Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-14T20:28:12.823Z Has data issue: false hasContentIssue false

2 - A quick review of gas dynamics

Published online by Cambridge University Press:  18 February 2010

John I. Castor
Affiliation:
Lawrence Livermore National Laboratory, California
Get access

Summary

Before beginning a discussion of the special effects brought about by the energy and momentum of radiation, we review ideal gas dynamics as it exists without these sources. We will define the variables we use and present the main equations that will be modified later.

A quite good introduction to fluid mechanics is the volume Fluid Mechanics in the Course of Theoretical Physics by Landau and Lifshitz (1959). This does not spend much time on the microscopic picture of fluids, but is very strong on the physical applications. The approach is entirely analytic. Mihalas and Mihalas (1984) describe kinetic theory in some detail, and the basis of viscosity, in addition to some of the basic results of gas dynamics. The chapters on viscous effects and relativistic flows are valuable.

Ideal fluid description: p, p, u, and e

A fluid is, as the name suggests, free to flow, which distinguishes it from an elastic solid. The solid can deform, but as it does stresses are produced that depend on the displacements. In a fluid the stress is primarily (i.e., apart from a small correction due to viscosity) an isotropic pressure, and this depends on the local temperature and density of the matter, and is independent of how far a parcel may have moved from its starting point. So density is the parameter that expresses how the kinematics will change the state of the matter. The density evolves as the fluid moves, and the volume occupied by a parcel of material changes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • A quick review of gas dynamics
  • John I. Castor, Lawrence Livermore National Laboratory, California
  • Book: Radiation Hydrodynamics
  • Online publication: 18 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536182.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • A quick review of gas dynamics
  • John I. Castor, Lawrence Livermore National Laboratory, California
  • Book: Radiation Hydrodynamics
  • Online publication: 18 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536182.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • A quick review of gas dynamics
  • John I. Castor, Lawrence Livermore National Laboratory, California
  • Book: Radiation Hydrodynamics
  • Online publication: 18 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536182.003
Available formats
×