Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-28T22:14:00.740Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  05 May 2015

Rahul Vaze
Affiliation:
Tata Institute of Fundamental Research, Mumbai
Get access

Summary

In addition to the traditional cellular wireless networks, in recent past, many other wireless networks have gained widespread popularity, such as sensor networks, military networks, and vehicular networks. In a sensor network, a large number of sensors are deployed in a geographical area for monitoring physical parameters (temperature, rainfall), intrusion detection, animal census, etc., while in a military network, heterogenous military hardware interconnects to form a network in a battlefield, and vehicular networks are being deployed today for traffic management, emergency evacuations, and efficient routing. For efficient scalability, these new wireless networks are envisaged to be self-configurable with no centralized control, sometimes referred to as ad hoc networks.

The decentralized mode of operation makes it easier to deploy these networks, however, that also presents with several challenges, such as creating large amount of interference, large overheads for finding optimal routes, complicated protocols for cooperation and coordination. Because of these challenges, finding the performance limits, both in terms of the amount of information that can be carried across the network and ensuring connectivity in the wireless network, is a very hard problem and has remained unsolved in its full generality.

From an information-theoretic point of view, where we are interested in finding the maximum amount of information that can be carried across the network, one of the major bottlenecks in wireless network is the characterization of interference. To make use of the spatial separation between nodes of the wireless network, multiple transmitters communicate at the same time, creating interference at other receivers. The arbitrary topology of the network further compounds the problem by directly affecting the signal interaction or interference profile. Thus, one of the several trade-offs in wireless networks is the extent of spatial reuse viz-a-viz the interference tolerance. Another important trade-off is the relation between the radio range (distance to which each node can transmit) of sensor nodes and the connectivity of the wireless network. Small radio range leads to isolated nodes, while larger radio ranges result in significant interference at the neighboring receivers affecting connectivity.

Type
Chapter
Information
Random Wireless Networks
An Information Theoretic Perspective
, pp. xi - xiii
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Rahul Vaze
  • Book: Random Wireless Networks
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316182581.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Rahul Vaze
  • Book: Random Wireless Networks
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316182581.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Rahul Vaze
  • Book: Random Wireless Networks
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316182581.001
Available formats
×