Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-05T00:37:04.038Z Has data issue: false hasContentIssue false

8 - Relativistic blast waves

Published online by Cambridge University Press:  05 August 2012

Maurice H. P. M. Van Putten
Affiliation:
Massachusetts Institute of Technology
Amir Levinson
Affiliation:
Tel-Aviv University
Get access

Summary

There are two possible outcomes: if the result confirms the hypothesis, then you've made a measurement. If the result is contrary to the hypothesis, then you've made a discovery.

Enrico Fermi (1901–1954)

The ejection of supersonic outflows drives the formation of strong shocks that propagate into the surrounding medium. Examples are blast waves that form in stellar and galactic explosions. The supernovae accompanying the death of a star, the afterglow emission that follows a GRB explosion, and the radio lobes observed in radio galaxies and blazars are clear signatures of those blast waves. When the energy released by the source is large such that E > (Mj + ρiV)c2, where Mj is the mass of the ejecta, ρi the ambient density and V the volume swept by the shock, the blast wave motion is relativistic. The most notable example is the afterglowshell in GRBs.

The structure formed in spherical explosions at early times is shown schematically in Fig. 8.1. It consists of a forward shock that propagates in the ambient medium, a reverse shock crossing the ejecta, and a contact discontinuity separating the shocked ejecta and the shocked ambient medium. This structure is clearly seen in the X-ray image of the SNR DEM L71 in Fig. 8.2. The early phases in the evolution of a blast wave are considered in detail in Section 8.6.

At sufficiently late times a major fraction of the explosion energy is contained in the shell of shocked ambient medium and the effect of the ejecta on the evolution of the forward shock can be ignored. This stage is well described by the impulsive blast wave model discussed in Section 8.2.

Type
Chapter
Information
Relativistic Astrophysics of the Transient Universe
Gravitation, Hydrodynamics and Radiation
, pp. 183 - 205
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×