Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T22:21:10.151Z Has data issue: false hasContentIssue false

12 - Role of embryo technologies in genetic management and conservation of wildlife

Published online by Cambridge University Press:  21 January 2010

Naida M. Loskutoff
Affiliation:
Center for Conservation and Research, Henry Doorly Zoo, 3701 South 10th Street, Omaha, NB 68107, U.S.A.
William V. Holt
Affiliation:
Zoological Society of London
Amanda R. Pickard
Affiliation:
Zoological Society of London
John C. Rodger
Affiliation:
Marsupial CRC, New South Wales
David E. Wildt
Affiliation:
Smithsonian National Zoological Park, Washington DC
Get access

Summary

INTRODUCTION AND OBJECTIVES

This review critically evaluates the relative merits of reproductive techniques relating to embryo production and transfer for the genetic management and conservation of rare wildlife species.

The first live calf born following transfer of embryos between two domestic cows was produced by Willett and colleagues 50 years ago (Betteridge, 2000). Since that time, embryo transfer as an assisted reproductive technology (ART) has contributed enormously to the genetic improvement of livestock. In 1999, over half a million in vivo-derived, domestic bovine embryos were collected and transferred world-wide; more than half of these embryos were frozen-thawed, and at least another 26 000 bovine embryos were produced in vitro and transferred (Thibier, 2000). Embryo technologies have also had a significant impact on human reproduction, especially in treating infertility. In 1997 alone (the most recent data available), 335 fertility clinics in the United States reported the births of more than 24 500 babies (CDC, SART/ASRM and RESOLVE National Report, 1999). In Denmark, more than 4% of all human newborns are conceived by ART methods, including in vitro fertilisation (IVF) and sperm microinjection (Skakkebaek et al., 2000).

Certainly, the greatest progress in the development of embryo technologies has occurred in those few species where reproductive biology databases exist (e.g. cattle and primates). In most cases, methods have been developed in the species under study; in some cases, a common ‘model’ species is studied first before the technology is applied to a wild counterpart (Wildt et al., 1986; Loskutoff & Betteridge, 1992).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadi, A., Ng, S. C., Liow, S. L., Bonso, A., & Ratman, S. S. (1995). Intracytoplasmic sperm injection of mouse oocytes with 5 mM Ca at different intervals. Human Reproduction 10, 431–435CrossRefGoogle Scholar
Aytoz, A., Abbeel, E., Bonduelle, M., Camus, M., Joris, H., Steirteghem, A. & Devroey, P. (1999). Obstetric outcome of pregnancies after the transfer of cryopreserved and fresh embryos obtained by conventional in vitro fertilization and intracytoplasmic sperm injection. Human Reproduction 14, 2619–2624CrossRefGoogle ScholarPubMed
Betteridge, K. J. (2000). Reflections on the golden anniversary of the first embryo transfer to produce a calf. Theriogenology 53, 3–10CrossRefGoogle ScholarPubMed
Bielanski, A. (1998). Potential for disease control or transmission by embryos produced in vitro: a review of current literature. In Manual of the International Embryo Transfer Society, pp. 45–54. International Embryo Transfer Society, Savoy, IL.
Bonduelle, M., Aytoz, A., Assche, E., Devroey, P., Liebaers, I., & Steirteghem, A. (1998b). Incidence of chromosomal aberrations in children born after assisted reproduction through intracytoplasmic sperm injection. Human Reproduction 13, 781–782CrossRefGoogle Scholar
Bonduelle, M., Joris, H., Hofmans, K., Liebaers, I., & Steirteghem, A. (1998a). Mental development of 201 ICSI children at 2 years of age. Lancet 351, 1553–1560CrossRefGoogle Scholar
Bowen, J. R., Gibson, F. L., Leslie, G. I., & Saunders, D. M. (1998). Medical and developmental outcome at 1 year for children conceived by intracytoplasmic sperm injection. Lancet 351, 1529–1534CrossRefGoogle ScholarPubMed
Buckrell, B. C., Garley, C. J., Mehren, K. G., Crawshaw, G. J., Johnson, W. H., Barker, I. K., Balke, J., Coghill, C., Challis, J. R. G. & Goodrowe, K. L. (1990). Failure to maintain interspecific pregnancy after transfer of Dall's sheep embryos to domestic ewes. Journal of Reproduction and Fertility 90, 387–394CrossRefGoogle ScholarPubMed
Catt, J. W. (1996). Intracytoplasmic sperm injection (ICSI) and related technology. Animal Reproduction Science 42, 239–250CrossRefGoogle Scholar
CDC, SART/ASRM & RESOLVE National Report (1999). Assisted Reproductive Technology Success Rates. National summary and fertility clinic reports. National Center for Chronic Disease Prevention and Health Promotion. Division of Reproductive Health, Atlanta, GA.
Earl, C. R., Fry, R. C., Maclellan, L. J., Kelly, J. M. & Armstrong, D. T. (1998). In vitro fertilization and developmental potential of prepubertal calf oocytes. In Gametes: Development and Function (Eds. A. Lauria, F. Gandolfi, G. Enne & L. Gianoroli), pp. 115–137. Serono Symposia, Rome
Gjorret, J. O., Crichton, E. G., Armstrong, D. L., Loskutoff, N. M. & Hyttel, P. (2000). Oocyte maturation, fertilization and early embryonic development in vitro in the Siberian tiger (Panthera tigris altaica). Theriogenology 53, 334Google Scholar
Goto, K., Kinoshita, A., Takuma, Y., & Ogawa, K. (1990). Fertilization of bovine oocytes by the injection of immobilized, killed spermatozoa. Veterinary Record 127, 517–520Google Scholar
Griffiths, T. A., Murdock, A. P. & Herbert, M. (2000). Embryonic development in vitro is compromised by the ICSI procedure. Human Reproduction 15, 1592–1596CrossRefGoogle ScholarPubMed
Hammer, C. J., Tyler, H. D., Loskutoff, N. M., Armstrong, D. L., Funk, D. J., Lindsey, B. R. & Simmons, L. G. (2001). Compromised development of calves (Bos gaurus) derived from in vitro-generated embryos and transferred interspecifically into domestic cattle (Bos taurus). Theriogenology 55, 1447–1455CrossRefGoogle Scholar
Hewitson, L., Simerly, C., Dominko, T., & Schatten, G. (2000). Cellular and molecular events after in vitro fertilization and intracytoplasmic sperm injection. Theriogenology 53, 95–104CrossRefGoogle ScholarPubMed
Hopkins, S. M., Armstrong, D. L., Hummel, K. C. & Junior, S. M. (1988). Successful cryopreservation of gaur (Bos gaurus) epididymal spermatozoa. Journal of Zoo Animal Medicine 19, 195–201CrossRefGoogle Scholar
Hosoi, T., Miyake, M., Utsumi, K. & Iritani, A. (1988). Development of rabbit oocytes after microinjection of spermatozoon. In Proceedings of the 11th Congress on Animal Reproduction and Artificial Insemination, Vol. 3, pp. 331–333
Hradecky, P., Stover, J., & Stott, G. G. (1988). Histology of a heifer placentome after interspecies transfer of gaur embryo. Theriogenology 30, 593–604CrossRefGoogle ScholarPubMed
Iritani, A., Hosoi, Y. & Torii, R. (1998). Application of ICSI in domestic and/or zoo animals. In Gametes: Development and Function (Eds. A. Lauria, F. Gandolfi, G. Enne & L. Gianoroli), pp. 393–404. Serono Symposia, Rome
Iwasaki, S. & Nakahara, T. (1990). Cell number and incidence of chromosomal anomalies in bovine blastocysts fertilized in vitro followed by culture in vitro or in vivo in rabbit oviducts. Theriogenology 33, 669–675CrossRefGoogle ScholarPubMed
Johnson, L. A. & Welch, G. R. (1999). Sex preselection: high-speed flow cytometric sorting of X and Y sperm for maximum efficiency. Theriogenology 52, 1323–1341CrossRefGoogle Scholar
Johnson, W. H., Loskutoff, N. M., Plante, Y., & Betteridge, K. J. (1995). The production of four identical calves by the separation of blastomeres from an in vitro-derived four cell embryo. Veterinary Record 137, 15–16CrossRefGoogle Scholar
Johnston, L., Parrish, J., Monson, R., Leibfried-Rutledge, L., Susko-Parrish, J., Northey, D., Rutledge, J., & Simmons, L. (1993). Oocyte maturation, fertilization and embryo development in vitro and in vivo in the gaur (Bos gaurus). Journal of Reproduction and Fertility 100, 131–136CrossRefGoogle Scholar
Keefer, C. L., Younis, A. I. & Brackett, B. G. (1990). Cleavage development of bovine oocytes fertilized by sperm injection. Molecular Reproduction and Development 25, 281–285CrossRefGoogle ScholarPubMed
Kruip, Th. A. M. & Daas, J. H. G. (1997). In vitro produced and cloned embryos: effects on pregnancy, parturition and offspring. Theriogenology 47, 43–52CrossRefGoogle Scholar
Loskutoff, N. M. (1998). Biology, technology and strategy of genetic resource banking in conservation programs for wildlife. In Gametes: Development and Function (Eds. A. Lauria, F. Gandolfi, G. Enne & L. Gianoroli), pp. 275–286. Serono Symposia, Rome
Loskutoff, N. M., Amstrong, D. L., Ohlrichs, C. L., Johnson, D. L., Funk, D. J., VanRoekel, P. V., Molina, J. A., Lindsey, B. R., Looney, C. R., Bellow, S. M., Hammer, C. J., Tyler, H. D. & Simmons, L. G. (2000). Transvaginal ultrasound-guided oocyte retrieval and the developmental competence of in vitro-produced embryo in vitro and in vivo in the gaur (Bos gaurus). Theriogenology 53, 337Google Scholar
Loskutoff, N. M. & Betteridge K. J. (1992). Embryo technology in pets and endangered species. In Gametes: Development and Function (Eds. A. Lauria, F. Gandolfi, G. Enne & L. Gianoroli), pp. 235–248. Serono Symposia, Rome
Loskutoff, N. M., Huntress, S. L., Putman, J. M., Yee, B., Bowsher, T. R., Chacon, R. R., Calle, P. P., Cambre, R. C., Czekala, N. M., Rosen, G. F., Kraemer, D. C. & Raphael, B. L. (1991b). Stimulation of ovarian activity for oocyte recovery in nonreproductive gorillas (Gorilla gorilla gorilla). Journal of Zoo and Wildlife Medicine 22, 32–41Google Scholar
Loskutoff, N. M., Johnson, W. H. & Betteridge, K. J. (1993). The developmental competence of bovine embryos with reduced cell numbers. Theriogenology 39, 95–108CrossRefGoogle Scholar
Loskutoff, N. M., Kraemer, D. C., Raphael, B. L., Huntress, S. L. & Wildt, D. E. (1991a). Advances in reproduction in captive, female great apes: an emphasis on the value of biotechniques. American Journal of Primatology 24, 151–166CrossRefGoogle Scholar
Lucas-Hahn, A. (1992). Status of cryopreserving micromanipulated bovine embryos. Embryo Transfer Newsletter 10, 18–23. International Embryo Transfer Society, Savoy, IL.
Mann, J. R. (1988). Full term development of mouse eggs fertilized by a spermatozoon microinjected under the zona pellucida. Biology of Reproduction 38, 1077–1083CrossRefGoogle ScholarPubMed
Meintjes, M., Bellow, M. S., Broussard, J. R., Paul, J. B. & Godke, R. A. (1995). Transvaginal aspiration of oocytes from hormone-treated pregnant beef cattle for in vitro fertilization. Journal of Animal Science 73, 967–974CrossRefGoogle ScholarPubMed
O'Brien, S. J., Roelke, M. E., Marker, L., Newman, A., Winkler, C. A., Meltzer, D., Colly, L., Evermann, J. F., Bush, M. & Wildt, D. E. (1985). Genetic basis for species vulnerability in the cheetah. Science 227, 1428–1434CrossRefGoogle ScholarPubMed
Palermo, G., Joris, H., Devroey, P., & Steirteghem, A. C. (1992). Pregnancies after intracytoplasmic sperm injection of a single spermatozoon into an oocyte. Lancet 340, 17–18CrossRefGoogle ScholarPubMed
Plante, Y., Schmutz, S. M. & Lang, K. D. M. (1992). Restriction fragment length polymorphism in the mitochondrial DNA of cloned cattle. Theriogenology 38, 897–904CrossRefGoogle ScholarPubMed
Pope, C. E. (2000). Embryo technology in conservation efforts for endangered felids. Theriogenology 53, 163–174CrossRefGoogle ScholarPubMed
Pope, C. E. & Loskutoff, N. M. (1999). Embryo transfer and semen technology from cattle applied to nondomestic artiodactylids. In Zoo and Wild Animal Medicine: Current Therapy, 4th edn (Eds. M. E. Fowler & R. E. Miller), pp. 597–604. W. B. Saunders, Philadelphia
Pope, C. E., Dresser, B. L., Chin, N. W., Liu, J. H., Loskutoff, N. M., Behnke, E. J., Brown, C., McRae, M. A., Sinoway, C. E., Campbell, M. K., Cameron, K. N., Owens, O. M., Johnson, C. A., Evans, R. R. & Cedars, M. I. (1997). Birth of a western lowland gorilla (Gorilla gorilla gorilla) following in vitro fertilization and embryo transfer. American Journal of Primatology 41, 247–2603.0.CO;2-X>CrossRefGoogle ScholarPubMed
Prather, R. & Day, B. N. (1998). Practical considerations for the in vitro production of pig embryos. Theriogenology 49, 23–32CrossRefGoogle ScholarPubMed
Seidel, G. E. (1999). Sexing mammalian embryos and sperm – state of the art. Journal of Reproduction and Fertility, Suppl. 54, 475–485Google ScholarPubMed
Shaw, J., Oranratnachai, A., & Trounson, A. O. (2000). Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology 53, 59–72CrossRefGoogle ScholarPubMed
Silber, S. J., Steirteghem, A. C., Lui, J., Nay, Z., Tournaye, G. & Devroey, P. (1995). High fertilization and pregnancy rate after intracytoplasmic sperm injection with spermatozoa obtained from testicle biopsy. Human Reproduction 10, 148–152CrossRefGoogle ScholarPubMed
Skakkebaek, N. E., Leffers, H., Rajpert-De Meyts, E., Carlsen, E. & Grigor, K. M. (2000). Should we watch what we eat and drink? Report on the International Workshop on Hormones and Endocrine Disrupters in Food and Water: Possible Impact on Human Health. Trends in Endocrinology and Metabolism 11, 291–293Google ScholarPubMed
Solti, L., Crichton, E. G., Loskutoff, N. M. & Cseh, S. (2000). Economical and ecological importance of indigenous livestock and the application of assisted reproduction to their preservation. Theriogenology 53, 149–162CrossRefGoogle ScholarPubMed
Squires, E. L., Wilson, J. M., Kato, H., & Baszczkyk, A. (1996). A pregnancy after intracytoplasmic sperm injection into equine oocytes matured in vitro. Theriogenology 45, 306CrossRefGoogle Scholar
Stover, J., Evans, J. & Dolensek, E. P. (1981). Interspecies embryo transfer from the gaur to the domestic Holstein. Proceedings of the American Association of Zoo Veterinarians, pp. 122–124
Stringfellow, D. A. (1998). Recommendations for the sanitary handling of in vivo-derived embryos. In Manual of the International Embryo Transfer Society, pp. 79–84. International Embryo Transfer Society, Savoy, IL.
Tesarik, J., Rolet, F., Brami, C., Sedbon, E., Thorel, J., Tibi, C., & Thebault, A. (1996). Spermatid injection into human oocytes, II. Clinical application in the treatment of infertility due to non-obstructive azoospermia. Human Reproduction 11, 780–783CrossRefGoogle ScholarPubMed
Thibier, M. (2000). The 1999 statistical figures for the world-wide embryo transfer industry: a data retrieval committee report. Embryo Transfer Newsletter 18, 24–28. International Embryo Transfer Society, Savoy, IL
Walker, S. K., Hartwich, K. M., Robinson, J. S. & Seamark, R. F. (1998). Influence of in vitro culture of embryos on the normality of development. In Gametes: Development and Function (Eds. A. Lauria, F. Gandolfi, G. Enne & L. Gianoroli), pp. 457–484. Serono Symposia, Rome
Wildt, D. E., Brown, J. L. & Swanson, W. F. (1998). Reproduction in cats. In Encyclopedia of Reproduction (Eds. E. Knobil & J. Neill), pp. 497–510. Academic Press, New York
Wildt, D. E., Schiewe, M. C., Schmidt, P. M., Goodrowe, K. L., Howard, J. G., Phillips, L. G., O'Brien, S. J. & Bush, M. (1986). Developing animal model systems for embryo technologies in rare and endangered wildlife. Theriogenology 25, 33–51CrossRefGoogle Scholar
Willadsen, S. M. & Fehilly, C. B. (1983). The developmental potential and regulatory capacity of blastomeres from two-, four- and eight-cell sheep embryos. In Fertilization of the Human Egg In Vitro (Eds. H. Beier & H. Lindner), pp. 353–357. Springer-Verlag, BerlinCrossRef
Wolvekamp, M. C. J., MacCallum, C., Cleary, M., Shaw, J., Cox, S., Jenkin, G., & Trounson, A. O. (2000). Novel approach to save the critically endangered northern hairy-nosed wombat (Lasiorhinus krefftii). Theriogenology 53, 345Google Scholar
Wrathall, A. & Sutmoller, P. (1998). Potential of embryo transfer to control transmission of disease. In Manual of the International Embryo Transfer Society, pp. 17–44. International Embryo Transfer Society, Savoy, IL.
Wright, G., Tucker, M. J., Morton, P. C., Swetzer-Yoder, C. L. & Smith, S. E. (1998). Micromanipulation in assisted reproduction: a review of current technology. Fertility 10, 221–226Google ScholarPubMed
Xu, K. P., Yadav, B. R., King, W. A. & Betteridge, K. J. (1992). Sex-related differences in developmental rates of bovine embryos produced and cultured in vitro. Molecular Reproduction and Development 31, 249–252CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×