Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T04:38:42.860Z Has data issue: false hasContentIssue false

4 - Studies of the hole spin in self-assembled quantum dots using optical techniques

from Part II - Manipulation of individual quantum states in quantum dots using optical techniques

Published online by Cambridge University Press:  05 August 2012

B. D. Gerardot
Affiliation:
Heriot-Watt University, UK
R. J. Warburton
Affiliation:
University of Basel, Switzerland
Alexander Tartakovskii
Affiliation:
University of Sheffield
Get access

Summary

Self-assembled quantum dots as host for spin qubits

A coherent spin in the solid-state would be very attractive for a number of applications. A single spin has an obvious application as a magnetic field sensor; entangled spin states can potentially enhance the sensitivity [54]. An optically active spin is a potential component of a quantum repeater, a technology to extend fibre-based quantum cryptography to large distances [41]. Also, a spin qubit is a potential building block of a quantum information processor [62]. But, applications aside, the targeted investigation of spin coherence in the solid-state is leading to new insights into the microscopic nature of the complex spin environment, allowing some old problems, for instance the central spin problem, to be fruitfully revisited.

The search for spin coherence in the solid-state has led most spectacularly so far to the NV centre in diamond whose spin coherence can reach ˜1 ms even at room temperature [5]. However, diamond is difficult to process into a real device. Electron and hole spins in III–V semiconductors have yet to achieve the coherence of the NV in diamond, but these materials have some considerable advantages. First, quantum dots can be used to confine electron spins to nanometer length scales [47, 61]. The quantum dots can either be defined electrostatically by local depletion of a two-dimensional electron gas, or they can be self-assembled during growth, for instance InAs on GaAs. Second, both a mature heterostructure technology and post-growth nanofabrication can be used to add functionality to the quantum dots.

Type
Chapter
Information
Quantum Dots
Optics, Electron Transport and Future Applications
, pp. 63 - 85
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Amasha, S., MacLean, K., Radu, I. P. et al. 2008. Electrical control of spin relaxation in a quantum dot. Phys. Rev. Lett., 100(4), 46803.Google Scholar
[2] Atatüre, M., Dreiser, J., Badolato, A. et al. 2006. Quantum-dot spin-state preparation with near-unity fidelity. Science, 312(5773), 551–553.Google Scholar
[3] Atatüre, M., Dreiser, J., Badolato, A. and Imamoglu, A. 2007. Observation of Faraday rotation from a single confined spin. Nature Physics, 3(2), 101–106.Google Scholar
[4] Baier, M., Findeis, F., Zrenner, A., Bichler, M. and Abstreiter, G. 2001. Optical spectroscopy of charged excitons in single quantum dot photodiodes. Phys. Rev. B, 64(19), 195326.Google Scholar
[5] Balasubramanian, G., Neumann, P., Twitchen, D. et al. 2009. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater., 8(5), 383–387.Google Scholar
[6] Barthel, C., Medford, J., Marcus, C. M., Hanson, M. P. and Gossard, A. C. 2010. Interlaced dynamical decoupling and coherent operation of a singlet–triplet qubit. Phys. Rev. Lett., 105(26), 266808.Google Scholar
[7] Bayer, M., Ortner, G., Stern, O. et al. 2002. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B, 65(19), 195315.Google Scholar
[8] Belhadj, T., Amand, T., Kunold, A. et al. 2010. Impact of heavy hole–light hole coupling on optical selection rules in GaAs quantum dots. Appl. Phys. Lett., 97(5), 051111.Google Scholar
[9] Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. and Awschalom, D. D. 2008. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science, 320(5874), 349–352.Google Scholar
[10] Bergmann, K., Theuer, H. and Shore, B. W. 1998. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys., 70, 1003–1025.Google Scholar
[11] Bester, G., Nair, S. and Zunger, A. 2003. Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled InGaAs/GaAs quantum dots. Phys. Rev. B, 67(16), 161306.Google Scholar
[12] Bluhm, H., Foletti, S., Mahalu, D., Umansky, V. and Yacoby, A. 2010. Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath. Phys. Rev. Lett., 105(21), 216803.Google Scholar
[13] Bracker, A., Stinaff, E., Gammon, D. et al. 2005. Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots. Phys. Rev. Lett., 94(4), 047402.Google Scholar
[14] Braun, P.-F., Marie, X., Lombez, L. et al. 2005. Direct observation of the electron spin relaxation induced by nuclei in quantum dots. Phys. Rev. Lett., 94(11), 116601.Google Scholar
[15] Brossel, J. and Bitter, F. 1952. Phys. Rev., 86, 308.
[16] Brossel, J. and Kastler, A. 1949. Compt. Rend., 229, 1213.
[17] Brunner, D., Gerardot, B. D., Dalgarno, P. et al. 2009. A coherent single-hole spin in a semiconductor. Science, 325(5936), 70.Google Scholar
[18] Bulaev, D. V. and Loss, D. 2005. Spin relaxation and decoherence of holes in quantum dots. Phys. Rev. Lett., 95(7), 076805.Google Scholar
[19] Bulaev, D. V. and Loss, D. 2007. Electric dipole spin resonance for heavy holes in quantum dots. Phys. Rev. Lett., 98(9), 097202.Google Scholar
[20] Chekhovich, E., Krysa, A., Skolnick, M. and Tartakovskii, A. 2011. Direct measurement of the hole–nuclear spin interaction in single InP/GaInP quantum dots using photoluminescence spectroscopy. Phys. Rev. Lett., 106(2), 027402.Google Scholar
[21] Cortez, S., Krebs, O., Laurent, S. et al. 2002. Optically driven spin memory in n-doped InAs-GaAs quantum dots. Phys. Rev. Lett., 89(20), 207401.Google Scholar
[22] Crooker, S. A., Brandt, J., Sandfort, C. et al. 2010. Spin noise of electrons and holes in self-assembled quantum dots. Phys. Rev. Lett., 104(3), 036601.Google Scholar
[23] Dalgarno, P., Ediger, M., Gerardot, B. et al. 2008. Optically induced hybridization of a quantum dot state with a filled continuum. Phys. Rev. Lett., 100(17), 176801.Google Scholar
[24] Damen, T. C., Vina, L., Cunningham, J. E., Shah, J. and Sham, L. J. 1991. Subpicosecond spin relaxation dynamics of excitons and free-carriers in GaAs quantum-wells. Phys. Rev. Lett., 67(24), 3432–3435.Google Scholar
[25] De Greve, K., McMahon, P. L., Press, D. et al. 2011. Coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nature Physics, 7, 872.Google Scholar
[26] Desfonds, P., Eble, B., Fras, F. et al. 2010. Electron and hole spin cooling efficiency in InAs quantum dots: the role of nuclear field. Appl. Phys. Lett., 96(17), 172108.Google Scholar
[27] Dreiser, J., Atatüre, M., Galland, C. et al. 2008. Optical investigations of quantum dot spin dynamics as a function of external electric and magnetic fields. Phys. Rev. B, 77(7), 075317.Google Scholar
[28] Eble, B., Testelin, C., Desfonds, P. et al. 2009. Hole-nuclear spin interaction in quantum dots. Phys. Rev. Lett., 102(14), 146601.Google Scholar
[29] Ediger, M., Dalgarno, P. A., Smith, J.M. et al. 2005. Controlled generation of neutral, negatively-charged and positively-charged excitons in the same single quantum dot. Appl. Phys. Lett., 86(21), 211909.Google Scholar
[30] Fallahi, P., Yilmaz, S. and Imamofi glu, A. 2010. Measurement of a heavy-hole hyper-fine interaction in InGaAs quantum dots using resonance fiuorescence. Phys. Rev. Lett., 105(25), 257402.Google Scholar
[31] Fano, U. 1961. Effects of configuration interaction on intensities and phase shifts. Phys. Rev., 124(6), 1866–1878.Google Scholar
[32] Fischer, J. and Loss, D. 2009. Dealing with decoherence. Science, 324(5932), 1277–1278.Google Scholar
[33] Fischer, J., Coish, W. A., Bulaev, D. V. and Loss, D. 2008. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev. B, 78(15), 155329.Google Scholar
[34] Fleischhauer, M., Imamoglu, A. and Marangos, J. 2005. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys., 77(2), 633–673.Google Scholar
[35] Fokina, L. V., Yugova, I. A., Yakovlev, D. R. et al. M., 2010. Spin dynamics of electrons and holes in InGaAs/GaAs quantum wells at millikelvin temperatures. Phys. Rev. B, 81(19), 195304.Google Scholar
[36] Frogley, M. D., Dynes, J. F., Beck, M., Faist, J. and Phillips, C. C. 2006. Gain without inversion in semiconductor nanostructures. Nat. Mater., 5(3), 175–178.Google Scholar
[37] Fu, K.-M., Santori, C., Stanley, C., Holland, M. and Yamamoto, Y. 2005. Coherent population trapping of electron spins in a high-purity n-type GaAs semiconductor. Phys. Rev. Lett., 95(18), 187405.Google Scholar
[38] Gerardot, B. D., Seidl, S., Dalgarno, P. A. et al. 2007. Contrast in transmission spectroscopy of a single quantum dot. Appl. Phys. Lett., 90(22), 221106.Google Scholar
[39] Gerardot, B. D., Brunner, D., Dalgarno, P. A. et al. 2009. Dressed excitonic states and quantum interference in a three-level quantum dot ladder system. New J. Phys., 11(1), 013028.Google Scholar
[40] Gerardot, B. D., Brunner, D., Dalgarno, P. A. et al. 2008. Optical pumping of a single hole spin in a quantum dot. Nature, 451(7177), 441–444.Google Scholar
[41] Gisin, N., Ribordy, G. G., Tittel, W. and Zbinden, H. 2002. Quantum cryptography. Rev. Mod. Phys., 74(1), 145–195.Google Scholar
[42] Godden, T. M., Boyle, S. J., Ramsay, A. J., Fox, A. M. and Skolnick, M. S. 2010. Fast high fidelity hole spin initialization in a single InGaAs quantum dot. Appl. Phys. Lett., 97(6), 061113.Google Scholar
[43] Golovach, V., Khaetskii, A. and Loss, D. 2004. Phonon-induced decay of the electron spin in quantum dots. Phys. Rev. Lett., 93(1), 016601.Google Scholar
[44] Greilich, A., Yakovlev, D. R., Shabaev, A. et al. 2006. Mode locking of electron spin coherences in singly charged quantum dots. Science, 313(5785), 341–5.Google Scholar
[45] Greilich, A., Shabaev, A., Yakovlev, D. R. et al. 2007. Nuclei-induced frequency focusing of electron spin coherence. Science, 317(5846), 1896–9.Google Scholar
[46] Greilich, A., Carter, S. G., Kim, D., Bracker, A. S. and Gammon, D. 2011. Optical control of one and two hole spins in interacting quantum dots. Nature Photonics, 5, 702.Google Scholar
[47] Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. and Vandersypen, L. M. K. 2007. Spins in few-electron quantum dots. Rev. Mod. Phys., 79(4), 1217.Google Scholar
[48] Heiss, D., Schaeck, S., Huebl, H. et al. 2007. Observation of extremely slow hole spin relaxation in self-assembled quantum dots. Phys. Rev. B, 76(24), 241306.Google Scholar
[49] Högele, A., Seidl, S., Kroner, M. et al. 2004. Voltage controlled optics of a quantum dot. Phys. Rev. Lett., 93, 217401.Google Scholar
[50] Hoke, W. E., Weir, D. G., Lemonias, P. J. and Hendriks, H. T. 1994. Carbon tetrabromide carbon doping of molecular beam epitaxial (GaAs) films. Appl. Phys. Lett., 64(2), 202.Google Scholar
[51] Houel, J. 2012. In press.
[52] Imamoglu, A. 2006. Coherent population trapping in a single-hole-charged quantum dot. Phys. Stat. Sol. B, 243(14), 3725–3729.Google Scholar
[53] Johnson, A. C., Petta, J.R., Taylor, J. M. et al. 2005. Triplet–singlet spin relaxation via nuclei in a double quantum dot. Nature, 435(7044), 925–928.Google Scholar
[54] Jones, J. A., Karlen, S. D., Fitzsimons, J. et al. 2009. Magnetic field sensing beyond the standard quantum limit using 10-spin NOON states. Science, 324(5931), 1166–1168.Google Scholar
[55] Karrai, K. 2003. Optical transmission and refiection spectroscopy of single quantum dots. Superlattices Microstruct., 33(5–6), 311–337.Google Scholar
[56] Kimble, H. J. 2008. The quantum internet. Nature, 453(7198), 1023–1030.Google Scholar
[57] Kroner, M., Govorov, A. O., Remi, S. et al. 2008. The nonlinear Fano effect. Nature, 451(7176), 311–314.Google Scholar
[58] Kroner, M., Weiss, K., Biedermann, B. et al. 2008. Optical detection of single-electron spin resonance in a quantum dot. Phys. Rev. Lett., 100(15), 156803.Google Scholar
[59] Kroutvar, M., Ducommun, Y., Heiss, D. and Bichler, M. 2004. Optically programmable electron spin memory using semiconductor quantum dots. Nature, 432(November), 81–84.Google Scholar
[60] Ladd, T. D., Press, D., De Greve, K. et al. 2010. Pulsed nuclear pumping and spin diffusion in a single charged quantum dot. Phys. Rev. Lett., 105(10), 107401.Google Scholar
[61] Liu, R. -B., Yao, W. and Sham, L. J. 2010. Quantum computing by optical control of electron spins. Advances In Physics, 59(5), 703–802.Google Scholar
[62] Loss, D. and DiVincenzo, D. P. 1998. Quantum computation with quantum dots. Phys. Rev. A, 57(1), 120–126.Google Scholar
[63] Marie, X., Amand, T., Le Jeune, P. et al. 1999. Hole spin quantum beats in quantumwell structures. Phys. Rev. B, 60(8), 5811–5817.Google Scholar
[64] Martin, R. W., Nicholas, R. J., Rees, G. J. et al. 1990. Two-dimensional spin confinement in strained-layer quantum-wells. Phys. Rev. B, 42(14), 9237–9240.Google Scholar
[65] Merkulov, I. A. 2002. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B, 65(20), 205309.Google Scholar
[66] Mikkelsen, M. H., Berezovsky, J., Stoltz, N. G., Coldren, L. A. and Awschalom, D. 2007. Optically detected coherent spin dynamics of a single electron in a quantum dot. Nature Physics, 3(11), 770–773.Google Scholar
[67] Miller, D. L. and Asbeck, P. M. 1985. Be redistribution during growth of GaAs and AlGaAs by molecular beam epitaxy. Journal of Applied Physics, 57(6), 1816–1822.Google Scholar
[68] Nowack, K. C., Koppens, F. H. L., Nazarov, Yu. V. and Vandersypen, L. M. K. 2007. Coherent control of a single electron spin with electric fields. Science, 318(5855), 1430–1433.Google Scholar
[69] Petta, J. R. 2010. Private communication.
[70] Petta, J. R., Johnson, A. C., Taylor, J. M. et al. 2005. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science, 309(5744), 2180–2184.Google Scholar
[71] Phillips, M., Wang, H., Rumyantsev, I. et al. 2003. Electromagnetically induced transparency in semiconductors via biexciton coherence. Phys. Rev. Lett., 91(18), 1–4.Google Scholar
[72] Press, D., Ladd, T. D., Zhang, B. and Yamamoto, Y. 2008. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature, 456(7219), 218–21.Google Scholar
[73] Ramsay, A. J., Boyle, S. J., Kolodka, R. S. et al. 2008. Fast optical preparation, control, and readout of a single quantum dot spin. Phys. Rev. Lett., 100(19), 197401.Google Scholar
[74] Smith, J. M., Dalgarno, P. A., Warburton, R. J. et al. 2005. Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot. Phys. Rev. Lett., 94(19), 197402.Google Scholar
[75] Syperek, M., Yakovlev, D. R., Greilich, A. et al. 2007. Spin coherence of holes in GaAs/(Al,Ga)As quantum wells. Phys. Rev. Lett., 99(18), 187401.Google Scholar
[76] Testelin, C., Bernardot, F., Eble, B. and Chamarro, M. 2009. Hole spin dephasing time associated with hyperfine interaction in quantum dots. Phys. Rev. B, 79(19), 195440.Google Scholar
[77] Trif, M., Simon, P. and Loss, D. 2009. Relaxation of hole spins in quantum dots via two-phonon processes. Phys. Rev. Lett., 103(10), 106601.Google Scholar
[78] Vamivakas, A. N., Lu, C. Y., Matthiesen, C. et al. 2010. Observation of spin-dependent quantum jumps via quantum dot resonance fiuorescence. Nature, 467(7313), 297–300.Google Scholar
[79] Vink, I. T., Nowack, K. C., Koppens, Frank H. L. et al. 2009. Locking electron spins into magnetic resonance by electron-nuclear feedback. Nature Physics, 5(10), 764–768.Google Scholar
[80] Warburton, R. J., Sundaram, G. M., Nicholas, R. J. et al. 1990. Strain reconstruction of the valence band in Gax In1−x Sb–GaSb quantum-wells. Surf. Sci., 228(1–3), 270–274.Google Scholar
[81] Warburton, R. J., Martin, R. W., Nicholas, R. J., Howard, L. K. and Emeny, M. T. 1991. Valence band spin splitting in strained In0.18Ga0.82As/GaAs quantum-wells. Semicond. Sci. Technol., 6(5), 359–364.Google Scholar
[82] Warburton, R. J., Schafiein, C., Haft, D. et al. 2000. Optical emission from a charge-tunable quantum ring. Nature, 405, 926–929.Google Scholar
[83] Wei, H., Gong, M., Guo, G. and He, L. 2010. Atomistic theory of spin relaxation in self-assembled In1−xGaxAs/GaAs quantum dots at zero magnetic field. arXiv: 1011.4724 (2010).
[84] Xu, X., Sun, B., Berman, P. R. et al. 2008. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nature Physics, 4(9), 692–695.Google Scholar
[85] Xu, X., Yao, W., Sun, B. et al. 2009. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature, 459(7250), 1105–1109.Google Scholar
[86] Yilmaz, S. T., Fallahi, P. and Imamoglu, A. 2010. Quantum-dot-spin single-photon interface. Phys. Rev. Lett., 105(3), 033601.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×