Aug. 2002.CrossRefGoogle Scholar
Utsunomiya, S., Kamakura, T., Kasuga, M., Kimura, M., Miyazawa, W., Inoue, S., and Shimoda, T., “21.3: Flexible Color AM-OLED Display Fabricated Using Surface Free Technology by Laser Ablation/Annealing (SUFTLA®) and Ink-jet Printing Technology,” SID Symposium Digest of Technical Papers, vol. 34, no. 1, pp. 864867, 2003.CrossRefGoogle Scholar
Karaki, N., Nanmoto, T., Ebihara, H., Utsunomiya, S., Inoue, S., and Shimoda, T., “A flexible 8b asynchronous microprocessor based on low-temperature poly-silicon TFT technology,” in IEEE International Solid-State Circuits Conference (ISSCC), 2005, pp. 272598.Google Scholar
Park, J.-S., Kim, T.-W., Stryakhilev, D., Lee, J.-S., An, S.-G., Pyo, Y.-S., Lee, D.-B., Mo, Y. G., Jin, D.-U., and Chung, H. K., “Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors,” Applied Physics Letters, vol. 95, no. 1, pp. 013503013503–3, Jul. 2009.CrossRefGoogle Scholar
Noda, M., Kobayashi, N., Katsuhara, M., Yumoto, A., Ushikura, S., Yasuda, R., Hirai, N., Yukawa, G., Yagi, I., Nomoto, K., and Urabe, T., “A Rollable AM-OLED Display Driven by OTFTs,” SID Symposium Digest of Technical Papers, vol. 41, no. 1, pp. 710713, 2010.CrossRefGoogle Scholar
Lim, W., Douglas, E. A., Kim, S.-H., Norton, D. P., Pearton, S. J., Ren, F., Shen, H., and Chang, W. H., “High mobility InGaZnO4 thin-film transistors on paper,” Applied Physics Letters, vol. 94, no. 7, pp. 072103–072103–3, Feb. 2009.CrossRefGoogle Scholar
Martins, R., Nathan, A., Barros, R., Pereira, L., Barquinha, P., Correia, N., Costa, R., Ahnood, A., Ferreira, I., and Fortunato, E., “Complementary Metal Oxide Semiconductor Technology With and On Paper,” Advanced Materials, vol. 23, no. 39, pp. 44914496, 2011.CrossRefGoogle ScholarPubMed
Eder, F., Klauk, H., Halik, M., Zschieschang, U., Schmid, G., and Dehm, C., “Organic electronics on paper,” Applied Physics Letters, vol. 84, no. 14, pp. 26732675, Apr. 2004.CrossRefGoogle Scholar
Zschieschang, U., Yamamoto, T., Takimiya, K., Kuwabara, H., Ikeda, M., Sekitani, T., Someya, T., and Klauk, H., “Organic Electronics on Banknotes,” Advanced Materials, vol. 23, no. 5, pp. 654658, 2011.CrossRefGoogle ScholarPubMed
Theiss, S. D. and Wagner, S., “Amorphous silicon thin-film transistors on steel foil substrates,” IEEE Electron Device Letters, vol. 17, no. 12, pp. 578580, Dec. 1996.CrossRefGoogle Scholar
Serikawa, T. and Omata, F., “High-mobility poly-Si TFTs fabricated on flexible stainless-steel substrates,” IEEE Electron Device Letters, vol. 20, no. 11, pp. 574576, Nov. 1999.CrossRefGoogle Scholar
Gleskova, H. and Wagner, S., “DC-gate-bias stressing of a-Si:H TFTs fabricated at 150 deg C on polyimide foil,” IEEE Transactions on Electron Devices, vol. 48, no. 8, pp. 16671671, Aug. 2001.CrossRefGoogle Scholar
Lee, M. H., Ho, K.-Y., Chen, P.-C., Cheng, C.-C., Chang, S. T., Tang, M., Liao, M. H., and Yeh, Y.-H., “Promising a-Si:H TFTs with High Mechanical Reliability for Flexible Display,” in IEEE International Electron Devices Meeting (IEDM), 2006, pp. 1–4.Google Scholar
Yang, P.-C., Chang, H.-Y., Yang, C.-H., Hsueh, C.-Y., Lin, H.-W., Chang, C.-Y., and Lee, S.-C., “Low Temperature Polycrystalline Silicon TFTs on Polyimide and Glass Substrates,” in IEEE Conference on Electron Devices and Solid-State Circuits (EDSSC), 2007, pp. 519–522.Google Scholar
Sarma, K. R., “Active-matrix OLED using 150°C a-Si TFT backplane built on flexible plastic substrate,” in Annual Laser and Electro-Optics Society (LEOS) Meeting, 2003, vol. 5080, pp. 180191.Google Scholar
Lujan, R. A. and Street, R. A., “Flexible X-ray detector array fabricated with oxide thin-film transistors,” IEEE Electron Device Letters, vol. 33, no. 5, pp. 688690, May 2012.CrossRefGoogle Scholar
Fischer, J., Tietke, M., Fritze, F., Muth, O., Paeschke, M., Han, D., Kwack, J., Kim, T., Lee, J., Kim, S., and Chung, H., “Electronic passports with AMOLED displays,” Journal of the Society for Information Display, vol. 19, no. 2, pp. 163169, 2011.CrossRefGoogle Scholar
Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., and Sakurai, T., “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 27, pp. 99669970, Jul. 2004.CrossRefGoogle ScholarPubMed
Marien, H., Steyaert, M. S. J., van Veenendaal, E., and Heremans, P., “A fully integrated ΔΣ ADC in organic thin-film transistor technology on flexible plastic foil,” IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 276284, Jan. 2011.CrossRefGoogle Scholar
Xiong, W., Guo, Y., Zschieschang, U., Klauk, H., and Murmann, B., “A 3-V, 6-bit C-2C digital-to-analog converter using complementary organic thin-film transistors on glass,” IEEE Journal of Solid-State Circuits, vol. 45, no. 7, pp. 13801388, Jul. 2010.CrossRefGoogle Scholar
Myny, K., van Veenendaal, E., Gelinck, G. H., Genoe, J., Dehaene, W., and Heremans, P., “An 8-bit, 40-instructions-per-second organic microprocessor on plastic foil,” IEEE Journal of Solid-State Circuits, vol. 47, no. 1, pp. 284291, Jan. 2012.CrossRefGoogle Scholar
Marien, H., Steyaert, M., van Aerle, N., and Heremans, P., “An analog organic first-order CT ΔΣ ADC on a flexible plastic substrate with 26.5dB precision,” in IEEE International Solid-State Circuits Conference (ISSCC), 2010, pp. 136137.Google Scholar
Morosawa, N., Ohshima, Y., Morooka, M., Arai, T., and Sasaoka, T., “Novel self-aligned top-gate oxide TFT for AMOLED displays,” Journal of the Society for Information Display, vol. 20, no. 1, p. 47, 2012.CrossRefGoogle Scholar
Meijer, E. J., de Leeuw, D. M., Setayesh, S., van Veenendaal, E., Huisman, B.-H., Blom, P. W. M., Hummelen, J. C., Scherf, U., and Klapwijk, T. M., “Solution-processed ambipolar organic field-effect transistors and inverters,” Nature Materials, vol. 2, no. 10, pp. 678682, 2003.CrossRefGoogle ScholarPubMed
Zaumseil, J. and Sirringhaus, H., “Electron and ambipolar transport in organic field-effect transistors,” Chemical Reviews, vol. 107, no. 4, pp. 1296–323, 2007.CrossRefGoogle ScholarPubMed
Klauk, H., Schmid, G., Radlik, W., Weber, W., Zhou, L., Sheraw, C. D., Nichols, J. A., and Jackson, T. N., “Contact resistance in organic thin film transistors,” Solid-State Electronics, vol. 47, no. 2, pp. 297301, Feb. 2003.CrossRefGoogle Scholar
Necliudov, P. V., Shur, M. S., Gundlach, D. J., and Jackson, T. N., “Contact resistance extraction in pentacene thin film transistors,” Solid-State Electronics, vol. 47, no. 2, pp. 259262, Feb. 2003.CrossRefGoogle Scholar
Marinov, O., Deen, M. J., Zschieschang, U., and Klauk, H., “Organic thin-film transistors: Part I-compact DC modeling,” IEEE Transactions on Electron Devices, vol. 56, no. 12, pp. 29522961, Dec. 2009.CrossRefGoogle Scholar
Deen, M. J., Marinov, O., Zschieschang, U., and Klauk, H., “Organic thin-film transistors: Part II: Parameter extraction,” IEEE Transactions on Electron Devices, vol. 56, no. 12, pp. 29622968, Dec. 2009.CrossRefGoogle Scholar
Torricelli, F., “Charge transport in organic transistors accounting for a wide distribution of carrier energies: Part I: Theory,” IEEE Transactions on Electron Devices, vol. 59, no. 5, pp. 15141519, May 2012.CrossRefGoogle Scholar
Torricelli, F., O’Neill, K., Gelinck, G. H., Myny, K., Genoe, J., and Cantatore, E., “Charge transport in organic transistors accounting for a wide distribution of carrier energies: Part II: TFT modeling,” IEEE Transactions on Electron Devices, vol. 59, no. 5, pp. 15201528, May 2012.CrossRefGoogle Scholar
Li, L., Debucquoy, M., Genoe, J., and Heremans, P., “A compact model for polycrystalline pentacene thin-film transistor,” Journal of Applied Physics, vol. 107, no. 2, pp. 024519–024519–3, Jan. 2010.Google Scholar
Li, L., Marien, H., Genoe, J., Steyaert, M., and Heremans, P., “Compact model for organic thin-film transistor,” IEEE Electron Device Letters, vol. 31, no. 3, pp. 210212, Mar. 2010.Google Scholar
Torricelli, F., Meijboom, J. R., Smits, E., Tripathi, A. K., Ferroni, M., Federici, S., Gelinck, G. H., Colalongo, L., Kovacs-Vajna, Z. M., de Leeuw, D., and Cantatore, E., “Transport physics and device modeling of zinc oxide thin-film transistors: Part I: Long-channel devices,” IEEE Transactions on Electron Devices, vol. 58, no. 8, pp. 26102619, Aug. 2011.CrossRefGoogle Scholar
Torricelli, F., Smits, E. C. P., Meijboom, J. R., Tripathi, A. K., Gelinck, G. H., Colalongo, L., Kovacs-Vajna, Z. M., de Leeuw, D. M., and Cantatore, E., “Transport Physics and Device Modeling of Zinc Oxide Thin-Film Transistors: Part II: Contact resistance in short channel devices,” IEEE Transactions on Electron Devices, vol. 58, no. 9, pp. 30253033, Sep. 2011.CrossRefGoogle Scholar
He, H. and Zheng, X., “Analytical drain current model for amorphous IGZO thin-film transistors in above-threshold regime,” Journal of Semiconductors, vol. 32, no. 7, p. 074004, Jul. 2011.CrossRefGoogle Scholar
Abe, K., Kaji, N., Kumomi, H., Nomura, K., Kamiya, T., Hirano, M., and Hosono, H., “Simple analytical model of on operation of amorphous in-Ga-Zn-O thin-film transistors,” IEEE Transactions on Electron Devices, vol. 58, no. 10, pp. 34633471, Oct. 2011.CrossRefGoogle Scholar
Kim, D. H., Jeon, Y. W., Kim, S., Kim, Y., Yu, Y. S., Kim, D. M., and Kwon, H.-I., “Physical parameter-based SPICE models for InGaZnO thin-film transistors applicable to process optimization and robust circuit design,” IEEE Electron Device Letters, vol. 33, no. 1, pp. 5961, Jan. 2012.CrossRefGoogle Scholar
Pherson, M. R. M., “The adjustment of MOS transistor threshold voltage by ion implantation,” Applied Physics Letters, vol. 18, no. 11, pp. 502504, Jun. 1971.CrossRefGoogle Scholar
Mizuno, T., Okumtura, J., and Toriumi, A., “Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET’s,” IEEE Transactions on Electron Devices, vol. 41, no. 11, pp. 22162221, Nov. 1994.CrossRefGoogle Scholar
Nausieda, I., Ryu, K. K., He, D. D., Akinwande, A. I., Bulovic, V., and Sodini, C. G., “Dual threshold voltage organic thin-film transistor technology,” IEEE Transactions on Electron Devices, vol. 57, no. 11, pp. 30273032, Nov. 2010.CrossRefGoogle Scholar
Han, S.-T., Zhou, Y., Xu, Z.-X., and Roy, V. A. L., “Controllable threshold voltage shifts of polymer transistors and inverters by utilizing gold nanoparticles,” APL: Organic Electronics and Photonics, vol. 5, no. 7, pp. 154154, Jul. 2012.Google Scholar
Yokota, T., Nakagawa, T., Sekitani, T., Noguchi, Y., Fukuda, K., Zschieschang, U., Klauk, H., Takeuchi, K., Takamiya, M., Sakurai, T., and Someya, T., “Control of threshold voltage in low-voltage organic complementary inverter circuits with floating gate structures,” Applied Physics Letters, vol. 98, no. 19, pp. 193302–193302–3, May 2011.CrossRefGoogle Scholar
Kobayashi, S., Nishikawa, T., Takenobu, T., Mori, S., Shimoda, T., Mitani, T., Shimotani, H., Yoshimoto, N., Ogawa, S., and Iwasa, Y., “Control of carrier density by self-assembled monolayers in organic field-effect transistors,” Nature Materials, vol. 3, no. 5, pp. 317322, 2004.CrossRefGoogle ScholarPubMed
Pernstich, K. P., Haas, S., Oberhoff, D., Goldmann, C., Gundlach, D. J., Batlogg, B., Rashid, A. N., and Schitter, G., “Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator,” Journal of Applied Physics, vol. 96, no. 11, pp. 64316438, Dec. 2004.CrossRefGoogle Scholar
Kitamura, M., Kuzumoto, Y., Aomori, S., Kamura, M., Na, J. H., and Arakawa, Y., “Threshold voltage control of bottom-contact n-channel organic thin-film transistors using modified drain/source electrodes,” Applied Physics Letters, vol. 94, no. 8, pp. 083310–083310–3, Feb. 2009.CrossRefGoogle Scholar
Gelinck, G. H., van Veenendaal, E., and Coehoorn, R., “Dual-gate organic thin-film transistors,” Applied Physics Letters, vol. 87, no. 7, pp. 073508073508–3, Aug. 2005.CrossRefGoogle Scholar
Iba, S., Sekitani, T., Kato, Y., Someya, T., Kawaguchi, H., Takamiya, M., Sakurai, T., and Takagi, S., “Control of threshold voltage of organic field-effect transistors with double-gate structures,” Applied Physics Letters, vol. 87, no. 2, pp. 023509023509–3, Jul. 2005.CrossRefGoogle Scholar
Morana, M., Bret, G., and Brabec, C., “Double-gate organic field-effect transistor,” Applied Physics Letters, vol. 87, no. 15, pp. 153511–153511–3, Oct. 2005.CrossRefGoogle Scholar
Spijkman, M.-J., Myny, K., Smits, E. C. P., Heremans, P., Blom, P. W. M., and Leeuw, D. M., “Dual-gate thin-film transistors, integrated circuits and sensors,” Advanced Materials, vol. 23, no. 29, pp. 32313242, 2011.CrossRefGoogle ScholarPubMed
Brondijk, J. J., Spijkman, M., Torricelli, F., Blom, P. W. M., and de Leeuw, D. M., “Charge transport in dual-gate organic field-effect transistors,” Applied Physics Letters, vol. 100, no. 2, pp. 023308–023308–4, Jan. 2012.CrossRefGoogle Scholar
Gelinck, G. H., Huitema, H. E. A., van Veenendaal, E., Cantatore, E., Schrijnemakers, L., van der Putten, J. B. P. H., Geuns, T. C. T., Beenhakkers, M., Giesbers, J. B., Huisman, B.-H., Meijer, E. J., Benito, E. M., Touwslager, F. J., Marsman, A. W., van Rens, B. J. E., and de Leeuw, D. M., “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nature Materials, vol. 3, no. 2, pp. 106110, Jan. 2004.CrossRefGoogle ScholarPubMed
Huitema, H. E. A., “Rollable displays: The start of a new mobile device generation,” presented at the Proc. 7th Annu. USDC Flexible Electron. Displays Conf., Phoenix, AZ, 2008.Google Scholar
Kagan, C. R., Afzali, A., and Graham, T. O., “Operational and environmental stability of pentacene thin-film transistors,” Applied Physics Letters, vol. 86, no. 19, pp. 193505–193505–3, May 2005.CrossRefGoogle Scholar
Myny, K., Steudel, S., Vicca, P., Beenhakkers, M. J., van Aerle, N. A. J. M., Gelinck, G. H., Genoe, J., Dehaene, W., and Heremans, P., “Plastic circuits and tags for 13.56 MHz radio-frequency communication,” Solid-State Electronics, vol. 53, no. 12, pp. 12201226, Dec. 2009.CrossRefGoogle Scholar
De Vusser, S., Steudel, S., Myny, K., Genoe, J., and Heremans, P., “Integrated shadow mask method for patterning small molecule organic semiconductors,” Applied Physics Letters, vol. 88, no. 10, pp. 103501–103501–3, Mar. 2006.CrossRefGoogle Scholar
Tripathi, A. K., Smits, E. C. P., van der Putten, J. B. P. H., van Neer, M., Myny, K., Nag, M., Steudel, S., Vicca, P., O’Neill, K., van Veenendaal, E., Genoe, G., Heremans, P., and Gelinck, G. H., “Low-voltage gallium–indium–zinc–oxide thin film transistors based logic circuits on thin plastic foil: Building blocks for radio frequency identification application,” Applied Physics Letters, vol. 98, p. 162102, 2011.CrossRefGoogle Scholar
Rockelé, M., Pham, D.-V., Hoppe, A., Steiger, J., Botnaras, S., Nag, M., Steudel, S., Myny, K., Schols, S., Müller, R., van der Putten, B., Genoe, J., and Heremans, P., Low-temperature and scalable complementary thin-film technology based on solution-processed metal oxide n-TFTs and pentacene p-TFTs,” Organic Electronics, vol. 12, no. 11, pp. 19091913, Nov. 2011.CrossRefGoogle Scholar
Myny, K., Rockele, M., Chasin, A., Pham, D., Steiger, J., Botnaras, S., Weber, D., Herold, B., Ficker, J., van der Putten, B., Gelinck, G., Genoe, J., Dehaene, W., and Heremans, P., “Bidirectional communication in an HF hybrid organic/solution-processed metal-oxide RFID tag,” in IEEE International Solid-State Circuits Conference (ISSCC), 2012, pp. 312314.Google Scholar
Rockelé, M., Pham, D.-V., Steiger, J., Botnaras, S., Weber, D., Vanfleteren, J., Sterken, T., Cuypers, D., Steudel, S., Myny, K., Schols, S., van der Putten, B., Genoe, J., and Heremans, P., “Solution-processed and low-temperature metal oxide n-channel thin-film transistors and low-voltage complementary circuitry on large-area flexible polyimide foil,” Journal of the Society for Information Display, vol. 20, no. 9, pp. 499507, 2012.CrossRefGoogle Scholar
Crone, B., Dodabalapur, A., Lin, Y.-Y., Filas, R. W., Bao, Z., LaDuca, A., Sarpeshkar, R., Katz, H. E., and Li, W., “Large-scale complementary integrated circuits based on organic transistors,” Nature, vol. 403, no. 6769, pp. 521523, Feb. 2000.CrossRefGoogle ScholarPubMed
van Lieshout, P., van Veenendaal, E., Schrijnemakers, L., Gelinck, G., Touwslager, F., and Huitema, E., “A flexible 240×320-pixel display with integrated row drivers manufactured in organic electronics,” in IEEE International Solid-State Circuits Conference (ISSCC), 2005, Vol. 1, pp. 578618.Google Scholar
Noda, M., Kobayashi, N., Katsuhara, M., Yumoto, A., Ushikura, S., Yasuda, R., Hirai, N., Yukawa, G., Yagi, I., Nomoto, K., and Urabe, T., “An OTFT-driven rollable OLED display,” Journal of the Society for Information Display, vol. 19, no. 4, pp. 316322, 2011.CrossRefGoogle Scholar
Cantatore, E., Geuns, T. C. T., Gruijthuijsen, A. F. A., Gelinck, G. H., Drews, S., and de Leeuw, D. M., “A 13.56MHz RFID system based on organic transponders,” in IEEE International Solid-State Circuits Conference (ISSCC), 2006, pp. 10421051.Google Scholar
Cantatore, E., Geuns, T. C. T., Gelinck, G. H., van Veenendaal, E., Gruijthuijsen, A. F. A., Schrijnemakers, L., Drews, S., and de Leeuw, D. M., “A 13.56-MHz RFID system based on organic transponders,” IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 8492, Jan. 2007.CrossRefGoogle Scholar
Ullmann, A., Bohm, M., Krumm, J., and Fix, W., “Polymer multi-bit RFID transponder,” in International Conference on Organic Electronics (ICOE), Eindhoven, The Netherlands, 2007.Google Scholar
Myny, K., Van Winckel, S., Steudel, S., Vicca, P., De Jonge, S., Beenhakkers, M. J., Sele, C. W., van Aerle, N. A. J. M., Gelinck, G. H., Genoe, J., and Heremans, P., “An inductively-coupled 64b organic RFID tag operating at 13.56MHz with a data rate of 787b/s,” in IEEE International Solid-State Circuits Conference (ISSCC), 2008, pp. 290291.Google Scholar
Myny, K., Beenhakkers, M. J., van Aerle, N. A. J. M., Gelinck, G. H., Genoe, J., Dehaene, W., and Heremans, P., “A 128b organic RFID transponder chip, including Manchester encoding and ALOHA anti-collision protocol, operating with a data rate of 1529b/s,” in IEEE International Solid-State Circuits Conference (ISSCC), 2009, pp. 206207.Google Scholar
Koo, J. B., Lim, J. W., Kim, S. H., Ku, C. H., Lim, S. C., Lee, J. H., Yun, S. J., and Yang, Y. S., “Pentacene thin-film transistors and inverters with dual-gate structure,” Electrochemical and Solid-State Letters, vol. 9, no. 11, p. G320, 2006.CrossRefGoogle Scholar
Koo, J. B., Ku, C. H., Lim, J. W., and Kim, S. H., “Novel organic inverters with dual-gate pentacene thin-film transistor,” Organic Electronics, vol. 8, no. 5, pp. 552558, Oct. 2007.CrossRefGoogle Scholar
Spijkman, M., Smits, E. C. P., Blom, P. W. M., Leeuw, D. M., Bon Saint Côme, Y., Setayesh, S., and Cantatore, E., “Increasing the noise margin in organic circuits using dual gate field-effect transistors,” Applied Physics Letters, vol. 92, no. 14, pp. 143304143304–3, Apr. 2008.CrossRefGoogle Scholar
Myny, K., Beenhakkers, M. J., van Aerle, N. A. J., Gelinck, G. H., Genoe, J., Dehaene, W., and Heremans, P., “Robust digital design in organic electronics by dual-gate technology,” in IEEE International Solid-State Circuits Conference (ISSCC), 2010, pp. 140141.Google Scholar
Myny, K., Beenhakkers, M. J., van Aerle, N. A. J., Gelinck, G. H., Genoe, J., Dehaene, W., and Heremans, P., “Unipolar organic transistor circuits made robust by dual-gate technology,” IEEE Journal of Solid-State Circuits, vol. 46, no. 5, pp. 12231230, May 2011.CrossRefGoogle Scholar
Myny, K., van Veenendaal, E., Gelinck, G. H., Genoe, J., Dehaene, W., and Heremans, P., “An 8b organic microprocessor on plastic foil,” in IEEE International Solid-State Circuits Conference (ISSCC), 2011, pp. 322324.Google Scholar
Blache, R., Krumm, J., and Fix, W., “Organic CMOS circuits for RFID applications,” in Solid-State Circuits Conference – Digest of Technical Papers, 2009. ISSCC 2009. IEEE International, 2009, pp. 208209.Google Scholar
Myny, K., Steudel, S., Smout, S., Vicca, P., Furthner, F., van der Putten, B., Tripathi, A. K., Gelinck, G. H., Genoe, J., Dehaene, W., and Heremans, P., “Organic RFID transponder chip with data rate compatible with electronic product coding,” Organic Electronics, vol. 11, no. 7, pp. 11761179, Jul. 2010.CrossRefGoogle Scholar
Klauk, H., Zschieschang, U., Pflaum, J., and Halik, M., “Ultralow-power organic complementary circuits,” Nature, vol. 445, no. 7129, pp. 745748, Feb. 2007.CrossRefGoogle ScholarPubMed
Ishida, K., Masunaga, N., Zhou, Z., Yasufuku, T., Sekitani, T., Zschieschang, U., Klauk, H., Takamiya, M., Someya, T., and Sakurai, T., “Stretchable EMI measurement sheet with 8 × 8 coil array, 2 V organic CMOS decoder, and 0.18µm silicon CMOS LSIs for electric and magnetic field detection,” IEEE Journal of Solid-State Circuits, vol. 45, no. 1, pp. 249259, Jan. 2010.CrossRefGoogle Scholar
Ishida, K., Masunaga, N., Takahashi, R., Sekitani, T., Shino, S., Zschieschang, U., Klauk, H., Takamiya, M., Someya, T., and Sakurai, T., “User customizable logic paper (UCLP) with sea-of transmission-gates (SOTG) of 2-V organic CMOS and ink-jet printed interconnects,” IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 285292, Jan. 2011.CrossRefGoogle Scholar
Fukuda, K., Sekitani, T., Zschieschang, U., Klauk, H., Kuribara, K., Yokota, T., Sugino, T., Asaka, K., Ikeda, M., Kuwabara, H., Yamamoto, T., Takimiya, K., Fukushima, T., Aida, T., Takamiya, M., Sakurai, T., and Someya, T., “A 4 V operation, flexible braille display using organic transistors, carbon nanotube actuators, and organic static random-access memory,” Advanced Functional Materials, vol. 21, no. 21, pp. 40194027, 2011.CrossRefGoogle Scholar
Xiong, W., Zschieschang, U., Klauk, H., and Murmann, B., “A 3V 6b successive-approximation ADC using complementary organic thin-film transistors on glass,” in IEEE International Solid-State Circuits Conference (ISSCC), 2010, pp. 134135.Google Scholar
Klauk, H., Halik, M., Zschieschang, U., Eder, F., Schmid, G., and Dehm, C., “Pentacene organic transistors and ring oscillators on glass and on flexible polymeric substrates,” Applied Physics Letters, vol. 82, no. 23, pp. 41754177, Jun. 2003.CrossRefGoogle Scholar
Fukuda, K., Sekitani, T., Yokota, T., Kuribara, K., Huang, T.-C., Sakurai, T., Zschieschang, U., Klauk, H., Ikeda, M., Kuwabara, H., Yamamoto, T., Takimiya, K., Cheng, K.-T., and Someya, T., “Organic pseudo-CMOS circuits for low-voltage large-gain high-speed operation,” IEEE Electron Device Letters, vol. 32, no. 10, pp. 14481450, Oct. 2011.CrossRefGoogle Scholar
Marien, H., Steyaert, M., Steudel, S., Vicca, P., Smout, S., Gelinck, G., and Heremans, P., “An organic integrated capacitive DC-DC up-converter,” in European Solid-State Circuits Conference (ESSCIRC), 2010, pp. 510513.Google Scholar
Marien, H., Steyaert, M., van Veenendaal, E., and Heremans, P., “Organic dual DC-DC upconverter on foil for improved circuit reliability,” Electronics Letters, vol. 47, no. 4, pp. 278280, 2011.CrossRefGoogle Scholar
Marien, H., Steyaert, M., van Veenendaal, E., and Heremans, P., “DC-DC converter assisted two-stage amplifier in organic thin-film transistor technology on foil,” in European Solid-State Circuits Conference (ESSCIRC), 2011, pp. 411414.Google Scholar
Park, Y.-S., Kim, D.-Y., Kim, K.-N., Matsueda, Y., Choi, J.-H., Kang, C.-K., Kim, H.-D., Chung, H. K., and Kwon, O.-K., “An 8b source driver for 2.0 inch full-color active-matrix OLEDs made with LTPS TFTs,” in IEEE International Solid-State Circuits Conference (ISSCC), 2007, pp. 130592.Google Scholar
Zaki, T., Ante, F., Zschieschang, U., Butschke, J., Letzkus, F., Richter, H., Klauk, H., and Burghartz, J. N., “A 3.3 V 6-bit 100 kS/s current-steering digital-to-analog converter using organic P-type thin-film transistors on glass,” IEEE Journal of Solid-State Circuits, vol. 47, no. 1, pp. 292300, Jan. 2012.CrossRefGoogle Scholar
Raiteri, D., Torricelli, F., Myny, K., Nag, M., Van der Putten, B., Smits, E., Steudel, S., Tempelaars, K., Tripathi, A., Gelinck, G., Van Roermund, A., and Cantatore, E., “A 6b 10MS/s current-steering DAC manufactured with amorphous Gallium-Indium-Zinc-Oxide TFTs achieving SFDR > 30dB up to 300kHz,” in IEEE International Solid-State Circuits Conference (ISSCC), 2012, pp. 314316.Google Scholar
Rabaey, J. M., Chandrakasan, A., and Nikolic, B., Digital Integrated Circuits, 2nd ed. Prentice Hall, 2003.Google Scholar
Hill, C. F., “Noise margin and noise immunity in logic circuits,” Microelectronics, vol. 1, pp. 1621, Apr. 1968.Google Scholar
Seevinck, E., List, F. J., and Lohstroh, J., “Static-noise margin analysis of MOS SRAM cells,” IEEE Journal of Solid-State Circuits, vol. 22, no. 5, pp. 748754, Oct. 1987.CrossRefGoogle Scholar
Hauser, J. R., “Noise margin criteria for digital logic circuits,” IEEE Transactions on Education, vol. 36, no. 4, pp. 363368, Nov. 1993.CrossRefGoogle Scholar
Lohstroh, J., Seevinck, E., and de Groot, J., “Worst-case static noise margin criteria for logic circuits and their mathematical equivalence,” IEEE Journal of Solid-State Circuits, vol. 18, no. 6, pp. 803807, Dec. 1983.CrossRefGoogle Scholar
Vusser, S., Genoe, J., and Heremans, P., “Influence of transistor parameters on the noise margin of organic digital circuits,” IEEE Transactions on Electron Devices, vol. 53, no. 4, pp. 601610, Apr. 2006.CrossRefGoogle Scholar
Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., and Woo, E. P., “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science, vol. 290, no. 5499, pp. 21232126, Dec. 2000.CrossRefGoogle ScholarPubMed
Halik, M., Klauk, H., Zschieschang, U., Schmid, G., Dehm, C., Schütz, M., Maisch, S., Effenberger, F., Brunnbauer, M., and Stellacci, F., “Low-voltage organic transistors with an amorphous molecular gate dielectric,” Nature, vol. 431, no. 7011, pp. 963966, Oct. 2004.CrossRefGoogle ScholarPubMed
Kim, K. and Kim, Y., “Intrinsic capacitance characteristics of top-contact organic thin-film transistors,” IEEE Transactions on Electron Devices, vol. 57, no. 9, pp. 23442347, Sep. 2010.CrossRefGoogle Scholar
Torricelli, F., Kovacs-Vajna, Z. M., and Colalongo, L., “A charge-based OTFT model for circuit simulation,” IEEE Transactions on Electron Devices, vol. 56, no. 1, pp. 2030, Jan. 2009.CrossRefGoogle Scholar
Klauk, H., Gundlach, D. J., and Jackson, T. N., “Fast organic thin-film transistor circuits,” IEEE Electron Device Letters, vol. 20, no. 6, pp. 289291, Jun. 1999.CrossRefGoogle Scholar
Borkar, S., Karnik, T., Narendra, S., Tschanz, J., Keshavarzi, A., and De, V., “Parameter variations and impact on circuits and microarchitecture,” in Design Automation Conference (DAC), 2003, pp. 338342.Google Scholar
Asenov, A., Brown, A. R., Davies, J. H., Kaya, S., and Slavcheva, G., “Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs,” IEEE Transactions on Electron Devices, vol. 50, no. 9, pp. 18371852, Sep. 2003.CrossRefGoogle Scholar
Bernstein, K., Frank, D. J., Gattiker, A. E., Haensch, W., Ji, B. L., Nassif, S. R., Nowak, E. J., Pearson, D. J., and Rohrer, N. J., “High-performance CMOS variability in the 65-nm regime and beyond,” IBM Journal of Research and Development, vol. 50, no. 4/5, pp. 433449, Jul. 2006.CrossRefGoogle Scholar
Kuhn, K. J., “Reducing Variation in Advanced Logic Technologies: Approaches to Process and Design for Manufacturability of Nanoscale CMOS,” in IEEE International Electron Devices Meeting (IEDM), 2007, pp. 471474.Google Scholar
Sylvester, D., Agarwal, K., and Shah, S., “Variability in nanometer CMOS: Impact, analysis, and minimization,” Integration, the VLSI Journal, vol. 41, no. 3, pp. 319339, May 2008.CrossRefGoogle Scholar
Soeleman, H., Roy, K., and Paul, B. C., “Robust subthreshold logic for ultra-low power operation,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 9, no. 1, pp. 9099, Feb. 2001.CrossRefGoogle Scholar
Kim, J.-J. and Roy, K., “Double gate-MOSFET subthreshold circuit for ultralow power applications,” IEEE Transactions on Electron Devices, vol. 51, no. 9, pp. 14681474, Sep. 2004.CrossRefGoogle Scholar
Kwong, J. and Chandrakasan, A. P., “Variation-driven device sizing for minimum energy sub-threshold circuits,” in International Symposium on Low Power Electronics and Design (ISLPED), 2006, pp. 813.Google Scholar
Fisher, S., Teman, A., Vaysman, D., Gertsman, A., Yadid-Pecht, O., and Fish, A., “Digital subthreshold logic design – motivation and challenges,” in IEEE 25th Convention of Electrical and Electronics Engineers in Israel (IEEEI), 2008, pp. 702706.Google Scholar
Verlaak, S., Steudel, S., Heremans, P., Janssen, D., and Deleuze, M., “Nucleation of organic semiconductors on inert substrates,” Physical Review B, vol. 68, no. 19, Nov. 2003.CrossRefGoogle Scholar
Verlaak, S., Arkhipov, V., and Heremans, P., “Modeling of transport in polycrystalline organic semiconductor films,” Applied Physics Letters, vol. 82, no. 5, pp. 745747, Feb. 2003.CrossRefGoogle Scholar
Li, X., Kadashchuk, A., Fishchuk, I. I., Smaal, W. T. T., Gelinck, G., Broer, D. J., Genoe, J., Heremans, P., and Bässler, H., “Electric field confinement effect on charge transport in organic field-effect transistors,” Physical Review Letters, vol. 108, no. 6, p. 066601, Feb. 2012.CrossRefGoogle ScholarPubMed
Verlaak, S. and Heremans, P., “Molecular microelectrostatic view on electronic states near pentacene grain boundaries,” Physical Review B, vol. 75, no. 11, p. 115127, Mar. 2007.CrossRefGoogle Scholar
Li, X., Smaal, W. T. T., Kjellander, C., van der Putten, B., Gualandris, K., Smits, E. C. P., Anthony, J., Broer, D. J., Blom, P. W. M., Genoe, J., and Gelinck, G., “Charge transport in high-performance ink-jet printed single-droplet organic transistors based on a silylethynyl substituted pentacene/insulating polymer blend,” Organic Electronics, vol. 12, no. 8, pp. 13191327, Aug. 2011.CrossRefGoogle Scholar
Steudel, S., De Vusser, S., De Jonge, S., Janssen, D., Verlaak, S., Genoe, J., and Heremans, P., “Influence of the dielectric roughness on the performance of pentacene transistors,” Applied Physics Letters, vol. 85, no. 19, pp. 44004402, Nov. 2004.CrossRefGoogle Scholar
Mityashin, A., Olivier, Y., Van Regemorter, T., Rolin, C., Verlaak, S., Martinelli, N. G., Beljonne, D., Cornil, J., Genoe, J., and Heremans, P., “Unraveling the mechanism of molecular doping in organic semiconductors,” Advanced Materials, vol. 24, no. 12, pp. 15351539, 2012.CrossRefGoogle ScholarPubMed
Debucquoy, M., Verlaak, S., Steudel, S., Myny, K., Genoe, J., and Heremans, P., “Correlation between bias stress instability and phototransistor operation of pentacene thin-film transistors,” Applied Physics Letters, vol. 91, no. 10, pp. 103508103508–3, Sep. 2007.CrossRefGoogle Scholar
Chen, C.-Y., Wang, S.-D., Shieh, M.-S., Chen, W.-C., Lin, H.-Y., Yeh, K.-L., Lee, J.-W., and Lei, T.-F., “Plasma-Induced Damage on the Performance and Reliability of Low-Temperature Polycrystalline Silicon Thin-Film Transistors,” Journal of the Electrochemical Society, vol. 154, no. 1, pp. H30–H35, Jan. 2007.Google Scholar
Eriguchi, K., Nakakubo, Y., Matsuda, A., Kamei, M., Takao, Y., and Ono, K., “Comprehensive modeling of threshold voltage variability induced by plasma damage in advanced metal–oxide–semiconductor field-effect transistors,” Japanese Journal of Applied Physics, vol. 49, no. 4, p. 04DA18, 2010.Google Scholar
Kim, B., Kwon, S. H., Kwon, K. H., Baek, K.-H., Lee, J. H., Kim, D. H., and May, G. S., “Statistical characterization of process-induced plasma damage,” Materials and Manufacturing Processes, vol. 24, no. 6, pp. 610614, 2009.CrossRefGoogle Scholar
Halik, M., Klauk, H., Zschieschang, U., Kriem, T., Schmid, G., Radlik, W., and Wussow, K., “Fully patterned all-organic thin film transistors,” Applied Physics Letters, vol. 81, no. 2, pp. 289291, Jul. 2002.CrossRefGoogle Scholar
Tseng, H.-Y. and Subramanian, V., “All inkjet printed self-aligned transistors and circuits applications,” in IEEE International Electron Devices Meeting (IEDM), 2009, pp. 14.Google Scholar
de la Fuente Vornbrock, A., Sung, D., Kang, H., Kitsomboonloha, R., and Subramanian, V., “Fully gravure and ink-jet printed high speed pBTTT organic thin film transistors,” Organic Electronics, vol. 11, no. 12, pp. 20372044, Dec. 2010.CrossRefGoogle Scholar
Hill, I. G., “Numerical simulations of contact resistance in organic thin-film transistors,” Applied Physics Letters, vol. 87, no. 16, pp. 163505163505–3, Oct. 2005.CrossRefGoogle Scholar
Barquinha, P., Vila, A. M., Goncalves, G., Pereira, L., Martins, R., Morante, J. R., and Fortunato, E., “Gallium-indium-zinc-oxide-based thin-film transistors: Influence of the source/drain material,” IEEE Transactions on Electron Devices, vol. 55, no. 4, pp. 954960, Apr. 2008.CrossRefGoogle Scholar
Shimura, Y., Nomura, K., Yanagi, H., Kamiya, T., Hirano, M., and Hosono, H., “Specific contact resistances between amorphous oxide semiconductor In–Ga–Zn–O and metallic electrodes,” Thin Solid Films, vol. 516, no. 17, pp. 58995902, Jul. 2008.CrossRefGoogle Scholar
Kim, W.-S., Moon, Y.-K., Kim, K.-T., Lee, J.-H., Ahn, B., and Park, J.-W., “An investigation of contact resistance between metal electrodes and amorphous gallium–indium–zinc oxide (a-GIZO) thin-film transistors,” Thin Solid Films, vol. 518, no. 22, pp. 63576360, Sep. 2010.CrossRefGoogle Scholar
Weis, M., Lin, J., Taguchi, D., Manaka, T., and Iwamoto, M., “Insight into the contact resistance problem by direct probing of the potential drop in organic field-effect transistors,” Applied Physics Letters, vol. 97, no. 26, pp. 263304263304–3, Dec. 2010.CrossRefGoogle Scholar
Marinkovic, M., Belaineh, D., Wagner, V., and Knipp, D., “On the origin of contact resistances of organic thin film transistors,” Advanced Materials, vol. 24, no. 29, pp. 40054009, 2012.CrossRefGoogle ScholarPubMed
Yakimets, I., MacKerron, D., Giesen, P., Kilmartin, K. J., Goorhuis, M., Meinders, E., and MacDonald, W. A., “Polymer Substrates for Flexible Electronics: Achievements and Challenges,” Advanced Materials Research, vol. 93–94, pp. 58, Jan. 2010.CrossRefGoogle Scholar
Bode, D., Rolin, C., Schols, S., Debucquoy, M., Steudel, S., Gelinck, G. H., Genoe, J., and Heremans, P., “Noise-margin analysis for organic thin-film complementary technology,” IEEE Transactions on Electron Devices, vol. 57, no. 1, pp. 201208, Jan. 2010.CrossRefGoogle Scholar
Bode, D., “Complementary Technology for Organic Thin-Film Transistors,” PhD dissertation, KULeuven, Leuven, 2011.Google Scholar
Myny, K., van Lieshout, P., Genoe, J., Dehaene, W., and Heremans, P., “Accounting for variability in the design of circuits with organic thin-film transistors,” Organic Electronics, vol. 15, no. 4, pp. 937942, Apr. 2014.CrossRefGoogle Scholar
Pelgrom, M. J. M., Duinmaijer, A. C. J., and Welbers, A. P. G., “Matching properties of MOS transistors,” IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 14331439, Oct. 1989.CrossRefGoogle Scholar
Tschanz, J., Kao, J., Narendra, S., Nair, R., Antoniadis, D., Chandrakasan, A., and De, V., “Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage,” in IEEE International Solid-State Circuits Conference (ISSCC), 2002, vol. 1, pp. 422478.Google Scholar
Liu, Q. and Sapatnekar, S. S., “Capturing post-silicon variations using a representative critical path,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 2, pp. 211222, Feb. 2010.CrossRefGoogle Scholar
Gelinck, G., Heremans, P., Nomoto, K., and Anthopoulos, T. D., “Organic transistors in optical displays and microelectronic applications,” Advanced Materials, vol. 22, no. 34, pp. 37783798, 2010.CrossRefGoogle ScholarPubMed
Someya, T., Kato, Y., Sekitani, T., Iba, S., Noguchi, Y., Murase, Y., Kawaguchi, H., and Sakurai, T., “Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 35, pp. 1232112325, Aug. 2005.CrossRefGoogle ScholarPubMed
Sekitani, T., Zschieschang, U., Klauk, H., and Someya, T., “Flexible organic transistors and circuits with extreme bending stability,” Nature Materials, vol. 9, no. 12, pp. 10151022, 2010.CrossRefGoogle ScholarPubMed
Hong, S. K., “A Study on Compensation and Driving Circuits for AMOLED Display,” PhD dissertation, Kyung Hee University, Seoul, Korea, 2010.Google Scholar
Fan, C.-L., Lai, H.-L., and Chang, J.-Y., “Improvement in brightness uniformity by compensating for the threshold voltages of both the driving thin-film transistor and the organic light-emitting diode for active-matrix organic light-emitting diode displays,” Japanese Journal of Applied Physics, vol. 49, no. 5, p. 05EB04, May 2010.CrossRefGoogle Scholar
Jankovic, N. D. and Brajovic, V., “Vth compensated AMOLED pixel employing dual-gate TFT driver,” Electronics Letters, vol. 47, no. 7, p. 456, 2011.CrossRefGoogle Scholar
Oh, K. and Kwon, O.-K., “Threshold-voltage-shift compensation and suppression method using hydrogenated amorphous silicon thin-film transistors for large active matrix organic light-emitting diode displays,” Japanese Journal of Applied Physics, vol. 51, p. 03CD01, Mar. 2012.CrossRefGoogle Scholar
Tai, Y.-H., Chou, L.-S., Chiu, H.-L., and Chen, B.-C., “Three-transistor AMOLED pixel circuit with threshold voltage compensation function using dual-gate IGZO TFT,” IEEE Electron Device Letters, vol. 33, no. 3, pp. 393395, Mar. 2012.CrossRefGoogle Scholar
Bohm, M., Ullmann, A., Zipperer, D., Knobloch, A., Glauert, W. H., and Fix, W., “Printable electronics for polymer RFID applications,” in IEEE International Solid-State Circuits Conference (ISSCC), 2006, pp. 10341041.Google Scholar
Jung, M., Kim, J., Noh, J., Lim, N., Lim, C., Lee, G., Kim, J., Kang, H., Jung, K., Leonard, A. D., Tour, J. M., and Cho, G., “All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils,” IEEE Transactions on Electron Devices, vol. 57, no. 3, pp. 571580, Mar. 2010.CrossRefGoogle Scholar
Cho, G., “Roll-to-Roll Printed 13.56 MHz Operated 16-Bit RFID Tags and Smart RF Logos,” in Printed Electronics and Photovoltaics Europe, Dresden, Germany, 2010.Google Scholar
Finkenzeller, D. K., RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication, 3rd ed. John Wiley & Sons, 2010.CrossRefGoogle Scholar
Marsman, A. W., Hart, C. M., Gelinck, G. H., Geuns, T. C. T., and de Leeuw, D. M., “Doped polyaniline polymer fuses: Electrically programmable read-only-memory elements,” Journal of Materials Research, vol. 19, no. 07, pp. 20572060, 2004.CrossRefGoogle Scholar
Myny, K., Steudel, S., Vicca, P., Genoe, J., and Heremans, P., “An integrated double half-wave organic Schottky diode rectifier on foil operating at 13.56 MHz,” Applied Physics Letters, vol. 93, p. 093305, 2008.CrossRefGoogle Scholar
Pal, B. N., Sun, J., Jung, B. J., Choi, E., Andreou, A. G., and Katz, H. E., “Pentacene-zinc oxide vertical diode with compatible grains and 15-MHz rectification,” Advanced Materials, vol. 20, no. 5, pp. 10231028, 2008.CrossRefGoogle Scholar
Steudel, S., Myny, K., Arkhipov, V., Deibel, C., De Vusser, S., Genoe, J., and Heremans, P., “50 MHz rectifier based on an organic diode,” Nature Materials, vol. 4, no. 8, pp. 597600, 2005.CrossRefGoogle Scholar
Steudel, S., De Vusser, S., Myny, K., Lenes, M., Genoe, J., and Heremans, P., “Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags,” Journal of Applied Physics, vol. 99, no. 11, pp. 114519114519–7, Jun. 2006.CrossRefGoogle Scholar
Chasin, A., Steudel, S., Myny, K., Nag, M., Ke, T.-H., Schols, S., Genoe, J., Gielen, G., and Heremans, P., “High-performance a-In-Ga-Zn-O Schottky diode with oxygen-treated metal contacts,” Applied Physics Letters, vol. 101, no. 11, pp. 113505113505–5, Sep. 2012.CrossRefGoogle Scholar
Kawamura, T., Wakana, H., Fujii, K., Ozaki, H., Watanabe, K., Yamazoe, T., Uchiyama, H., and Torii, K., “Oxide TFT rectifier achieving 13.56-MHz wireless operation with DC output up to 12 V,” in IEEE International Electron Devices Meeting (IEDM), 2010, pp. 21.4.1–21.4.4.Google Scholar
[198]“EPC standard” [Online]. Available: http://www.epcglobalinc.org/standards/specs/.Google Scholar
Ozaki, H., Kawamura, T., Wakana, H., Yamazoe, T., and Uchiyama, H., “20-µW operation of an a-IGZO TFT-based RFID chip using purely NMOS ‘active’ load logic gates with ultra-low-consumption power,” in 2011 Symposium on VLSI Circuits (VLSIC), 2011, pp. 5455.Google Scholar
Myny, K., Rockele, M., Chasin, A., Pham, D.-V., Steiger, J., Botnaras, S., Weber, D., Herold, B., Ficker, J., van Putten, B. D., Gelinck, G. H., Genoe, J., Dehaene, W., and Heremans, P., “Bidirectional Communication in an HF Hybrid Organic/Solution-Processed Metal-Oxide RFID Tag,” IEEE Transactions on Electron Devices, vol. 61, no. 7, pp. 23872393, Jul. 2014.Google Scholar
Myny, K., Smout, S., Rockelé, M., Bhoolokam, A., Ke, T. H., Steudel, S., Cobb, B., Gulati, A., Rodriguez, F. G., Obata, K., Marinkovic, M., Pham, D.-V., Hoppe, A., Gelinck, G. H., Genoe, J., Dehaene, W., and Heremans, P., “A thin-film microprocessor with inkjet print-programmable memory,” Sci. Rep., vol. 4, Dec. 2014.CrossRefGoogle ScholarPubMed
Rogers, J. A., Someya, T., and Huang, Y., “Materials and Mechanics for Stretchable Electronics,” Science, vol. 327, no. 5973, pp. 16031607, Mar. 2010.CrossRefGoogle ScholarPubMed
[203]“Historic data are collected on the Intel Museum” [Online]. Available: http://www.intel.com/about/companyinfo/museum/exhibits/4004/index.htm. The specifications can be found at http://datasheets.chipdb.org/Intel/MCS-4/datashts/intel-4004.pdfGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Kris Myny, Jan Genoe, Wim Dehaene, Katholieke Universiteit Leuven, Belgium
  • Book: Robust Design of Digital Circuits on Foil
  • Online publication: 05 September 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316411483.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Kris Myny, Jan Genoe, Wim Dehaene, Katholieke Universiteit Leuven, Belgium
  • Book: Robust Design of Digital Circuits on Foil
  • Online publication: 05 September 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316411483.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Kris Myny, Jan Genoe, Wim Dehaene, Katholieke Universiteit Leuven, Belgium
  • Book: Robust Design of Digital Circuits on Foil
  • Online publication: 05 September 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316411483.008
Available formats
×