Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-23T23:11:39.670Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2014

Machiel van Frankenhuijsen
Affiliation:
Utah Valley University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Riemann Hypothesis for Function Fields
Frobenius Flow and Shift Operators
, pp. 143 - 148
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[Art1] Artin, E., Quadratische Körper im Gebiete der höheren Kongruenzen I, II, Math. Zeitschr. 19 (1924).Google Scholar
[Art2] Artin, E., Algebraic Numbers and Algebraic Functions1, Amer. Math. Soc., Providence, RI, 2000. (Reprinted from the 1967 edition.)Google Scholar
[Bak] Baker, A., A Comprehensive Course in Number Theory, Cambridge University Press, 2012.CrossRefGoogle Scholar
[Bom1] Bombieri, E., Counting points on curves over finite fields, Seminaire Bourbaki 430 (1973).Google Scholar
[Bom2] Bombieri, E., Hilbert's 8th problem: an analogue, in: Mathematical Developments Arising from Hilbert Problems, Proc. Symposia in Pure Mathematics XXVIII, Amer. Math. Soc., Providence, RI, 1976, 269–274.Google Scholar
[Bor] Borger, J., A-Rings and the field with one element, arxiv.org, 0906.3146.pdf.
[BC] Bost, J.-B., Connes, A., Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory, Sel. Math., New Ser. 1(1995), 411–457.CrossRefGoogle Scholar
[Conn1] Connes, A., Trace formula in noncommutative geometry and the zeros of the Riemann zeta function, Sel. Math., New Ser. 5 (1999), 29–106.CrossRefGoogle Scholar
[Conn2] Connes, A., Noncommutative geometry and the Riemann zeta function, preprint, 2000.Google Scholar
[CoCo1] Connes, A., Consani, K., Schemes over F1 and zeta functions, Compositio Mathematica 146 (6) (2010), 1383–1415.Google Scholar
[CoCo2] Connes, A., Consani, K., The hyperring of adele classes, J. Number Theory 131 (2011), 159–194.CrossRefGoogle Scholar
[CoCo3] Connes, A., Consani, K., On the arithmetic of the BC-system, arXiv:1103.4672 [math.QA], 2011.Google Scholar
[CoCo4] Connes, A., Consani, K., The universal thickening of the field of real numbers, preprint, 2012, www.alainconnes.org/docs/witt_infty.pdf.Google Scholar
[CCM] Connes, A., Consani, K., Marcolli, M., The Weil proof and the geometry of the adeles class space, arXiv:math/0703392v1, 2007.Google Scholar
[CMR] Connes, A., Marcolli, M., Ramachandran, N., KMS states and complex multiplication, www.alainconnes.org/docs/cmr0.pdf and CMR1.pdf, 2004.Google Scholar
[Conr] Conrey, J. B., The Riemann hypothesis, Notices Amer. Math. Soc., March 2003, 341–353.Google Scholar
[dV1] de la Valleé-Poussin, C.-J., Recherches analytiques sur la théorie des nombres; Première partie: La fonction ς(s) de Riemann et les nombres premiers en général, Ann. Soc. Sci. Bruxelles Sér. I 20 (1896), 183–256.Google Scholar
[dV2] de la Valleé-Poussin, C.-J., Sur la fonction ς(s) de Riemann et le nombre des nombres premiers inférieurs à une limite donnée, Mém. Couronnés et Autres Mém. Publ. Acad. Roy. Sci., des Lettres, Beaux-Arts Belg. 59 (18991900).Google Scholar
[De1] Deligne, P., La conjecture de Weil I, Publ. Math. Inst. Hautes Etudes Sci. 48 (1974), 273–308.Google Scholar
[Den1] Deninger, C., Lefschetz trace formulas and explicit formulas in analytic number theory, J. reine angew. Math. 441 (1993), 1–15.Google Scholar
[Den2] Deninger, C., Evidence for a cohomological approach to analytic number theory, in: Proc. First European Congress of Mathematics (A., Josephet al., eds.) I, Paris, July 1992, Birkhäuser-Verlag, Basel, 1994, 491–510.Google Scholar
[Ed] Edwards, H. M., Riemann's Zeta Function, Dover Books, New York, 2001.Google Scholar
[Ei] Eichler, M., Introduction to the Theory of Algebraic Numbers and Functions, Pure and Applied Mathematics 23, Academic Press, New York, 1966.Google Scholar
[FreiK] Freitag, E., Kiehl, R., Etale Cohomology and the Weil Conjecture, Springer-Verlag, Berlin, Heidelberg, New York, 1988.CrossRefGoogle Scholar
[GVF] Gracia-Bondia, J. M., Varilly, J. C., Figueroa, H., Elements of Noncommutative Geometry, Birkhäuser Advanced Texts, Boston, MA, 2001.CrossRefGoogle Scholar
[Had] Hadamard, J., Sur la distribution des zéros de la fonction ς(s) et ses conséquences arithmétiques, Bull. Soc. Math. France 24 (1896), 199–220.Google Scholar
[Har1] Haran, S., Index theory, potential theory, and the Riemann hypothesis, in: L-Functions and Arithmetic (J., Coates, M. J., Taylor, eds.), London Mathematical Society Lecture Notes Series 153, 1989, 257–270.Google Scholar
[Har2] Haran, S., On Riemann's zeta function, in: Dynamical, Spectral, and Arithmetic Zeta Functions (M. L., Lapidus, M. van, Frankenhuijsen, eds.), Contemporary Mathematics 290, Amer. Math. Soc., Providence, RI, 2001, 93–112.Google Scholar
[Har3] Haran, S., The Mysteries of the Real Prime, London Mathematical Society monographs, New Series 25, Clarendon Press, Oxford, 2001.Google Scholar
[Har4] Haran, S., Non-additive geometry, Compositio Mathematica 143(2007), 618–688.
[Hart] Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics, Springer-Verlag, 1977.CrossRefGoogle Scholar
[Has1] Hasse, H., Ueber Kongruenzzetafunktionen, S. Ber. Preuß. Ak. Wiss. 1934, p. 250.Google Scholar
[Has2] Hasse, H., Zahlentheorie, Berlin, 1949.Google Scholar
[Hay] Hayman, W. K., Meromorphic Functions, Oxford University Press, London, 1975.Google Scholar
[HiRoe] Higson, N., Roe, J., Surveys in Noncommutative Geometry, Clay Mathematics Proceedings 6, Amer. Math. Soc., Providence, RI, 2006.Google Scholar
[In] Ingham, A. E., The Distribution of Prime Numbers, Cambridge University Press, 1932.Google Scholar
[Iw] Iwasawa, K., On the rings of valuation vectors, Annals of Math., 2nd Ser. 57 (1953), 331–356.Google Scholar
[K1] Katz, N. M., An overview of Deligne's proof of the Riemann hypothesis for varieties over finite fields (Hilbert's problem 8), in: Mathematical Developments Arising from Hilbert Problems, Proc. Symposia in Pure Mathematics XXVIII, Amer. Math. Soc., Providence, RI, 1976, 275–305.Google Scholar
[K2] Katz, N. M., Review of [FreiK], Bull. (N. S.) Amer. Math. Soc. 22 (1) (1990).Google Scholar
[K3] Katz, N. M., L-Functions and Monodromy: Four Lectures on Weil II, Adv. Math. 160 (2001), 81–132.CrossRefGoogle Scholar
[Lac-vF1] Laca, M., van Frankenhuijsen, M., Phase transitions on Hecke C*-algebras and class-field theory over Q, J. reine angew. Math. 595 (2006), 25–53.Google Scholar
[Lac-vF2] Laca, M., van Frankenhuijsen, M., Phase transitions with spontaneous symmetry breaking on Hecke C*-algebras from number fields, in: Noncommutative Geometry and Number Theory: Where Arithmetic Meets Geometry and Physics (K., Consani and M., Marcolli, eds.), Aspects of Mathematics E 37, Vieweg, 2006.Google Scholar
[Lag] Lagarias, J. C., The Riemann Hypothesis: Arithmetic and Geometry, in [HiRoe, pp. 127–141].
[LagR] Lagarias, J. C., Rains, E., On a two-variable zeta function for number fields (Sur une fonction zêta à deux variables pour les corps de nombres), Ann. Inst. Fourier 53 (1) (2003), 1–68.CrossRefGoogle Scholar
[LanCh] Lang, S., Cherry, W., Topics in Nevanlinna Theory, Lecture Notes in Mathematics 1433, Springer-Verlag, 1990.CrossRefGoogle Scholar
[Lap-vF1] Lapidus, M. L., van Frankenhuijsen, M., Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions), Birkhäuser, Boston, MA, 2000.CrossRefGoogle Scholar
[Lap-vF2] Lapidus, M. L., van Frankenhuijsen, M., Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings (second edition), Springer Monographs in Mathematics, 2013.CrossRefGoogle Scholar
[Li] Li, X.-J., A transformation of Hankel type on the field of p-adic numbers, J. Algebra, Numb. Th. and Appl. 12 (2009), 205–229.Google Scholar
[Lo] Lorenzini, D., An Invitation to Arithmetic Geometry, Graduate Studies in Mathematics 9, Amer. Math. Soc., Providence, RI, 1996.Google Scholar
[Nau] Naumann, N., On the irreducibility of the two variable zeta-function for curves over finite fields, C. R. Acad. Sci. Paris Sér. I Math. 336 (2003), 289–292, and arXiv:math.AG/0209092, 2002.Google Scholar
[Ost] Ostrowski, A., Über einige Lösungen der Funktionalgleichung φ(x) φ(y) = φ(xy), Acta Mathematica 41 (1) (1918), 271–284.Google Scholar
[Pel] Pellikaan, R., On special divisors and the two variable zeta function of algebraic curves over finite fields, in: Arithmetic, Geometry and Coding Theory, Proceedings of the International Conference held at CIRM, Luminy, France, 1993, 175–184.Google Scholar
[Ray] Raynaud, M., André Weil and the foundations of algebraic geometry, Notices Amer. Math. Soc., September 1999, 864–867.Google Scholar
[Ri1] Riemann, B., Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, in [Ri2, p. 145] and translated in [Ed, p. 299].
[Ri2] Riemann, B., Gesammelte Werke, Teubner, Leipzig, 1892 (reprinted by Dover Books, New York, 1953).Google Scholar
[Roq] Roquette, P., Arithmetischer Beweis der Riemannschen Vermutung in Kongruenzfunktionenkörpern beliebigen Geschlechts, J. reine angew. Math. 191 (1953), 199–252.Google Scholar
[Ros] Rosen, M., Number Theory in Function Fields, Graduate Texts in Mathematics 210, Springer-Verlag, 2002.CrossRefGoogle Scholar
[Sa] Saxe, K., Beginning Functional Analysis, Undergraduate Texts in Mathematics, Springer-Verlag, 2002.CrossRefGoogle Scholar
[fSch] Schmidt, F. K., Analytische Zahlentheorie in Körpern der Characteristik p, Math. Zeitschr. 33 (1931).Google Scholar
[wSch] Schmidt, W. M., Equations over Finite Fields: An Elementary Approach, Lecture Notes in Mathematics 536, Springer-Verlag, 1976.CrossRefGoogle Scholar
[Se] Serre, J.-P., Local Fields, Graduate Texts in Mathematics 67, Springer-Verlag, Berlin, 1979.CrossRefGoogle Scholar
[Sm] Smirnov, A. L., Hurwitz inequalities for number fields, Algebra i Analiz 4(2) (1992), 186–209.Google Scholar
[So] Soulé, C., Les variétés sur le corps à un element, arXiv:math/0304444 [math.AG], 2003.Google Scholar
[Ste] Stepanov, S. A., On the number of points of a hyperelliptic curve over a finite prime field, Izv. Akad. Nauk SSSR, Ser. Math. 33 (1969), 1103–1114.Google Scholar
[Sti] Stichtenoth, H., Algebraic Function Fields and Codes, Springer-Verlag, Berlin, 1993.Google Scholar
[Ta] Tate, J., Fourier analysis in number fields and Hecke's zeta-functions, in: Algebraic Number Theory (J.W.S., Cassels, A., Frohlich, eds.), Academic Press, New York, 1967, 305–347.Google Scholar
[Tr] Tretkoff, P., Noncommutative Geometry and Number Theory, in [HiRoe, pp. 143–189].
[vF1] van Frankenhuijsen, M., Arithmetic Progressions of Zeros of the Riemann Zeta Function, J. Number Theory 115 (2005), 360–370.CrossRefGoogle Scholar
[vF2] van Frankenhuijsen, M., The zeta function of a function field, preprint, 2007.Google Scholar
[V] Villa Salvador, G. D., Topics in the Theory of Algebraic Function Fields, Birkhäuser, Boston, 2006.Google Scholar
[W1] Weil, A., Sur les fonctions algébriques à corps de constantes fini, C. R. Acad. Sci. Paris 210 (1940), 592–594; reprinted in [W9, I pp. 257–259].Google Scholar
[W2] Weil, A., On the Riemann hypothesis in function-fields, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 345–347; reprinted in [W9, I pp. 277–279].CrossRefGoogle ScholarPubMed
[W3] Weil, A., Letter to Artin, July 10, 1942; reprinted in [W9, I pp. 280–298].Google Scholar
[W4] Weil, A., Foundations of Algebraic Geometry, Colloquium Publications 29, Amer. Math. Soc., New York 1946; second edition Providence, RI, 1962.Google Scholar
[W5] Weil, A., Number of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497–508; reprinted in [W9, I pp. 399–410].CrossRefGoogle Scholar
[W6] Weil, A., Sur les “formules explicites” de la théorie des nombres premiers, Comm. Sém. Math. Lund, Université de Lund, Tome supplémentaire (dédié à Marcel Riesz), (1952), 252–265; reprinted in [W9, II pp. 48–61].Google Scholar
[W7] Weil, A., Courbes Algébriques et Variétés Abéliennes, Hermann, Paris, 1971. (Combined in one volume Sur les courbes algébriques et les variétés qui s'en déduisent, Pub. Inst. Math. Strasbourg VII (1945), 1–85, and Variétés Abéliennes et courbes algébriques, Actualités scientifiques et industrielles 1041, Hermann, Paris, 1948.)Google Scholar
[W8] Weil, A., Basic Number Theory, Springer Classics in Mathematics, 1995.Google Scholar
[W9] Weil, A., André Weil: Oeuvres Scientifiques (Collected Papers) I, II, and III, 2nd edition with corrected printing, Springer-Verlag, Berlin and New York, 1980.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Machiel van Frankenhuijsen, Utah Valley University
  • Book: The Riemann Hypothesis for Function Fields
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107238992.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Machiel van Frankenhuijsen, Utah Valley University
  • Book: The Riemann Hypothesis for Function Fields
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107238992.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Machiel van Frankenhuijsen, Utah Valley University
  • Book: The Riemann Hypothesis for Function Fields
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107238992.010
Available formats
×