Skip to main content Accessibility help
  • Print publication year: 2013
  • Online publication date: April 2013

7 - Bioreactor Technologies for Tissue Engineering a Replacement Heart Valve

from Section II - Enabling Technologies for Regenerative Pharmacology


1. AHA. Congenital Cardiovascular Defects. Diseases and Conditions. American Heart Association, Dallas, TX, 2010.
2. Filova, E., Straka, F., Mirejovsky, T., Masin, J., Bacakova, L. Tissue-engineered heart valves. Physiol Res 58:S141–S158, 2009.
3. Butcher, J. T., McQuinn, T. C., Sedmera, D., Turner, D., Markwald, R. R. Transitions in early embryonic atrioventricular valvular function correspond with changes in cushion biomechanics that are predictable by tissue composition. Circ Res 100(10):1503–1511, 2007.
4. Hildebrand, D. K., Wu, Z. J. J., Mayer, J. E., Sacks, M. S. Design and hydrodynamic evaluation of a novel pulsatile bioreactor for biologically active heart valves. Ann Biomed Eng 32(8):1039–1049, 2004.
5. Sacks, M. S., Schoen, F. J., Mayer, J. E. Bioengineering challenges for heart valve tissue engineering. Ann Rev Biomed Eng 11:289–313, 2009.
6. Combs, M. D., Yutzey, K. E. Heart valve development regulatory networks in development and disease. Circ Res 105(5):408–421, 2009.
7. Hinton, R. B., Lincoln, J., Deutsch, G. H., Osinska, H., Manning, P. B., Benson, D. W., Yutzey, K. E. Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res 98(11):1431–1438, 2006.
8. Goodwin, R. L., Nesbitt, T., Price, R. L., Wells, J. C., Yost, M. J., Potts, J. D. Three-dimensional model system of valvulogenesis. Dev Dynam 233(1):122–129, 2005.
9. Hoerstrup, S. P., Sodian, R., Sperling, J. S., Vacanti, J. P., Mayer, J. E. New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng 6(1):75–79, 2000.
10. Flanagan, T. C., Cornelissen, C., Koch, S., Tschoeke, B., Sachweh, J. S., Schmitz-Rode, T., Jockenhoevel, S. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28(23):3388–3397, 2007.
11. Engelmayr, G. C., Hildebrand, D. K., Sutherland, F. W. H., Mayer, J. E., Sacks, M. S. A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials 24(14):2523–2532, 2003.
12. Engelmayr, G. C., Rabkin, E., Sutherland, F. W. H., Schoen, F. J., Mayer, J. E., Sacks, M. S. The independent role of cyclic flexure in the early in vitro development of an engineered heart valve tissue. Biomaterials 26(2):175–187, 2005.
13. Sodian, R., Hoerstrup, S. P., Sperling, J. S., Daebritz, S. H., Martin, D. P., Schoen, F. J., Vacanti, J. P., Mayer, J. E. Tissue engineering of heart valves: In vitro experiences. Ann Thorac Surg 70(1):140–144, 2000.
14. Syedain, Z. H., Tranquillo, R. T. Controlled cyclic stretch bioreactor for tissue-engineered heart valves. Biomaterials 30(25):4078–4084, 2009.
15. Weston, M. W., Yoganathan, A. P. Biosynthetic activity in heart valve leaflets in response to in vitro flow environments. Ann Biomed Eng 29(9):752–763, 2001.
16. Ingber, D. E. The architecture of life. Sci Am 278(1):48–57, 1998.
17. Karim, N., Golz, K., Bader, A. The cardiovascular tissue-reactor: A novel device for the engineering of heart valves. Artif Organs 30(10):809–814, 2006.
18. Sucosky, P., Padala, M., Elhammali, A., Balachandran, K., Jo, H., Yoganathan, A. P. Design of an ex vivo culture system to investigate the effects of shear stress on cardiovascular tissue. J Biomech Eng 130(3) 035001, 2008.
19. Biechler, S. V., Potts, J. D., Yost, M. J., Junor, L., Goodwin, R. L., Weidner, J. W. Mathematical Modeling of Flow-Generated Forces in an In Vitro System of Cardiac Valve Development. Ann Biomed Eng 38(1):109–117, 2010.
20. Lee, D. J., Steen, J., Jordan, J. E., Kincaid, E. H., Kon, N. D., Atala, A., Berry, J., Yoo, J. J. Endothelialization of heart valve matrix using a computer-assisted pulsatile bioreactor. Tissue Eng Part A 15(4):807–814, 2009.
21. Ruel, J., Lachance, G. A new bioreactor for the development of tissue-engineered heart valves. Ann Biomed Eng 37(4):674–681, 2009.
22. Kortsmit, J., Driessen, N. J. B., Rutten, M. C. M., Baaijens, F. P. T. Real time, non-invasive assessment of leaflet deformation in heart valve tissue engineering. Ann Biomed Eng 37(3):532–541, 2009.
23. Narita, Y., Hata, K. I., Kagami, H., Usui, A., Ueda, M., Ueda, Y. Novel pulse duplicating bioreactor system for tissue-engineered vascular construct. Tissue Eng 10(7–8):1224–1233, 2004.
24. Driessen, N. J. B., Mol, A., Bouten, C. V. C., Baaijens, F. P. T. Modeling the mechanics of tissue-engineered human heart valve leaflets. J Biomech 40(2):325–334, 2007.
25. Kortsmit, J., Rutten, M. C. M., Wijlaars, M. W., Baaijens, F. P. T. Deformation-controlled load application in heart valve tissue engineering. Tissue Eng Part C 15(4):707–716, 2009.
26. Mol, A., Driessen, N. J. B., Rutten, M. C. M., Hoerstrup, S. P., Bouten, C. V. C., Baaijens, F. P. T. Tissue engineering of human heart valve leaflets: A novel bioreactor for a strain-based conditioning approach. Ann Biomed Eng 33(12):1778–1788, 2005.